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Abstract: RNA-sequencing enables the comprehensive detection of gene expression levels at specific
time points and facilitates the identification of stress-related genes through co-expression network
analysis. Understanding the molecular mechanisms and identifying key genes associated with salt
tolerance is crucial for developing rice varieties that can thrive in saline environments, particularly
in regions affected by soil salinization. In this study, we conducted an RNA-sequencing-based
time-course transcriptome analysis of ‘Jao Khao’, a salt-tolerant Thai rice variety, grown under
normal or saline (160 mM NaCl) soil conditions. Leaf samples were collected at 0, 3, 6, 12, 24, and
48 h. In total, 36 RNA libraries were sequenced. ‘Jao Khao’ was found to be highly salt-tolerant, as
indicated by the non-significant differences in relative water content, cell membrane stability, leaf
greenness, and chlorophyll fluorescence over a 9-day period under saline conditions. Plant growth
was slightly retarded during days 3–6 but recovered by day 9. Based on time-series transcriptome
data, we conducted differential gene expression and weighted gene co-expression network analyses.
Through centrality change from normal to salinity network, 111 key hub genes were identified among
1,950 highly variable genes. Enriched genes were involved in ATP-driven transport, light reactions
and response to light, ATP synthesis and carbon fixation, disease resistance and proteinase inhibitor
activity. These genes were upregulated early during salt stress and RT-qPCR showed that ‘Jao
Khao’ exhibited an early upregulation trend of two important genes in energy metabolism: RuBisCo
(LOC_Os10g21268) and ATP synthase (LOC_Os10g21264). Our findings highlight the importance
of managing energy requirements in the initial phase of the plant salt-stress response. Therefore,
manipulation of the energy metabolism should be the focus in plant resistance breeding and the
genes identified in this work can serve as potentially effective candidates.

Keywords: network-based analysis; rice; RNA-sequencing; salt tolerance; transcriptomic; two-state
co-expression network; weighted co-expression network

1. Introduction

High soil salinity significantly affects rice cultivation by impeding root water ab-
sorption, leading to osmotic stress in plant cells. Moreover, an excessive influx of NaCl
can exacerbate ionic and oxidative stress [1]. Understanding the molecular mechanisms
underlying salt tolerance is essential for enhancing the resilience of rice varieties to salinity,
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particularly in areas affected by soil salinization. Salt tolerance is governed by numer-
ous genes or quantitative trait loci (QTLs), which collaborate via co-regulation and/or
co-expression to alleviate salinity-induced stress via intricate molecular mechanisms.

Transcript–transcript association network analysis plays a crucial role in the elucida-
tion of the molecular mechanisms of a biological system in systems biology studies [2]. With
the progression of deep genome sequencing, RNA-sequencing has been used to investigate
gene expression in rice under particular abiotic stimuli, such as salinity [3]. Weighted gene
co-expression network analysis (WGCNA), a molecular biological correlation network
analysis method, uses transcriptome data to analyze intricate gene-regulatory networks
by grouping co-expressed genes into adjacency modules and classifying them based on
functional and pathway enrichment. This approach relies on a strong pairwise correlation
of transcript levels between specific time points. WGCNA was initially developed by
Langfelder and Horvath [4]. WGCNA has proven to be effective in identifying hub genes
associated with both biotic and abiotic stresses. For example, in Arabidopsis, network cen-
trality analyses for identifying key transcription factors crucial in drought stress conditions
revealed 117 transcription factors with hub-like properties [5]. Similarly, in rice seedlings,
17 potential candidates associated with drought, salinity, and heat stress were identified by
analyzing centrality properties and densely interconnected interactions [6].

Two-state GCNA was adopted to identify key genes in the global (encompassing
transcriptome data from two conditions), the normal-state (containing transcriptome data
from seedlings grown under normal conditions), and the stress-state (containing transcrip-
tome data from stress conditions) networks. The global network served as an overarching
network. The two-state networks facilitated analysis of the centrality changes from the
normal to the saline conditions. Using two-state WGCNA, Sonsungsan, et al. [7] identified
key salt tolerance genes in ‘Luang Pratahn’, a Thai rice variety, and reported that more than
44% of the key genes were related to salt stress and various stress responses. Chutimanukul,
et al. [8] performed WGCNA to detect potential salt-tolerance genes in chromosome seg-
ment substitution lines of ‘Khao Dawk Mali 105’. OsBTBZ1 (LOC_Os01g66890), initially
identified as a potential salt-tolerance gene, was further characterized and found to function
as a salt-tolerance gene operating via abscisic acid (ABA)-dependent pathways [9].

Since salt tolerance is a multigene trait involving several cellular processes and depen-
dent on the plant genetic background, comprehensive identification of key genes involved
and their variations among different varieties will lead to complete understandings on
the mechanisms of salinity tolerance. The Thai rice variety ‘Jao Khao’ is salt-tolerant
during both the seedling and flowering stages and maintains high yields under saline
conditions [10,11]. In the present study, we conducted two-state WGCNA of ‘Jao Khao’
rice at the seedling stage using transcriptomic time-series data to compare responses under
normal and saline conditions. The aim of this study was to identify major cellular processes
and crucial hub genes implicated in salt stress.

2. Results
2.1. Salt-Stress Related Phenotypes of ‘Jao Khao’ under Saline Soil Conditions

We determined the tiller number, plant weight, salt injury evaluation system (SES), cell
membrane stability (CMS), and relative water content (RWC) at days 0, 3, 6, and 9 under
normal and saline (160 mM NaCl) soil conditions. All phenotypic data are presented in
Figure 1 and Supplementary Table S1 and Figure S1. In response to salt stress, the tiller
number tended to increase from day 0 to day 9, and the SES score significantly increased
from day 0 to day 6 but decreased on day 9 (Figure 1A,B). Shoot and root fresh weights
and dry weights were lower in the saline treatment group on days 3 and 6 but did not
significantly differ on day 9 (Figure 1C–F). The percentages of dry/fresh weight, which
represent the proportions of dry mass and water content, indicated that the shoots of plants
under normal conditions contained slightly more water (lower mass percentage) than those
of plants under saline conditions during days 6–9, whereas the roots did not significantly
differ in terms of water content between the two conditions (Figure 1G,H). Unlike ‘Pokkali’
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and ‘IR29’ (Supplementary Figure S2), the CMS and RWC of ‘Jao Khao’ did not change
under saline conditions during the 9-day treatment (Figure 1I,J).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 23 
 

 

of plants under saline conditions during days 6–9, whereas the roots did not significantly 
differ in terms of water content between the two conditions (Figure 1G,H). Unlike ‘Pokkali’ 
and ‘IR29’ (Supplementary Figure S2), the CMS and RWC of ‘Jao Khao’ did not change 
under saline conditions during the 9-day treatment (Figure 1I,J). 

 
Figure 1. Comparison of phenotypic traits between normal and saline conditions of ‘Jao Khao’.
(A) tiller number, (B) SES, (C) shoot fresh weight, (D) root fresh weight, (E) shoot dry weight, (F) root
dry weight, (G) shoot dry-to-fresh weight ratio, (H) root dry-to-fresh weight ratio, (I) CMS, and
(J) RWC. Data are presented as means ± SD (n = 3). Statistical significance was determined using the
Duncan multiple range test. Significant differences (p ≤ 0.05) are indicated by different letters. ns:
not significant.
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2.2. Leaf Greenness and Chlorophyll Fluorescence of ‘Jao Khao’ under Saline Soil Conditions

According to the SPAD index, which represents leaf greenness, ‘Jao Khao’ can maintain
the leaf greenness during the 9-day salt stress (Figure 2A), while the indices of ‘IR29’ and
‘Pokkali’ markedly decreased in days 6 and 9, respectively, under salt stress (Supplementary
Figure S3A,B). Similarly, ‘Jao Khao’ seedlings were able to maintain a high maximum
quantum yield of PSII (Fv/Fm), compared to that of normal conditions throughout the 9-day
period of salt stress (Figure 2B), and significantly higher than those of ‘IR29’ and ‘Pokkali’,
which markedly decreased on days 6 and 9, respectively (Supplementary Figure S3C,D).
Consistently, the Performance index (Pi), which indicates alterations in the photosynthetic
apparatus of plants under stress, based on light energy absorption [8,12,13] of ‘Jao Khao’
was maintained until day 9 (Figure 2C), which was also higher than those of ‘IR29’ and
‘Pokkali’ (Supplementary Figure S3E,F).
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determined based on a power of 10 (Figure 3B) selected for calculating the adjacency matrix. 
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Figure 2. Leaf greenness and chlorophyll fluorescence of ‘Jao Khao’ compared between that of control
and salt conditions. (A) SPAD index, (B) Maximum PSII efficiency (Fv/Fm), and (C) Performance
index (Pi). Data are presented as means ± SD (n = 3). Statistical significance was determined using
the Duncan multiple range test. Significant differences (p ≤ 0.05) are indicated by different letters. ns:
not significant.

2.3. Overview of Two-State Network Analysis

We constructed three networks: a global network encompassing all data, covering
both the normal and salinity states, and separate networks for the normal and saline
states. First, all genes were normalized and qualified, after which WGCNA was used to
create the networks. The global network served as an overview of the network analysis,
including module detection. For the normal- and saline-state networks, genes were not
clustered into modules; rather, node centralities (DG, BW, CN, and CC) were calculated. To
identify key genes in each module, changes in the centrality values from the normal- to
the saline-state network were assessed. In total, 27,106,303 read counts and 38,993 genes
were obtained from the 36 libraries. The raw read counts (Figure 3A) were normalized
using DESeq2, (version 1.44.0) and after filtering out genes with low variation across
all conditions, 1950 genes that passed the 95th percentile threshold were retained. In
WGCNA, the soft threshold was determined based on a power of 10 (Figure 3B) selected
for calculating the adjacency matrix. The heatmap of topological overlapping matrix plot
(Figure 3C) shows the clustering of genes with similar expression patterns into modules.
In this context, modules and clusters represent the same concept, that is, genes grouped
together based on shared expression profiles. The minimum number of genes per module
was set to 35, resulting in seven modules: grey (362 genes), green (59 genes), turquoise
(610 genes), yellow (113 genes), red (48 genes), blue (567 genes), and brown (191 genes)
(Table 1 and Figure 3C).



Int. J. Mol. Sci. 2024, 25, 11086 5 of 22

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 23 
 

 

genes with similar expression patterns into modules. In this context, modules and clusters 
represent the same concept, that is, genes grouped together based on shared expression 
profiles. The minimum number of genes per module was set to 35, resulting in seven 
modules: grey (362 genes), green (59 genes), turquoise (610 genes), yellow (113 genes), red 
(48 genes), blue (567 genes), and brown (191 genes) (Table 1 and Figure 3C). 

 
Figure 3. Normalized read counts of 36 RNA-sequencing library (A), scale-free topology and mean 
connectivity (the horizontal red line was at R2 = 0.9) (B), the heatmap of topological overlapping matrix 
(TOM) plot visualizing the strength of the connections (similarity) between genes with the bright yellow 
color indicating genes with more connections or shared neighbors in the network and the colors 
representing modules displayed on both axes (C), and module–trait relationships (MTR) (D). The colors 
of modules include blue, red, turquoise, green, brown, yellow and grey. The letters ct and ss indicate 
control conditions and salt stress conditions, respectively. ME: Module Eigengene, a representative of 
gene expression levels in a cluster of co-expressed genes. Significant differences (p ≤ 0.05) are indicated 
by *. 

Table 1. Modules and key genes. 

Module Grey Green Turquoise Yellow Red Blue Brown Sum 
Total genes 362 59 610 113 48 567 191 1950 
Key genes 14 5 59 13 1 18 1 111 
Percentage 3.9 8.5 9.7 11.5 2.1 3.2 0.5 5.7 

2.4. Determination of Node Centralities 
The network properties of the three networks were calculated based on the WGCNA 

results and a summary of the network statistics is provided in Table 2. To include all 
connections, edge weights were set to 0.1 or higher [7]. The saline-state network had a higher 

Figure 3. Normalized read counts of 36 RNA-sequencing library (A), scale-free topology and mean
connectivity (the horizontal red line was at R2 = 0.9) (B), the heatmap of topological overlapping
matrix (TOM) plot visualizing the strength of the connections (similarity) between genes with the
bright yellow color indicating genes with more connections or shared neighbors in the network and
the colors representing modules displayed on both axes (C), and module–trait relationships (MTR)
(D). The colors of modules include blue, red, turquoise, green, brown, yellow and grey. The letters ct
and ss indicate control conditions and salt stress conditions, respectively. ME: Module Eigengene, a
representative of gene expression levels in a cluster of co-expressed genes. Significant differences
(p ≤ 0.05) are indicated by *.

Table 1. Modules and key genes.

Module Grey Green Turquoise Yellow Red Blue Brown Sum

Total genes 362 59 610 113 48 567 191 1950

Key genes 14 5 59 13 1 18 1 111

Percentage 3.9 8.5 9.7 11.5 2.1 3.2 0.5 5.7

2.4. Determination of Node Centralities

The network properties of the three networks were calculated based on the WGCNA
results and a summary of the network statistics is provided in Table 2. To include all
connections, edge weights were set to 0.1 or higher [7]. The saline-state network had a
higher number of nodes (1351 nodes) than the normal-state network (1204 nodes), whereas
the global network had an even lower number of nodes (909 nodes). The normal-state
network had 59,749 edges, an average degree of 206.420, and 52 connections per node. In
contrast, the salinity-state network had 54,090 edges, a lower average degree of 120.038,
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and only 21 connections per node. The diameter was the largest in the saline-state network
(16) and the smallest in the global network (7). These findings suggested that during
salt stress, ‘Jao Khao’ rice exhibited altered expression of genes (nodes), but the genes
were less connected as indicated by the decreased number of edges, which led to an
increased network diameter. A smaller diameter typically indicates a more compact and
closely connected network, whereas a larger diameter suggests a more dispersed or loosely
connected network.

Table 2. Network properties of the three co-expression networks.

Network Properties Global Network Normal-State Network Salinity-State Network

Number of nodes 909 1204 1351

Number of edges 42,543 59,749 54,090

Average degree 157.002 206.420 120.038

Diameter 7 9 16

Average clustering coefficient 0.845 0.831 0.806

Number of connections per node 28 52 21

A comparison of the centrality distribution between the normal- and saline-state
networks is shown in Figure 4. The density of degree values increased during salt exposure
in the range of 0–70 (genes with low connections) but decreased in the range of 200–400
(genes with high connections) (Figure 4A). Similarly, the density of closeness increased
in the range of 0–0.5 but decreased in the range of 0.5–1 (Figure 4B). The densities of
betweenness clearly decreased under salt stress (Figure 4C) and clustering coefficients
exhibited left-skewed distribution in both networks (Figure 4D).
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2.5. Module Relationships with Multiple Time Points

The module–trait relationships (MTRs) were used to explain the correlation between
genes in each module and time points. MTRs were established for the global network, as
depicted in Figure 3D. ‘Jao Khao’ rice, which is highly resistant to salinity and, under saline
conditions, has a similar phenotype to that under normal growth conditions (Figure 1),
exhibited a few significant correlations between module genes and time points. However,
we observed a significant upregulation of genes in three modules related to saline treatment
at specific time points. Genes in the yellow module were upregulated at 6 h (MTRs = 0.46,
p = 0.004), as were those in the green module (MTRs = 0.34, p = 0.04), whereas those in the
brown module were upregulated at 12 h (MTRs = 0.36, p = 0.03). These results suggest that
the expression of genes in these modules was upregulated early. Details of the relationship
between genes in this module and salt stress are provided in Section 3. This observation
correlates with the summarized network properties presented in Table 2, which indicate
that salt stress in ‘Jao Khao’ rice initiates an alteration in gene expression as suggested by
the increase in the number of nodes, but with fewer connections among them.

2.6. Functional and Pathway Enrichment Analyses

To elucidate the biological relevance of the gene expression data, gene enrichment anal-
ysis was conducted using genes from each module by mapping them to the rice annotation
database using the clusterProfiler function in R (version 4.4.1) [14]. GO terms were used to
categorize the genes into BP, CC, and MF categories. GO terms were identified for genes
within all modules except the grey module (Figure 5 and Supplementary Table S3). The
green module was largely associated with BP (100%), including response to light intensity.
The turquoise module was mainly involved in MF (100%), including serine-type endopep-
tidase inhibitor activity, O-acyltransferase activity, and ADP-binding. The yellow module
was correlated with CC (62%), including photosystems and chloroplast thylakoid mem-
brane; BP (29%), including photosynthesis and response to light stimulus; and MF (9%), i.e.,
chlorophyll binding. The red module was exclusively associated with BP (100%), including
microsporogenesis, carotenoid biosynthetic process, and glycosyl-phosphatidylinositol
(GPI) anchor biosynthetic process. The blue module was associated with MF (65%), in-
cluding hexosyltransferase activity, RuBisCo activity, and ATP synthase activity; BP (24%),
including ATP synthesis and carbon fixation; and CC (12%), including ATPase complex.
Finally, the brown module was related to MF (44%), including RuBisCo activity, ATP hy-
drolysis activity, and antioxidant activity; CC (33%), including thylakoid lumen, vacuole
membrane, and ribosome; and BP (22%), including the response to blue light.

The results of KEGG pathway enrichment analysis of the genes each module are
provided in Figure 6 and Supplementary Table S4. The yellow and blue modules exhib-
ited related pathways including glyoxylate and dicarboxylate metabolism, carbon fixa-
tion in photosynthetic organisms, oxidative phosphorylation, photosynthesis, and carbon
metabolism with some of them overlapped. The yellow module was also enriched in
glycine, serine and threonine metabolism, and thiamine metabolism. The red and grey
modules shared the carotenoid biosynthesis pathway. Additionally, the red module ex-
hibited several terms related to fatty acids. These findings suggest that the significant
genes within these modules are primarily involved in photosynthesis-related pathways
and carbon metabolism.
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Figure 5. Gene Ontology (GO) enrichment analysis results for each module. p-values were adjusted
using the Benjamini–Hochberg correction. (A) Brown module, (B) turquoise module, (C) yellow
module, (D) blue module, (E) red module, and (F) green module. GO terms include biological process
(BP), cellular component (CC), and molecular function (MF).
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2.7. Investigation of Modular Hub Genes

Analysis focusing on the differences in node centrality between the normal- and saline-
state networks identified 111 key genes, which were mapped onto the global network. The
genes were distributed across the grey (14 genes), green (5 genes), turquoise (59 genes),
yellow (13 genes), red (1 gene), blue (18 genes), and brown (1 gene) modules as indicated
in Table 2 and Supplementary Table S2, and across the 12 chromosomes of the rice genome
as illustrated in Supplementary Figure S4. Notably, key hub genes were found on all
chromosomes. Genes within the same module were often located in close proximity on a
chromosome. Chromosomes 11, 1, and 4 contained the highest numbers of key genes (23,
19, and 11 genes, respectively), whereas chromosome 5 had only one key gene. Key genes
were mapped to the global state network as shown in Figure 7.
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Figure 7. Gene networks and key genes were identified based on the centrality change between
the two states (normal and saline) and mapped to the global state network. (A) Brown module,
(B) turquoise module, (C) yellow module, (D) blue module, (E) red module, (F) green module, and
(G) grey module. Small nodes and edges are colored according to the module they belong to. Large
nodes represent key genes detected based on DG, BW, CN, and CC centrality, with combinations of
1, 2, 3, and 4 centrality measures, which are indicated in bright colors: green, blue, orange, and red,
respectively.
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2.8. ‘Jao Khao’ Exhibits Early Upregulation of Genes Involved in Energy Metabolism

As the significant genes within these modules are primarily involved in energy
metabolism processes, such as light reactions, carbon fixation, and ATP synthesis, two
genes involved in these processes were selected for expression analysis via RT-qPCR. They
included genes encoding RuBisCo (LOC_Os10g21268) and ATP synthase (LOC_Os10g21264)
from the blue module. Their relative expression levels after salt stress treatment for 3, 6, 12,
24, and 48 h were examined in ‘Jao Khao’ and were compared with those of the salt-tolerant
(Pokkali) and salt-sensitive (IR29) standard varieties, respectively (Figure 8). Under salt
stress conditions, ‘Jao Khao’ exhibited an early upregulation trend of LOC_Os10g21268
expression at 3 and 6 h after treatment, while ‘Pokkali’ exhibited a delayed upregulation
trend at 12 h, followed by ‘IR29’ at 24 and 48 h (Figure 8A–C). For LOC_Os10g21264, all
three rice varieties significantly exhibited upregulation. ‘Jao Khao’ showed the earliest
upregulation at 3 h after treatment, ‘Pokkali’ showed increased expression levels at 12 h,
and ‘IR29’ exhibited upregulation at 24 h after treatment (Figure 8D–F).
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LOC_Os10g21268 and LOC_Os10g21264 in three varieties: ‘Jao Khao’ (A,D), ‘Pokkali’ (B,E), and ‘IR29’
(C,F) grown under salt stress conditions relative to those under control conditions by RT-qPCR. Data
are presented as means ± SD (n = 3). Statistical significance was determined using the Duncan
multiple range test. Significant differences (p ≤ 0.05) are indicated by different letters.
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3. Discussion

The salt-tolerant phenotype of the ‘Jao Khao’ Thai rice variety has been extensively
documented, with studies demonstrating its ability to maintain high yields even under
saline conditions [11,12]. To investigate the molecular mechanisms underlying its salt
tolerance, we conducted a comprehensive gene co-expression analysis based on multi-
series transcriptome data. ‘Jao Khao’ exhibited remarkable salt-tolerance as evidenced by
the nonsignificant changes in CMS, RWC, SPAD index, Fv/Fm, and Pi under saline soil
conditions for 9 days. RWC can indicate the water status in plant cells, and salt-tolerant
genotypes showed a smaller decrease in RWC compared to the sensitive ones [15]. In
Arabidopsis, a higher salt tolerance phenotype is evidenced by an improved capacity to
maintain RWC and CMS [16].

Measures of centrality, including DG, CN, BW, and the CC, are used to assess the
significance of genes within specific modules. Degree centrality conformed to a power-law
distribution, in which genes with fewer connections (low centrality values) outnumbered
those with more connections (high centrality values). The power value holds significance
because it determines the scale-free topology of the resulting network. A scale-free network
is defined by a small number of highly connected nodes (hubs) and numerous nodes with
few connections, a structure commonly observed in biological systems [8]. In this work,
the distribution of degree centrality (Figure 4A) suggested a decrease in highly connected
nodes (approximately connected to 150–450 genes) in the saline-state network, potentially
indicating the disruption of connections among genes normally interact under control
conditions. Although this resulted in an increase in the number of less connected genes
(approximately connected to 1–70 genes), many of them were new connections created
under salt stress conditions as detected in all modules except the turquoise module, in
which most genes became highly connected under salt stress. Genes deemed less important
under normal conditions may play pivotal roles under saline conditions [8].

We compared percentage changes in centrality and genes exhibiting a high percentage
change in centrality were identified as key genes, resulting in the clustering of seven
modules and the identification of 111 key genes (Table 1). The key genes identified in the
modules were validated using publicly available data (Supplementary Table S5) and gene
enrichment data (Figure 5 and Supplementary Table S3). Upon examining the validated
gene annotations, several key genes potentially involved in the salt-response mechanisms
specific to each module were identified (Figure 9). The proposed potential mechanism for
each module is described below.

3.1. Brown Module

In the brown module, only one key gene, LOC_Os04g52900, was identified by DG
centrality change, with three combinations of centrality measures (DG, CN, and CC)
(Figure 7A). LOC_Os04g52900 encodes a C-type ATP-binding cassette (ABC) transporter,
ABCC1, and was upregulated under salt stress (Figure 9). ABCC1, a member of the ABCC
family, participates in the detoxification and reduction of arsenic in rice grains [17]. Another
ABCC transporter, OsABCC7, is involved in the root-to-shoot translocation of As(III) [18].
Plant ABCCs can carry out ATP-powered transport of modified toxic compounds (e.g., by
conjugation to glutathione or glucose) into the vacuole during the detoxification process [19].
In Arabidopsis, two vacuolar ABCC-type ABC transporters transport ABA glucosyl ester,
which is an ABA conjugate that accumulates in the vacuole [20]. In the halotolerant yeast
Debaryomyces hansenii, vacuolar membrane transporters play major roles in the sequestration
of metal ions and some ABCC subfamily members may contribute to salt tolerance [21].
GO enrichment analysis of the brown module identified another ABC transporter gene,
LOC_Os06g51460, which encodes a G-type ABC transporter (ABCG16). Matsuda et al. [22]
reported that RCN1/OsABCG5 functions as a salt-tolerance factor by affecting the balance
of sodium and potassium, possibly via the control of SKC1/OsHKT1;5 in the shoots.
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Figure 9. Proposed mechanism of salt stress responses in ‘Jao Khao’ rice as inferred from a com-
prehensive analysis of time-course transcriptome data. Names bordered by colored lines are key
genes. Transcription factors are shown in red letters. GO enrichment analysis revealed several GO
terms related to key plant energy metabolism processes, such as light reactions, carbon fixation,
and ATP synthesis. Many genes associated with these GO terms exhibited increased expression
under salt stress. These enriched processes indicate the importance of maintaining energy production
early during salt stress to regulate ion and water uptake and transport. Other enriched GO terms
suggested the involvement of ATP-driven transport and the ubiquitination-proteasome pathway in
responses to salt stress. Several candidate transcription factors, including bZIP46, SPL4, ASR5, and
the transcriptional corepressor LEUNIG, may coordinate these processes. Dash-arrows and question
marks suggest potential regulatory relationships.

3.2. Turquoise Module

The turquoise module contained numerous genes, including 59 key genes that ex-
hibited high centrality (Figure 7B). Among these, 43 genes were detected only in the
saline-state network. The genes primarily enriched in this module were associated with
GO terms related to disease resistance and serine-type endopeptidase inhibitor activity
and were upregulated early during salt stress (Figure 9). One of the enriched GO terms
was ADP binding, which included LOC_Os09g14100 (NB-LRR, disease resistance protein
RPS2), LOC_Os11g10610 (NBS-LRR disease resistance protein), LOC_Os11g11790 (NBS-LRR
type disease resistance protein), LOC_Os11g11810 (NBS-LRR disease resistance protein),
and LOC_Os11g11770 (disease resistance protein RPM1, similar to the NBS-LRR protein
fragment), all of which were key genes. The NBS-LRR family, which is characterized by
the presence of a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains
and may act as receptors in immune and non-immune responses to biotic and abiotic
stresses (drought and salt stresses), was prevalent in the turquoise module, suggesting
potential signaling overlap between these responses [23]. The genes in this module associ-
ated with the enriched GO term proteinase inhibitor activity included LOC_Os11g11760
(OsSRP-PSG, serpin domain-containing protein), LOC_Os11g12410 (OsSRP-GAA, serpin
domain-containing protein), LOC_Os11g12420 (serpin-Z6B), LOC_Os11g13530 (serpin-Z2A),
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and LOC_Os11g13540 (serpin-Z2B), all of which were serine protease inhibitors in the serpin
superfamily.

Additional key genes in this module included LOC_Os11g44340 and LOC_Os11g44170,
which encode calmodulin-binding proteins. In eukaryotes, calmodulin is an intracellular
Ca2+-binding protein that interacts with more than 300 target proteins and peptides [24]. In
rice, it plays various roles as a signal transducer in the response to salt stress [25,26]. Other
key genes were LOC_Os01g25370 (SUMO protease), which is involved in SUMOylation,
resulting in early flowering and decreased plant height in rice [27], and LOC_Os01g42350,
LOC_Os11g05700, and LOC_Os01g42370, encoding transporters including pleiotropic drug
resistance proteins and ABC transporter family proteins, which are involved in abiotic and
biotic stresses, such as iron deficiency stress [28].

Key genes encoding transcription factors in this module included LOC_Os02g07780
(SPL4-SBP-box gene family member), which encodes the SQUAMOSA promoter-binding
protein domain, a transcription factor that regulates grain size [29], LOC_Os01g42260
(LUGL, transcriptional corepressor LEUNIG), which influences floral development by
modulating auxin levels [30], and LOC_Os06g10880 (bZIP46 transcription factor), which is
positively regulated by ABA signaling and drought stress in rice [31].

3.3. Yellow Module

In the yellow module, 13 key genes were identified (Figure 7C). Among them, eight
genes were specific to the saline-state network. Genes in this module were enriched in the
GO terms light reactions and response to light. The key genes associated with the enriched
GO terms included LOC_Os03g39610 (LHCB, chlorophyll A-B binding protein), which is
involved in photosynthesis, light harvesting, and the response to light [32] The expression of
LOC_Os03g39610 and several other enriched genes associated with photosynthesis and light
harvesting initially decreased, but later increased (Figure 9). A similar expression pattern
was also observed for LOC_Os03g03720 (glyceraldehyde-3-phosphate dehydrogenase,
GAPDH), which is a potential candidate gene involved in rice tolerance to low light stress
and is related to aromatic traits.

Another key gene in this module was LOC_Os11g06720 gene (ASR5, abscisic acid-,
stress-, and ripening-induced protein), which encodes a transcription factor that plays a
role in aluminum tolerance by binding STAR1, which encodes an ABC transporter [33].
ASR5 also plays an important role in the drought stress response by regulating ABA
biosynthesis, facilitating stomatal closure, and acts as chaperone-like protein to prevent the
inactivation of drought stress-related proteins [33,34].

Other key genes were LOC_Os07g34570 (DR8, FAD-dependent oxidoreductase domain
containing protein), which is involved in disease resistance [35,36], LOC_Os06g01210 (PC, plas-
tocyanin, chloroplast precursor), which functions in electron transport [37], LOC_Os01g10400
(MT-3a, metallothionein-like protein), which provides tolerance to salinity, drought, and
heavy metal stress in rice [38], LOC_Os08g09250 (GLYI11.2, glyoxalase family protein),
which is related to plant stress adaptation [39], and LOC_Os08g39300 (SGAT, serine:glyoxylate
aminotransferase), which controls crucial photorespiratory enzymes in rice at both the
transcriptional and post-translational (phosphorylation) levels [40].

3.4. Blue Module

Seventeen of the 18 key genes in the blue module were present only in the saline-state
network (Figure 7D). The main GO terms enriched in this module were hexosyltransferase
activity, ATP synthase activity, and carbon fixation. The genes associated with hexosyl-
transferase activity were all key genes whose expression did not significantly change
under salt stress (Figure 9), including LOC_Os05g12450 (UGT, hydroquinone glucosyltrans-
ferase), which is triggered by both biotic and abiotic stresses [41], LOC_Os03g11350 (UDP-
glucoronosyl and UDP-glucosyl transferase), and LOC_Os03g55020 (UDP-glucoronosyl
and UDP-glucosyl transferase domain containing protein), which participates in pathogen
defense responses [42].
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The genes associated with ATP synthase activity and carbon fixation were upreg-
ulated under salt stress, unlike the key genes in this module. These genes included
LOC_Os12g10570 (ATP synthase subunit beta), which is involved in carbon and nitrogen
metabolism and upregulated under salt stress, LOC_Os10g21264 (ATP synthase epsilon
chain), which was identified by genome-wide association in rice exposed to short-term
exposure to salt stress [43], and LOC_Os10g21268 and Os01g0791033, which encode the
large subunits of RuBisCo, the key enzyme in carbon fixation and photorespiration. No
other genes encoding other subunits ATP synthase or RubisCo were identified.

3.5. Red Module

In the red module (Figure 7E), only one key gene was identified, LOC_Os01g39670
(FBD1), with two combinations of centrality measures (DG and CC). Genes associated with
the enriched GO term microsporogenesis included the key gene FBD1 and LOC_Os01g39680
(small ubiquitin-like modifier (SUMO) E3 ligase-like protein) (Figure 9). FBD1, an F-box and
fibrin-binding domain (FBD) protein involved in floral transition, panicle development, and
seed formation [44]. The F-box protein is part of two-gene male sterility systems involved in
male fertility in indica–japonica hybrids [45,46]. LOC_Os01g39960 (lycopene epsilon cyclase,
chloroplast precursor) and LOC_Os01g39810 (Alg9-like mannosyltransferase protein) were
associated with the carotenoid biosynthetic process and GPI anchor biosynthetic process,
respectively.

Expression of the two genes involved in energy metabolism, RuBisCo and ATP syn-
thase, in ‘Jao Khao’ was early upregulated under salt stress conditions. ATP synthase is the
enzyme that utilizes electrochemical energy to power the synthesis of ATP, a key process
involved in active ion transport. In plants, it has been reported that ATP synthase is overex-
pressed in response to abiotic stresses [47,48]. Wei et al. [49] suggested that increased ATP
production in cells could improve plant tolerance to salt stress. Wang et al. [50] reported
that LOC_Os10g21264 was one of the most downregulated DEGs in the bglu6 mutant, which
is involved in ABA recycling in rice under drought conditions. In this study, two ATP
synthase genes were co-expressed in the same module. ATP synthase typically consists
of two main parts (Fo and F1) that work together. LOC_Os10g21264 (epsilon subunit),
containing a GO term enriched in this study, was selected for validation using RT-qPCR,
and the results showed that it was upregulation early. Together with LOC_Os12g10570
(beta subunit), they were the only two ATP synthase genes that showed upregulation in
‘Jao Khao’ during salt stress. This is similar to a previous study on salt-stress response
in Triticum aestivum, in which few genes encoding ATP synthase F1 subunits (beta and
delta) were upregulated during salt stress; however, genes encoding other F1 subunits did
not show upregulation [51]. Based on both studies, other regulatory mechanisms of gene
expression, that is, translational and posttranslational regulation for genes that encode other
subunits of ATP synthases may play a role in response to salt stress without altering the
transcript levels. Even with an upregulation of transcript levels of only few genes encoding
F1 subunits, these mechanisms may result in better maintenance of photosynthetic activity
and energy production during salt stress as observed in ‘Jao Khao’ variety in this study.
Additionally, in a previous study, the overexpression of a gene encoding a component of
the Fo part of the rice mitochondrial ATP synthase was shown to increase salt tolerance;
however, the transcript levels of the genes encoding the other mitochondrial F1Fo-ATPase
subunits were mostly not affected by salt stress. This study showed that an increase in
the expression of one gene encoding a single component of the ATP synthase could lead
to the difference in salt tolerance ability [48]. In this study, the early upregulation of ATP
synthase (LOC_Os10g21264) in ‘Jao Khao’ aligns well with its ability to maintain light
energy absorption, as indicated by maximum PSII efficiency (Fv/Fm), Performance index
(Pi), and survival under saline stress.

Based on our data of gene co-expression network, LOC_Os10g21268 (RuBisCo large
subunit) was detected and matched with enriched GO terms; therefore, we selected this
gene for validation. RuBisCo is a multi-subunit enzyme that functions as a complex. It
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consists of eight large (RbcL) and eight small (RbcS) subunits, which come together to
form a functional enzyme. There are multiple annotated RuBisCo large chain and small
chain precursor genes in the rice genome with LOC_Os10g21268 that exhibit very high
expression levels in leaf (based on RNA-Seq data in the Rice Genome Annotation Project
database). The small subunit gene, LOC_Os12g19381, which also exhibited high expression
levels in leaf, showed a trend of upregulation under salt stress in this study; however,
the difference was not statistically significant, and it was not picked up by the gene co-
expression network analysis. For Rubisco to work effectively in catalyzing CO2-fixing
reaction during photosynthesis, all subunits must be correctly assembled and function
together. However, in a previous study in rice, overexpression of a RuBisCo large subunit
gene alone was found to improve drought tolerance [52].

While these findings underscore the significance of these two genes in energy produc-
tion under salinity stress, it is important to note that this discovery is based on a single
rice variety. This genetic feature might be specific to certain genotypes and not necessarily
present in all rice varieties. In addition, salt tolerance is a complex trait regulated by
multiple genes and various cellular processes. The identified genes likely contribute to a
portion of this trait, interacting with other genes within the plant’s genetic backgrounds.
The interplay between these genes, each with its own variations, contributes to the diverse
salt tolerance observed across different rice varieties.

Overall, GO enrichment analysis revealed gene enrichment in several GO terms
involved in central plant energy metabolism, including light reactions, carbon fixation, and
ATP synthesis, under saline conditions, which are in agreement with the ability of ‘Jao Khao’
in maintaining the SPAD index, Fv/Fm, and Pi during the 9-day of salt stress. Most of the
genes associated with these GO terms were upregulated under saline conditions. These
enriched processes suggest the importance of maintaining energy production early during
salt stress for the regulation of ion and water uptake and transport [53]. Further, the results
suggested the involvement of ATP-driven transport and the ubiquitination-proteasome
pathway in the response of ‘Jao Khao’ to salt stress. Several candidate transcription factors
may coordinate these processes, including bZIP46, SPL4, ASR5, and the transcriptional
corepressor LEUNIG. Our findings suggest that these genes may play crucial roles in the
response of rice to salt stress.

4. Materials and Methods
4.1. Phenotyping of Rice under Soil-Salt Treatment

‘Jao Khao’ seeds were germinated in water for 10 days, then transplanted into clay soil
with one seedling in a 40 cm3 pot, supplemented with 16-16-16 fertilizer, for two weeks in a
greenhouse under ambient conditions. Two growth conditions were separately established
in each tray by soaking in 15 L tap water: normal conditions, in which no salt was applied,
and saline conditions, in which the soil was treated with 160 mM NaCl, in a complete
randomized design (CRD) with three replicates. This procedure was used for phenotyping,
RNA sequencing, and RT-qPCR of separate individual plants after treatment with salt
stress at indicated timepoints. At 0, 3, 6, and 9 days after stress exposure, phenotypic
characteristics, including shoot and root fresh and dry weights, tiller number, the standard
salt injury evaluation system (SES) score, cell membrane stability (CMS), and relative
water content (RWC). We conducted additional experiments using the same protocol as
described earlier by growing ‘Jao Khao’ and comparing it with that of ‘Pokkali’ (a standard
salt-tolerant variety) and ‘IR29’ (a standard salt-sensitive variety) in a CRD with three
replications for each time point to determine CMS, RWC, SPAD index, and chlorophyll
fluorescence (Fv/Fm and performance index). The experimental methodologies followed
the procedures outlined by Kojonna, et al. [16], and Punchkhon, et al. [54]. Statistical
significance was assessed using the Duncan multiple range test, with significance defined
as p ≤ 0.05.
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4.2. RNA Extraction, Library Preparation, and Sequencing

Fully expanded leaves were collected from three replicates under normal and saline
(160 mM NaCl) soil conditions at 0, 3, 6, 12, 24, and 48 h following salt treatment. The
leaves were immediately frozen in liquid nitrogen and stored at −80 ◦C. Total RNA was
extracted from the leaves using PureLink™ Plant RNA Purification Reagent (Thermo Fisher
Scientific, Waltham, MA, USA), and genomic DNA was removed using DNase I (RNase-
free; New England Biolabs, Ipswich, MA, USA). The RNA quality was assessed using an
Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA, USA) and RNA concentration was
determined using a DeNovix fluorometer (DeNovix, Wilmington, DE, USA). Individually
indexed strand-specific RNA-sequencing libraries of all samples were prepared using
QIAseq FastSelect–rRNA Plant and QIAseq Stranded mRNA Library kits (Qiagen, Hilden,
Germany). The indexed libraries were pooled in equimolar quantities and subjected
to cluster generation and 150-nucleotide paired-end sequencing on an Illumina HiSeq
sequencer (Illumina, San Diego, CA, USA). In total, 36 cDNA libraries were sequenced.

4.3. Quantification of Gene Expression by RT-qPCR

The youngest fully expanded leaves of ‘Jao Khao’, ‘Pokkali’, and ‘IR29’ were collected
at different time points as previously described. RT-qPCR was conducted following the
methodology described by Chinpongpanich et al. [25], using three technical replications
and at least two biological replicates to assess the gene expression levels of LOC_Os10g21268
and LOC_Os10g21264. The oligonucleotide primers used were as follows: LOC_Os10g21268:
forward primer—5′ TTCCGAGTAACTCCTCAGCC and reverse primer—5′ GATTATCCTC-
CCCAACAACGG; and LOC_Os10g21264: forward primer—5′ GCCCGCCTTTATCGAGT-
TAG and reverse primer—5′ TCCCCTACTCCGCCAAATAC. EF-1-α (LOC_Os03g08010)
was used as internal control with the following primers: forward—5′ ATGGTTGTGGA-
GACCTTC and reverse—5′ TCACCTTGGCACCGGTTG.

4.4. Data Preprocessing and Screening

The raw reads were subjected to quality control assessment using the FASTQC
software (version 0.12.0) and trimmed using Trimmometic-0.39 (https://github.com/
usadellab/Trimmomatic/ (accessed on 26 February 2024)). Then, the reads were aligned
to the rice reference genome IRGSP-1.0 obtained from the EnsemblPlants database (https:
//plants.ensembl.org/index.html (accessed on 26 February 2024)) using HISAT2 (https:
//daehwankimlab.github.io/hisat2/ (accessed on 26 February 2024)). The alignment
results in SAM format were converted to the BAM format and indexed using SAM-
tools (version 1.17) [55]. The aligned reads were quantified using HTSeq-count (https:
//htseq.readthedocs.io/en/release_0.11.1/count.html (accessed on 26 February 2024)),
with the genomic features provided in a GTF file (https://plants.ensembl.org/index.html
(accessed on 26 February 2024)). The 36 raw read count datasets were normalized by divi-
sion by the size factors. To this end, we calculated the variance stabilizing transformation
of the read counts of each gene using the ‘varianceStabilizingTransformation’ function in
DESeq2 [56]. Genes with low variation were filtered out using the ‘genefilter’ package [57].
Genes passing the 95th percentile threshold were used in the WGCNA pipeline (Figure 10).

4.5. WGCNA

We used WGCNA to construct global, normal-state, and saline-state networks to
compare the co-functional genes under normal and saline conditions, following the pipeline
outlined in Sonsungsan et al. [8] and Suratanee et al. [58] (Figure 10). The transcriptome
data were normalized using DESeq2 [56], and genes with high variation were selected.
Next, we constructed three WGCNs: one for the global state (using all 36 libraries), one
for the normal state (using 18 libraries), and one for the saline state (using 18 libraries).
The scale-free topology was assessed to determine the optimal soft threshold (power, β)
for calculating the adjacency matrix based on the Pearson correlation of pairwise genes.
A power of 10 was selected as the minimum power at which the scale-free topology fit

https://github.com/usadellab/Trimmomatic/
https://github.com/usadellab/Trimmomatic/
https://plants.ensembl.org/index.html
https://plants.ensembl.org/index.html
https://daehwankimlab.github.io/hisat2/
https://daehwankimlab.github.io/hisat2/
https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://plants.ensembl.org/index.html
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index curve flattens, achieving a high value (R2 = 0.974). The normal- and saline-state
networks obtained were used to qualify the level of importance of the genes based on
various centrality measures.
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4.6. Centrality Measurement and Identification of Key Hub Genes

In biological systems, genes exert distinct functions while intricately interacting with
each other [59]. A GCN represents connections among entities [60], in which each node
represents a gene and the edges represent connections between genes. We analyzed
biological networks focusing on key centrality measures such as degree, betweenness,
closeness, and the clustering coefficient. Genes exhibiting high centrality properties were
denoted as ‘hub genes’ [61]. The centrality measures, as described by Sonsungsan et al. [7],
can be summarized as follows (for details, refer to Supplementary Figures S5–S7).

The degree (DG) of a node is determined by counting the edges connected to it [62].
A high DG indicates significant centrality, implying that the corresponding gene has
numerous interactions. Closeness centrality (CN) reflects the average distance of the
shortest path from a node to all others in the network, with higher values indicating greater
centrality [63]. CN values range from 0 to 1. Betweenness centrality (BW) quantifies the
proportion of shortest paths that pass through the node, with a higher BW facilitating
network-wide communication. BW helps identify pivotal ‘bridge-spanning’ nodes that
serve as key connectors within the network [64]. The BW of each node ranges from 0 to
1 [7]. The clustering coefficient (CC) measures the proportion of neighbors that are also
neighbors of each other. It provides insight into the local network structure, revealing how
densely interconnected the immediate neighbors of a node are [7,58,60].

To prepare the data for calculating centrality, the three networks were exported from
WGCNA (version 1.73) using the ‘exportNetworkToCytoscape’ function, and the threshold
for the lowest possible correlation was set to 0.1. Subsequently, the ‘Analyze Network’
function in Cytoscape (version 3.10.0) [65] was used to calculate centralities including DG,
BW, CN, and CC. The network property was generated using the same function, which
included number of nodes, number of edges, average degree, diameter, average clustering
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coefficient and number of connections per node. All four centrality measures were used to
assess the changes from the normal-state network to the saline-state network. Two criteria
were employed to identify key hub genes: first, only genes loaded into the global network,
and second, the percentage of centrality changes from less important genes (low scores)
in the normal state to genes with high importance (high scores) in the saline state [7]. The
key genes were selected from those exhibiting the percentage change in DG centrality that
surpassed 80%.

4.7. Module Detection and Functional and Pathway Enrichment Analyses

Modules in the global co-expression network were detected using WGCNA [4] by
calculating the dissimilarity of the topological overlap matrix. The relationship between
the modules and the time-course of gene expression was analyzed via WGCNA. Next, the
modules were examined for related functions or pathways. We used public annotation
data from the Rice Annotation Project Database (IRGSP-1.0-2024-01-11) and OryzaBase
(https://shigen.nig.ac.jp/rice/oryzabase/ (accessed on 26 February 2024)) to conduct a
Gene Ontology (GO) enrichment analysis, classifying the genes in each global network
module based on their function into biological process (BP), cellular component (CC), and
molecular function (MF) categories, using the clusterProfiler R function [14]. Additionally,
we performed a pathway enrichment analysis by downloading gene annotations from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/ (accessed on
26 February 2024)).

5. Conclusions

We compared transcriptome data from ‘Jao Khao’ rice seedlings grown under normal
and saline conditions at multiple time points to identify key hub genes associated with
salt tolerance. From the 111 genes selected based on centrality measures from a pool of
1950 highly variable genes by two-state WGCN and GO enrichment analysis, the identified
genes involved in ATP-driven transport, light reactions and response to light, ATP synthesis,
carbon fixation, disease resistance, and proteinase inhibitor activity were identified as
important components of the salt-stress response in rice. Early upregulation of these genes
suggests their importance in response to this stressor. Expression of two genes involved in
energy metabolism (RuBisCo and ATP synthase) was upregulated early in the salt-tolerant
variety, ‘Jao Khao.’ This indicates that it is important for the plant to manage energy for
their survival in the initial phase of salt stress and the processes and key genes identified in
this study potentially play important roles. These findings suggest that manipulation of
the energy metabolism should be the focus in plant resistance breeding effort.
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