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Abstract: Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with
current treatments showing limited success. Induced pluripotent derived–cardiomyocyte (iPSC-CM)
therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts
remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy
and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web
of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC
therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012
animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular
ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups.
Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency
to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No
significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and
control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy’s promise as a safe and
beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity,
the efficacy of this treatment must be further explored through large randomized controlled trials
based on rigorous research design.

Keywords: induced pluripotent stem cell; ischemic heart disease; outcomes; safety; meta-analysis

1. Introduction

Approximately one-third of global deaths are attributed to cardiovascular diseases [1].
Among these, ischemic heart disease (IHD) stands out as the primary contributor to car-
diovascular morbidity and mortality in both developed and developing countries [2].
According to the 2019 Global Burden of Disease report, ischemic heart disease was respon-
sible for 49.2% of all deaths related to cardiovascular diseases [3].

Ischemic heart disease is characterized by the substantial loss of cardiomyocytes fol-
lowing a sudden reduction in myocardial perfusion. Nonetheless, no endogenous repair
mechanisms have proven sufficient for restoring the lost myocardial tissue or reviving
cardiac function. Consequently, the loss of myocardial tissue triggers a cascade of events,
leading to the development of a non-contractile scar, thinning of the ventricular wall, and
heart remodeling, ultimately resulting in heart failure and death [4]. However, the effective-
ness of the available management for IHD remains quite limited. Despite intensive medical
treatment with statins, beta-blockers, angiotensin-converting enzyme inhibitors (ACEi) or
angiotensin receptor blockers (ARB), and antiplatelet agents, the all-cause mortality rates
of IHD patients were 57.5 per 1000 person-years [5]. The sole available treatment option
for replacing the loss of cardiac muscle is cardiac transplantation. However, this approach
is constrained by the limited supply of donors and the necessity of lifelong immunosup-
pressive therapy. It is worth noting the requirement that cardiomyocyte transplantation,

Int. J. Mol. Sci. 2024, 25, 987. https://doi.org/10.3390/ijms25020987 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25020987
https://doi.org/10.3390/ijms25020987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6100-5452
https://orcid.org/0000-0001-8845-3626
https://orcid.org/0000-0001-5593-7552
https://doi.org/10.3390/ijms25020987
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25020987?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 987 2 of 19

as elaborated in the following section, currently involves the use of immunosuppressive
drugs. The aspiration is that future technological progress will tackle this hindrance.

Recently, regenerative medicine involving stem cell treatment to restore damaged
heart tissue has emerged as a promising management approach for ischemic heart disease
(IHD). In the early 21st century, Takahashi et al. successfully transformed somatic cells into
pluripotent stem cells using retrovirus and introduced Oct3/4, Sox2, c-Myc, and Klf4 [6].
Unlike ESCs, iPSCs have the advantage of being free from ethical issues and rejection in the
case of autologous transplantation. Furthermore, their functionality remains unaffected by
the aging process [7]. The capacity to generate cardiomyocyte tissue, triggering the heart’s
contractile movement, presents an advanced approach in the field of regenerative medicine.
Despite the potential utility of undifferentiated induced pluripotent stem (iPS) cells in
therapy, substantial evidence indicates the risk of tumor formation in both control and IHD
rats, regardless of the administered dose [8]. Various methods have been developed to
remove undifferentiated cells that form tumors from differentiated cells, and the results of
animal studies have demonstrated that the risk of tumor formation is quite low.

Many studies have indicated that cardiomyocytes derived from induced pluripotent
stem cells (iPSC) demonstrate the formation of spontaneously beating sarcomeres during
in vitro culture [9,10]. The evaluation of action potential characteristics has shown that
iPSC-derived cardiomyocytes (iPSC-CM) exhibit sensitivity to β-adrenergic stimulation
and possess differentiation potential for ventricular, atrial, and nodal cardiomyocyte lin-
eages [11]. In vivo, the administration of iPSC-CM has effectively integrated with the host
myocardium, significantly reducing fibrosis, and substantially increasing fractional short-
ening in a murine model of ischemic heart disease (IHD) [12]. Moreover, iPS cell-derived
bioengineered tissue has recently shown the ability to enhance cardiac contractility com-
pared to controls following myocardial infarction (MI) [13]. Numerous preclinical studies
involving animals have individually explored various conditions, such as the timing of
transplantation, animal species, and methods of inducing ischemia. However, there has
been a lack of comprehensive analysis considering the collective outcomes of these experi-
ments. To address this gap, we conducted a meta-analysis to assess the current evidence
regarding the efficacy and safety outcomes of iPSC-CM treatment in IHD models. The
result of this review aims to provide recommendations and evidence-based insights that
can guide future human trials.

2. Results
2.1. Search Results

In the initial search, a total of 1808 references were identified. Subsequently, 1602 ref-
erences were excluded during the first screening process. The remaining 196 potential
references underwent abstract review, followed by 70 articles in full-text review. After
careful consideration, 51 articles were included. A PRISMA flow diagram is provided in
Figure 1.

2.1.1. Characteristics of Included Studies

A comprehensive meta-analysis incorporated a total of 51 articles. The publication
dates of these articles spanned from 2011 to 2023. Among the 51 studies, 43 were conducted
on small animals (murine), while 8 involved large animals (porcine, primates, rabbit),
comprising a total of 1012 animals (516 in treatment groups and 496 in control groups).
Notably, no human trials were identified. Further information on the studies is outlined in
Table S1.

2.1.2. Intervention Characteristics

In 51 trials, the cryo-injure model was employed in three studies, the infarct–reperfusion
model in five studies, and a permanent ischemic heart disease model was utilized in forty-
four studies. Most studies adopted hiPSC-derived cardiomyocytes (N = 44, 86.27%). The
predominant method of cell delivery involved intramyocardial cell injections (n = 35,



Int. J. Mol. Sci. 2024, 25, 987 3 of 19

66.03%), while bio-engineered tissue treatment was implemented in 18 studies (33.96%),
and intra-coronary injection was utilized in 1 study (0.01%). The total doses of injected cells
varied from 2 × 105 to 4 × 108. Follow-up duration ranged from 1 to 12 weeks.
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2.1.3. Risk of Bias Assessment of Included Studies

None of the studies met all ten criteria for a low risk of bias. Only one research study
satisfied seven criteria for a low risk of bias, while another fulfilled six criteria. Across all
studies, low bias risk was identified concerning comparable baseline groups, complete
data, and selective reporting (Figures 2 and S7).

2.2. Safety of iPSC-CM Treatment
2.2.1. Mortality

Mortality outcomes were either documented or could be accurately determined in a
total of 19 studies (Figure 2) [9,10,12,14–30]. There was no difference in the mortality risk
between the iPSC-CM and control groups, with OR = 0.61; 95% CI: 0.3 to 1.24, p = 0.17
(Figure 3).
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Figure 3. Effect size of iPSC-CM treatment on mortality [9,10,12,14–30]. Blue box represents the point
estimate of the effect for a single study, the black diamond represents the overall effect estimate of the
meta-analysis.

2.2.2. Arrhythmia

Four studies examined the potential risk of arrhythmia following iPSC-CM treatment,
comprising one study involving small animals [9] and three studies involving large an-
imals [19,30,31]. No significant difference was observed in the occurrence of sustained
ventricular arrhythmias between the cell-based group and the control group, with an odds
ratio of 10.46, a 95% confidence interval ranging from 0.94 to 115.83, and a p-value of 0.06
(Figure 4).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 4. Effect size of iPSC-CM treatment on arrythmia [9,19,30,31]. Blue box represents the point 
estimate of the effect for a single study, the black diamond represents the overall effect estimate of 
the meta-analysis. 

2.3. Efficacy of iPSC-CM Treatment 
2.3.1. Ejection Fraction (EF) 

The meta-analysis revealed a significantly higher left ventricular ejection fraction 
(LVEF) during follow-up between iPSC-CM therapy and the control group, with a mean 
difference (MD) of 8.23 (95% CI, 7.15 to 9.32; p < 0.001). There was notable heterogeneity 
(p < 0.001) and high inconsistency (I2: 95%) in the small animal studies (Figure 5). 

2.3.2. Fractional Shortening (FS) 
In 25 studies assessing fractional shortening (FS), which involved 428 small animals 

and 17 large animals, iPSC-CM treatment demonstrated improvement compared to con-
trols, with a mean difference (MD) of 5.16 (95% CI 4.25 to 6.08; p < 0.001), accompanied by 
high heterogeneity (p < 0.001) and high inconsistency (I2: 95%) (Figure 6). 

2.3.3. Other Cardiac Outcomes 
The implementation of iPSC-CM showed a tendency to decrease left ventricle fibrosis 

in the iPSC-CM treatment group compared to the control group. The cell-based treatment 
group exhibited a trend toward reducing left ventricular end-systolic volume (LVESV) 
and end-diastolic volume (LVEDV), although the difference was not statistically signifi-
cant. It is essential to highlight the presence of significant heterogeneity (p < 0.001) and 
substantial inconsistency (I2 > 90%) observed across the studies (Table 1). 

Table 1. Effect size estimation for LVESV, LVEDV, and LV fibrosis comparing iPSC-CM therapy vs. 
placebo. 

Outcome 
Number of In-
cluded Studies 

Number of Treat-
ments/Controls 

Mean Difference 
(95% CI) p I2 

LVESV (µL) 13 114/139 −6.41 (−13.36 to 0.54) 0.07 96% 
LVEDV (µL) 16 199/191 −2.66 (−8.6 to 3.27) 0.3 94% 

LV fibrosis (%) 30 332/276 −7.62 (−9.72 to −5.52) <0.001 94% 
LV: left ventricle; LVESV: left ventricular end-systolic volume; LVEDV: left ventricular end-diastolic 
volume. 

Figure 4. Effect size of iPSC-CM treatment on arrythmia [9,19,30,31]. Blue box represents the point
estimate of the effect for a single study, the black diamond represents the overall effect estimate of the
meta-analysis.



Int. J. Mol. Sci. 2024, 25, 987 5 of 19

2.3. Efficacy of iPSC-CM Treatment
2.3.1. Ejection Fraction (EF)

The meta-analysis revealed a significantly higher left ventricular ejection fraction
(LVEF) during follow-up between iPSC-CM therapy and the control group, with a mean
difference (MD) of 8.23 (95% CI, 7.15 to 9.32; p < 0.001). There was notable heterogeneity
(p < 0.001) and high inconsistency (I2: 95%) in the small animal studies (Figure 5).
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2.3.2. Fractional Shortening (FS)

In 25 studies assessing fractional shortening (FS), which involved 428 small animals
and 17 large animals, iPSC-CM treatment demonstrated improvement compared to controls,
with a mean difference (MD) of 5.16 (95% CI 4.25 to 6.08; p < 0.001), accompanied by high
heterogeneity (p < 0.001) and high inconsistency (I2: 95%) (Figure 6).
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2.3.3. Other Cardiac Outcomes

The implementation of iPSC-CM showed a tendency to decrease left ventricle fibrosis
in the iPSC-CM treatment group compared to the control group. The cell-based treatment
group exhibited a trend toward reducing left ventricular end-systolic volume (LVESV) and
end-diastolic volume (LVEDV), although the difference was not statistically significant. It
is essential to highlight the presence of significant heterogeneity (p < 0.001) and substantial
inconsistency (I2 > 90%) observed across the studies (Table 1).
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Table 1. Effect size estimation for LVESV, LVEDV, and LV fibrosis comparing iPSC-CM therapy vs.
placebo.

Outcome
Number of
Included
Studies

Number of Treat-
ments/Controls

Mean Difference
(95% CI) p I2

LVESV (µL) 13 114/139 −6.41 (−13.36 to 0.54) 0.07 96%
LVEDV (µL) 16 199/191 −2.66 (−8.6 to 3.27) 0.3 94%

LV fibrosis (%) 30 332/276 −7.62 (−9.72 to −5.52) <0.001 94%
LV: left ventricle; LVESV: left ventricular end-systolic volume; LVEDV: left ventricular end-diastolic volume.

Figure 7 illustrates the summary of outcomes.
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2.3.4. Subgroup Analyses

In our subgroup analysis, we investigated the impact of various factors such as
animal size, delivery method, treatment timing, disease model, and follow-up duration
on the effectiveness of iPSC-CM treatment in inducing cardiac changes (Supplementary
Figures S1–S6). The analysis indicated a trend toward more significant enhancements in
response to cell therapy, particularly during the 4–8 week follow-up period. Beyond this
time point, the impact of cell therapy appears to decrease. Additionally, late injection of
cells after myocardial infarction (>1 month) and using bioengineered tissue resulted in
better improvements. In contrast, the ischemia/reperfusion myocardial infarction model
demonstrated less benefit compared to chronic infarction models (Table 2).
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Table 2. Subgroup analysis to explore source of heterogeneity on changes in LVEF.

Subgroup Number of
Included Studies

Number of Treat-
ments/Controls

Mean Difference
(95% CI) p Subgroup I2 Between

Group I2

Animal size

Small 36 676/663 8.33 (7.18 to 9.47) <0.001 95%
0

Big 5 100/52 8.38 (4.03 to 12.72) <0.001 0

Time of follow-up (weeks)

<4 24 333/309 5.38 (4.13 to 6.63) <0.001 91%
94.7%4–8 36 339/318 11.23 (9.48 to 12.61) <0.001 91%

>8 10 104/88 7.26 (4.39 to 10.13) <0.001 93%

Delivery method

Intramyocardial 31 549/510 8.09 (6.79 to 9.39) <0.001 92%

90.8%
Intravenous 1 25/15 2.34 (−0.74 to 5.43) 0.14 1%

Intracoronary 1 9/9 −5.05 (−10.74 to 0.65 0.08 0%

Bio-engineered
tissue 14 262/265 9 (7.2 to 10.80) <0.001 97%

Treatment timing (week)

<1 32 603/528 8.21 (6.93 to 9.49) <0.001 93%
96.8%1–4 10 172/167 7.15 (5.66 to 8.63) <0.001 92%

>4 2 19/20 15.28 (13.67 to 16.88) <0.001 0

Disease model

Permanent
injury 39 701/671 8.37 (7.24 to 9.50) <0.001 95%

0
I/R 4 93/44 6.78 (2.65 to 10.91) 0.001 93%

Cell origin

Xenogeneic 37 635/575 8.75 (7.53 to 9.98) <0.001 94%
80.2%

Allogenic 6 159/140 6.23 (4.40 to 8.06) <0.001 93%

I/R: ischemic-reperfusion.

2.3.5. Meta-Regression

A sensitivity analysis was initially conducted to investigate the causes of heterogeneity
in the outcomes of ejection fraction. This analysis identified three outliers characterized
by effect estimates that were more than 1.5 times the interquartile range (IQR) from the
median [15,32,33]. These outliers were notable for their exceptionally high effect estimates
relative to the rest of the data. Upon their exclusion, the recalculated overall effect estimate
and heterogeneity were assessed for the modified dataset. This recalibration resulted in
a slight decrease in the Weighted Mean Effect Estimate, from 8.12 to 8.05. However, a
significant level of heterogeneity persisted, with an I2 value of 94.26%, only marginally
reduced from the previous 94.45%. Subsequently, a meta-regression analysis was conducted.
The findings of this analysis, as detailed in Table 3, indicated that certain factors, specifically
the method of delivery (intracoronary and intramyocardial injection) and the origin of
the cells (xenogeneic), had a significant impact on the effect estimates (the coefficient was
−8.065, 3.824, and 2.014). Additional details and results about meta-regression analysis
on FS, LVESV, LVEDV, and LV fibrosis area are available in the Supplementary Materials
(Tables S2–S5).
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Table 3. Meta-regression of potential modifiers of EF.

Variable Coefficient Standard
Error t-Value p-Value 95% Confidence

Interval

Animal size: big −1.649 2.342 −0.704 0.483 −6.304 to 3.007
Animal size: small 3.513 2.916 1.205 0.232 −2.283 to 9.308
Treatment timing: acute −3.108 2.266 −1.372 0.174 −7.611 to 1.396
Treatment timing: chronic 8.166 4.652 1.755 0.083 −1.081 to 17.413
Treatment timing: sub-acute −3.195 2.211 −1.445 0.152 −7.590 to 1.201
Method delivery: Bio-engineered tissue 3.917 2.143 1.828 0.071 −0.343 to 8.178
Method delivery: Intracoronary −8.065 3.327 −2.424 0.017 −14.678 to −1.452
Method delivery: Intramyocardial 3.824 1.641 2.331 0.022 0.563 to 7.085
Method delivery: Intravenous 2.188 2.801 0.781 0.438 −3.379 to 7.754
Cell origin: Allogenous −0.150 1.139 −0.132 0.895 −2.413 to 2.113
Cell origin: Xenogeneic 2.014 0.922 2.185 0.032 0.182 to 3.846
Disease model: IR 1.962 2.619 0.749 0.456 −3.244 to 7.168
Disease model: Permanent injury −0.098 2.155 −0.046 0.964 −4.382 to 4.186
Follow up: <4 weeks 1.011 1.299 0.778 0.438 −1.570 to 3.592
Follow up: 4–8 weeks 1.052 1.269 0.829 0.410 −1.471 to 3.574
Follow up: >8 weeks −0.965 2.454 −0.393 0.695 −5.843 to 3.913

3. Discussion

Ischemic heart disease, a major contributor to global morbidity and mortality, arises
from an imbalance between myocardial oxygen supply and demand [58]. In advanced
stages of IHD, the effectiveness of revascularization and medical therapy may diminish [59].
Stem cell therapy has emerged as a novel approach to enhance cardiac function in patients
with advanced ischemic heart failure [60]. This form of treatment has the potential to
improve tissue perfusion, promote the growth of new blood vessels, and preserve or
regenerate myocardial tissue [61]. Our review conducted a meta-analysis of cell-based
therapies used in treating animal models with IHD. The primary outcomes encompassed
safety and efficacy. Safety measures were categorized into mortality and the occurrence
of adverse events. Efficacy was assessed through various indicators of cardiac function,
with a focus on the preservation of ejection fraction. To obtain deeper understanding of the
factors influencing the effect size on ejection fraction, subgroup analysis was conducted,
taking into account variables such as the delivery route, timing of administration, disease
model, and follow-up time.

Our research consistently demonstrates the effectiveness of iPSC-CM treatment in
enhancing LVEF by 8.33% (7.18 to 9.47) in small animals and 8.38% (4.03 to 12.72) in
large animal studies, with no significant heterogeneity observed between these groups.
These results are in concordance with findings from several prior studies. The 2011 meta-
analysis by Van der Spoel T.I.G et al., focusing on large animal models, assessed the
impact of stem cell therapy on ischemic cardiomyopathies and reported a significant LVEF
improvement of 7.51% (95% CI: 6.15% to 8.87%) [55]. Furthermore, a 2022 meta-analysis
by Debora La Mantia et al. also reported an LVEF improvement of 7.41% (95% CI: 6.23 to
8.59%) [62]. Additionally, the meta-analysis by Peter Paul Zwetsloot encompassing both
small and large animal models showed an overall effect of cardiac stem cell treatment
on LVEF of 10.7% (95% CI: 9.4 to 12.1) compared to the control group [63]. However,
when interpreting research findings from animal models, it is essential to recognize the
considerable differences between small and large animal models. For example, small
animals like rodents have high heart rates, with a mouse’s heart capable of beating up to
800 times per minute. This contrasts sharply with larger animals, such as rabbits and porcine
species, which have much slower heart rates of 130–300 beats per minute and 50–116 beats
per minute, respectively [64]. To maintain cardiac output at these high rates, smaller
species require quicker cardiac contractions and relaxations than their larger counterparts.
Moreover, the cardiac kinetics of small animals differ from humans due to variations in
excitation, calcium handling, myofilament protein isoforms, and genetic characteristics [65].
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In contrast, the myocardium of larger animals more closely approximates that of human
hearts, often making them more suitable for studies related to human cardiac function [66].
Understanding these differences is important for the accurate interpretation of research data
and ensuring the relevance of these findings to human conditions, as they can significantly
influence experimental results.

Our findings also revealed that the most significant improvement in LV function
occurred within 4 to 8 weeks post-treatment; however, the effectiveness of the iPSC-CM
treatment diminished beyond this period. This trend of attenuation is also evident in clinical
trials. The BOOST trial, an open randomized study that involved intracoronary injection of
mononuclear cells (MNCs) in 30 patients with ST-elevation myocardial infarction (STEMI),
showed LVEF and enhanced systolic function after a six-month follow-up. However, at the
18-month follow-up, the improvement in LVEF was no longer statistically significant [67,68].
This outcome suggests that while stem cell therapy may initially enhance the recovery of
LVEF after ischemic events, sustained, long-term treatment is necessary to preserve these
therapeutic benefits.

The delivery timing has emerged as a critical determinant affecting ejection fraction
in ischemic heart disease (IHD). Nevertheless, over the past two decades, establishing the
optimal timeframe for cell transplantation has been a contentious issue due to challenges
in enhancing cell recruitment and survival. While the transplantation time-window period
varies in pre-clinical and clinical studies, the majority lean toward a period within one-
week post-acute myocardial infarction (AMI). Our review revealed that cell therapies
administered immediately after the disease model induction exhibited a preservation of
ejection fraction by 8.21%. Similar outcomes were observed in other pre-clinical studies.
For instance, Hu et al. reported a time-dependent therapeutic effect, with the highest
preservation in ejection fraction observed in rats receiving intramyocardial mesenchymal
stem cell (MSC) injection one week after disease induction [69]. In an IHD rat model, James
D. Richardson et al. demonstrated that the group receiving intracoronary cardiac stem cells
within 7 days post-induction exhibited a better ejection fraction than the group receiving
treatment after 1 week [70]. These findings were further supported by a meta-analysis of 34
clinical RCTs conducted by Xu et al., indicating that administering autologous bone marrow
stem cells 3 to 7 days post-percutaneous coronary intervention significantly improved left
ventricular function in acute myocardial infarction patients [71]. Remarkably, even though
our review encompassed only two studies that utilized iPSC-CM treatment following one
month of IHD induction in animals with heart failure (EF < 50%) [21,34]. The analysis also
revealed that cell therapies administered one month after myocardial infarction induction
resulted in the preservation of ejection fraction by 15.28%. This result aligns with those of
YiHuan Chen et al., where implanting mesenchymal stem cells from bone marrow between
2 to 4 weeks following a myocardial infarction proved to be more advantageous in reducing
the scar area, preventing left ventricular remodeling, and enhancing the restoration of
heart function in a porcine model [72]. The meta-analysis of Debora La Mantia et al. in the
large animal model also indicated that the outcomes of cell therapy were more favorable
within the time-period 31–60 days after ischemic induction [73]. These findings indicate a
potential application of iPSC-CM in the late phase of myocardial infarction, specifically in
heart failure patients.

We also investigated the influence of various routes of stem cell administration on pre-
serving left ventricular function, including intracoronary, intramyocardial, intravenous, and
via bio-engineered structures. The analysis revealed that bio-engineered tissue treatment
exhibited the most favorable effect on ejection fraction in pre-clinical studies, demon-
strating a mean difference of 9% (7.2 to 10.80). Supporting these findings, a study by
Yu Jiang et al. indicated that the transplantation of bio-engineered tissue resulted in a
superior increase in left ventricular ejection fraction and fractional shortening compared
to intramyocardial transplantation of hiPSC-CMs in a rat model after myocardial infarc-
tion [29]. In addition, our review also highlighted the significant impact of intramyocardial
treatment on heart function, with a mean difference of 8.09% (6.79 to 9.39). This aligns



Int. J. Mol. Sci. 2024, 25, 987 11 of 19

with a meta-analysis of clinical studies on bone marrow cell therapy, suggesting that the
intramyocardial delivery of stem cells enhances treatment effectiveness in individuals with
ischemic heart disease [74,75]. Our analysis identified a negative effect, a decrease of 5.05%
(ranging from −10.74 to 0.65), after the intracoronary administration of iPSC-CM. This
suggests a potential risk for exacerbating cardiac conditions with this treatment method.
In contrast, intravenous therapy seemed to positively impact left ventricular function,
showing a 2.34% improvement (ranging from −0.74 to 5.43). However, it is important to
note that the observed differences in these treatment approaches did not attain statistical
significance. Interpretation of these results should be approached with caution, since they
are derived from a single study evaluating the efficacy of these delivery methods [30].
A major challenge in stem cell therapy is ensuring the effective delivery of cells to the
targeted injury site. The variable success rates in pre-clinical trials may be attributed to
insufficient engraftment at the intended site. Thus, developing more precise cell delivery
techniques is a critical objective in the field of cardiac regenerative medicine. Our findings
suggest a preference for the application of bio-engineered structures to improve cardiac
function. Traditional systemic delivery methods, like intravenous injection, are simple but
lack precision in directing cells to specific target areas. which often lead to a significant
number of cells relocating to other organs, notably the lungs [76]. Similarly, the efficacy of
intracoronary delivery methods is also constrained, as evidenced by only approximately
5% of cells remaining at the transplantation site between 24 to 48 h post-procedure and
less than 1% surviving beyond 4 to 6 weeks [77]. However, it is important to note that
intramyocardial delivery involves open-heart surgery, a more invasive procedure compared
to standard cardiac catheterization. These insights emphasize the necessity for ongoing
clinical trials to determine the most effective methods for stem cell delivery. From a clinical
standpoint, in cases of acute myocardial infarction, cell-based therapies can be administered
via intravenous or intracoronary routes after coronary revascularization, offering a less
invasive option. However, for patients with chronic myocardial ischemia who are not can-
didates for coronary revascularization, direct intramyocardial injection may be preferable.
This approach enables the precise targeting of the injection site, potentially enhancing the
treatment’s effectiveness.

Our results indicated a less pronounced improvement in LVEF in the ischemia/reperfusion
model compared to the chronic occlusion models. These results align with the findings in
meta-analyses in both small [63] and large animal models [78]. Moreover, xenogeneic cell
therapy (hiPS-CM) showed a better effect on left ventricular function than allogeneic cell
therapy. The challenges associated with the functional decline of autologous stem cells due
to aging and constrained immediate availability underscore the need for alternative ap-
proaches. The allogeneic and xenogeneic cell products is a promising alternative to address
these challenges. This outcome instills optimism regarding the potential use of xenogeneic
cell replacement as a therapeutic intervention for a wide range of human diseases.

Finally, we assessed the safety of administering iPSC-CM therapies in pre-clinical
models of ischemic heart disease. Overall, the administration of iPSC-CM was found
to be generally safe, with no significant differences observed in animal mortality or the
occurrence of arrhythmia across the studies included in the review. This result aligns with
other meta-analyses conducted by Mary Thompson et al. and Manoj M. Lalu et al. on
mesenchymal stem cell (MSCs) treatment, which showed no heightened risk of death,
malignancy, or adverse events compared to control groups [79,80].

Our research showed significant heterogeneity among the studies. This heterogeneity
is particularly important in the context of conducting meta analysis in animal research.
We hypothesized that the observed high heterogeneity may stem from a variety of factors
including differences in animal models (small versus large), measurement methodologies,
timing of injections, follow-up periods, and a diverse range of administration routes
and windows. Additionally, heterogeneity could arise from variances in biological study
characteristics, such as species, sex, and age. We acknowledge that this diversity could
potentially lead to misinterpretations if not adequately addressed. Despite our efforts
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in implementing sensitivity analysis, multivariable regression analyses, and subgroup
analysis to mitigate heterogeneity, we observed no substantial change in the outcome
heterogeneity. We contemplated excluding certain studies from the effect size calculation,
but recognized that unwarranted exclusions might exacerbate the bias inherent in the
meta-analysis. It is worth noting that the heterogeneous nature of animal models has been
documented in other research about stem cells in animal models [62,81]. These findings
highlight the necessity for more standardized reporting protocols in animal studies to
ensure consistency and reliability.

In summary, iPSC-CM therapy appears to be a promising, potentially safe, and ef-
fective treatment option for patients with IHD. Presently, the application of iPSC-CM has
been restricted to animal models, which poses challenges in directly assessing its efficacy
in human patients. To address this gap, several clinical trials are underway to evaluate
the effectiveness of iPSC-CM therapy in a clinical context (Table 4). The outcomes of these
studies have the potential to pave the way for a new era in the treatment of one of the most
debilitating diseases globally.

Table 4. Ongoing clinical trials about iPSC-CM in patients with IHD.

No Registry No Contact Author Country Study Phase Intervention
Model

No Pa-
tients Starting Time

Expected
Completion

Time

1 NCT03763136 Jiaxian Wang China Phase 1 and
Phase 2 Randomized 20 October 2021 May 2024

2 NCT04396899 Wolfram-Hubertus
Zimmermann Germany Phase 1 and

Phase 2
Single Group
Assignment 53 February 2020 October 2024

3 NCT04696328 Takuji Kawamura Japan Phase 1 Single Group
Assignment 10 December 2019 May 2023

4 NCT04945018 Heartseed Inc. Japan Phase 1 and
Phase 2 Non-Randomized 10 September 2023 March 2024

5 NCT05566600 Jiaxian Wang China Early Phase 1 Randomized 32 October 2022 July 2025

4. Materials and Methods
4.1. Meta-Analyses

This research adhered to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines, and the final report was compiled with the PRISMA
checklist (http://www.prisma-statement.org/, accessed on 1 November 2023.).

4.1.1. Search Strategy

We conducted a literature search using databases, including PUBMED, ScienceDirect,
Web of Science, and the Cochrane Library from inception until October 2023, using the
following terms and synonyms for “regenerative therapy”, “induced pluripotent stem cell”,
and “ischemic heart disease”. After eliminating duplicate records, papers were screened
based on their titles and abstracts, and eligibility was assessed through a full-text review
conducted independently by two investigators. A third investigator was consulted should
there be any discrepancies. Additionally, individual searches within the reference lists
of the included studies were conducted to identify any additional research for potential
inclusion. No restrictions were imposed on publication dates or languages.

4.1.2. Inclusion and Exclusion Criteria

The inclusion criteria were limited to studies examining the safety and effectiveness of
iPSC-CM therapy in ischemic heart diseases: randomized controlled trials (RCTs), clinical
and pre-clinical studies with ischemic heart disease models. No constraints were imposed
on the route of administration or the source of iPSCs.

Exclusion criteria included studies that used cell types other than iPSC-derived my-
ocardiocytes and studies that used engineered iPSCs to modify the expression of specific
genes (except for imaging purposes). Studies not classified as randomized controlled

http://www.prisma-statement.org/
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trials (RCTs), secondary reports, poster presentations, reviews, editorials, or studies not
presented in English were also excluded.

4.2. Outcome Definition

The primary focus of our study was on the efficacy of iPSC therapy, measured by
assessing changes in left ventricular ejection fraction (EF), fractional shortening (FS), left
ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV),
and infarct size.

Our secondary objective was to evaluate the safety of iPSC therapy, assessed by
examining the frequency of mortality, arrhythmia, teratoma, or the adverse events related
(AE) to the administration of iPSC-CM.

4.3. Data Extraction

Two investigators independently gathered and cross-checked data for accuracy, with
a third investigator consulted to resolve any discrepancies. Data extraction included
bibliographic information (authors’ names, year of publication, funding, title, language, and
journal), study design (disease model, objectives, sample size, inclusion/exclusion criteria),
animal characteristics (species, age, gender, and immune status), and cell therapy details
(cell type, tissue source, cell dose, delivery method, timing, and frequency). Additionally,
characteristics of iPSCs, such as passage number, isolation method, and any positive surface
markers mentioned, were collected.

As defined earlier, all measurements related to primary and secondary outcomes were
recorded. Data were sourced from text, graphs, and plots, with the WebPlot digitizer tool
version 4.6 used when specific values were not explicitly stated in the text. In cases of miss-
ing or unclear data regarding primary or secondary outcome measures, the corresponding
author of the respective study was contacted for information. Furthermore, if an investiga-
tion did not explicitly use a particular variable but provided measurements allowing its
calculation, the variable of interest was computed using the appropriate equation.

Efficacy outcomes were assessed through the improvement of cardiac function and
reduction in infarct size. Safety outcomes were appraised using measures such as all-
cause mortality, arrhythmia, and teratoma formation. Cardiac outcome data, including
parameters like EF, FS, LVESV, and LVEDV, were extracted at each follow-up point to track
changes over time and assess the duration of iPSC-CM treatment.

4.4. Quality Assessment

All studies meeting the inclusion criteria were independently evaluated by two inves-
tigators for potential bias. Criteria from the Cochrane Handbook for Systematic Reviews
of Interventions were applied to randomized controlled trials [82]; while the SYRCLE
bias assessment tool was used for animal studies [83]. Assessments were categorized as
“low risk of bias”, “high risk of bias”, or “unclear risk of bias”. Overall quality was then
categorized as either “low risk of bias” or “high risk of bias”, with an overall “low risk of
bias” indicating that all assessment domains were rated as anything but “high risk of bias”.

4.5. Statistical Analyses

A meta-analysis was conducted using a random effects model to estimate the effective-
ness of iPSC therapy. Risk ratios (RR) with 95% confidence intervals (CI) were calculated
for dichotomous outcomes using the Mantel–Haenszel method. For continuous data, the
weighted mean difference (WMD) was used if outcomes were measured similarly, and the
standardized mean difference (SMD) was used when studies reported the same outcomes
but in different ways. In cases where studies had more than two treatment groups, the
analysis focused on the iPSC and control groups. Subgroup analyses were conducted to
examine the variability in the safety and effectiveness of iPSC therapy based on factors
such as route, dose, timing, source, and IHD model. Baseline functional measures were
also compared with measurements taken at all time points after iPSC administration.
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Statistical heterogeneity between studies was assessed using I2, with a value exceeding
50% indicating significant heterogeneity. Subgroup analysis was performed to identify
potential factors contributing to heterogeneity. All statistical tests were two-sided, and
significance was considered if the p-value was less than 0.05. Data were presented as mean
values with a 95% confidence interval (95%CI) in forest plots and meta-regression analyses.
Statistical analyses were conducted using Cochrane’s software, Review Manager (RevMan)
version 5.4.

5. Conclusions

The application of iPSC-CM therapy demonstrates a consistent safety profile in pre-
clinical animal models of IHD. This treatment also plays a crucial role in preserving
heart function. However, the effectiveness of this treatment is influenced by numerous
factors such as the delivery route and delivery timing, dosage, and the source of the
administered cells.

The findings of this review have significant implications, offering methodological
recommendations for ongoing and future clinical studies. Understanding the impact of
variables such as delivery methods, timing, dosage, and cell origin can guide researchers
in optimizing the design and conducting clinical trials involving iPSC-CM therapies for
ischemic heart diseases, ultimately advancing the development and application of iPSC-CM
therapies in cardiac treatment.

Limitations

Our study has certain limitations. The identified parameters such as optimal delivery
method, cell dosage, treatment duration, and cell origin in our research might not represent
the ideal therapeutic conditions. Instead, they reflect the practices commonly adopted by
researchers in the field. To accurately determine the most efficacious therapeutic strategies,
it is imperative for future studies to extensively investigate and refine these variables,
thereby uncovering their genuine therapeutic potential.

Another limitation is the substantial heterogeneity observed among the studies. This
variation arises from numerous factors such as the diversity in cell number, cell type, and
animal species used across the studies, leading to variations in the data collected from
different comparison groups. This diversity could result in uncertainty about the long-term
effectiveness of iPSC-CM treatment in ischemic heart disease. To address this challenge,
future research should prioritize conducting structured randomized controlled trials (RCTs),
aiming to enhance consistency and reproducibility by the adoption of standardized proto-
cols that control internal validity. This approach would encompass standardizing elements
such as cell source, dose, and treatment timing, as well as conducting multicenter animal
studies to ensure more reliable and broadly applicable results.
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Abbreviations

ACEi Angiotensin-converting enzyme inhibitor
AE Adverse event
ARB Angiotensin receptor blockers;
CI Confidence interval
EDV End diastolic volume
ESC Embryonic stem cells
ESV End systolic volume
EF Ejection fraction
FAC Fractional area change
FS Fractional shortening
hiPSC Human induced pluripotent stem cell
IHD Ischemic heart disease
iPSC Induced pluripotent stem cell
LVEF Left ventricular ejection fraction
MD Mean difference
MRI Magnetic resonance imaging
MSC Mesenchymal stem cell
OR Odds ratio
PSC Pluripotent stem cells
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SYRCLE Systematic Review Centre for Laboratory animal Experimentation
SMD Standardized mean difference
RCTs Randomized controlled trials
WMD Weighted mean difference
WT Wall thickness
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