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Abstract: Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction
to a pathogen. The innate immunity is programmed to react immediately to conserved molecules,
released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular
mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to
identify potential biomarkers. We included studies published in English and searched on PubMed®

and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed
their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of
the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the
release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who
may benefit from targeted therapies. These findings are preliminary since these pathways seem to
be strongly influenced by the peculiar characteristics of different pathogens and host features. Due
to these reasons, while initial findings are promising, additional studies are necessary to clarify the
potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate
their transition into the clinical setting.
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1. Introduction

Sepsis is a serious organ dysfunction caused by a dysregulated host reaction to an
infective insult. It has a large impact on the public healthcare system because of its high
incidence, mortality, and treatment costs. In fact, it represents the first cause of decease
from infectious diseases, especially if not diagnosed and cured promptly [1]. In 2017,
48.9 million cases were registered worldwide, with about 11.0 million sepsis-related deaths,
representing 19.7% of all global deaths. Even though age-standardized incidence fell by
37.0% and mortality decreased by 52.8% from 1990 to 2017, sepsis remains a massive cause
of health loss worldwide. In the USA, it represents the most common cause of in-hospital
deaths and costs more than USD 24 billion/year. Sepsis most commonly affects females
and occurs in individuals with underlying causes of health loss, like previous infectious
disease, trauma, stroke, cirrhosis, diabetes, heart failure, chronic kidney diseases, and
others. However, it does not affect only adults, since it shows bimodal distribution among
ages with a first peak of incidence in early childhood and a second peak in the elderly. Also,
incidence varies in different geographical areas, with higher values in the areas with lowest
socio-demographical index (SDI) [2]. Moreover, not only is sepsis a cause of high rates of
in-hospital and early post-discharge deaths, but it also creates a burden in the survivors
in terms of mobility, self-care autonomy, usual activities performance, persistence of pain
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and discomfort, and onset of anxiety and depression, leading to reduced quality of life and
high use of healthcare resources, even after sepsis recovery [3].

During an infection, the pathogen triggers multiple and counterbalanced biochemical,
hormonal, and immune reactions in the host. In sepsis, these reactions are no longer
balanced, thus leading to harm to the host [4–6]. This definition makes clear that sepsis is
a syndrome, with a still-uncertain pathobiology, resulting in a constellation of symptoms
and signs which simultaneously involve several organs and systems, even if distant from
the primary source of suspected infection [1]. However, even after decades of studying
and defining sepsis, the mechanisms underlying this syndrome remain widely unclear,
and the scientific society has failed to identify an unique biomarker for sepsis. In fact, an
ideal biomarker is a measurable indicator giving accurate and reproducible information of
the clinical conditions of a patient. Biomarkers include many molecules like metabolites,
cytokines, chemokines, proteins, nucleic acids, and many others [7]. Besides the lack
of a biomarker for sepsis, at present, available therapies—mostly consisting of support
therapy for vital functions and antibiotics—act on a very limited part of the complex
network of sepsis, with the patient’s organism being mainly responsible for the eradication
of the infection. The high human and economic costs of sepsis raise the need to find
complementary or alternative diagnostic and therapeutic strategies for two main reasons.
The first one is antibiotic resistance. Drug resistant microbes are contributing to the rise
of infection-related deaths [8,9], authorizations of new antibiotics are failing, and there is
rising worry about the advent of bioterrorism agents [10] that may be difficult to treat with
conventional therapies. The second one is the awareness that sepsis is a time-dependent
syndrome whose optimal management consists of a prompt diagnosis, early and systematic
application of evidence-based standard of care, and rapid address to higher level of care
when appropriate [11]. This implies the necessity of managing and influencing the early
phases of sepsis-related events. The purpose of this review is to analyze the molecular
mechanisms of the earliest phases of sepsis to identify potential biomarkers for diagnosis,
risk stratification, prognosis definition, general management, and therapeutic targets. Over
recent years, there has been a great advancement in scientific knowledge in the field of
early pathogenesis of sepsis, suggesting that we could be near to a revolution in our
diagnostic and therapeutic approach to sepsis, a prospect for which every physician should
be prepared. In this review, our attention has been addressed to the role of some potential
biomarkers and therapeutic targets, namely the damage-associated molecular patterns
(DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs are endogenous
molecules, while PAMPs are exogenous microbial products; both can trigger and enhance
inflammatory responses through the activation of signaling pathways related to the pattern
recognition receptors (PRR) [12], or other non-PRRs receptors.

2. Relevant Sections

Sepsis is enormously intensified by endogenous factors, including early involvement
of both pro- and anti-inflammatory pathways. This model is made even more complicated
by the peculiar characteristics of different pathogens and by host features like age, sex,
genetics, comorbidities, chronic medications, environment, and concomitant lesions (i.e.,
trauma, previous surgery) [1].

The traditional sepsis model is biphasic, depicting an early hyperinflammatory cy-
tokine storm and a later immune paralysis. However, the clinical evidence does not support
sharp defined phases, portraying a more dynamic model where the two aspects of hyperin-
flammation and immune paralysis are not temporally consequential but are the moment-
by-moment net result of coexisting, persistent, and competing pro- and anti-inflammatory
pathways. This net result manifests with an early clinical picture characterized by fever,
hypermetabolism, and shock, and a late one characterized by failure of primary pathogen
clearance and occurrence of secondary infections [13,14].
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2.1. DAMPs/PAMPs-Related Molecular Pathways in Sepsis

Every microorganism, during its life cycle, can release its constituents designated as
microbe-associated molecular patterns (MAMPs) or pathogen-associated molecular pat-
terns (PAMPs) in the case of virulent organisms. These PAMPs include essential parts of the
pathogen like carbohydrates such as lipopolysaccharide (LPS) and mannoses; nucleic acids
including DNA or RNA; peptides comprising microtubules and flagellin; wall molecules
embracing peptidoglycan and lipoteichoic acid (LTA) [15].

PAMPs are recognized by two categories of immune receptors: the pattern-recognition
receptors (PRRs) and non-PRRs.

Besides exogenous molecules, the immune system is also set to recognize endogenous
molecules derived from a damaged host cell. These molecules—the DAMPs, also known as
“alarmins”—are normally confined to the intracellular compartment, where they contribute
to many homeostatic processes, and are released through various kinds of cellular damage
like physical insults (such as the traumas or exposure to radiations), chemical agents
(including various toxins or osmolality variations), metabolic changes (such as those related
to ischemia and reperfusion), or exposure to infectious agents (like virus, bacteria, and
protozoa) [13,16,17].

DAMPs include the high mobility group box 1 (HMGB1), the extracellular cold-
inducible RNA-binding protein (eCIRP), the adenosine triphosphate (ATP), enzymes like
the nicotinamide adenine dinucleotide (NAD), proteins and cellular molecules related to
nucleic acids, such as heat shock proteins (HSPs), histones, members of the S100 family,
cell free DNA (cfDNA), and mitochondrial DNA (mtDNA), recently grouped into the
chromatin-associated molecular patterns (CAMPs) [13,18]. The DAMPs are recognized by
many immune receptors that recognize PAMPs [13].

2.1.1. Overview of the DAMPs

Expert authors in the field have defined the DAMPs as a “double-edged sword in
sepsis” because of their ambivalent pro-inflammatory and immunosuppressive role, which
might depend on their concentration, length of the exposure, and interaction with different
receptors. Inside the cell, DAMPs are classified by their localization in the cytosol, nucleus,
or mitochondria of endoplasmic reticulum (ER) [13]. Cellular harm can cause the release of
DAMPs in the extracellular space through passive or active mechanisms. The first consist
of various forms of cell death. Necrosis is characterized by cytosolic swelling and plasma
membrane rupture and is the primary cause of passive DAMPs release. Apoptosis shows
cytosolic shrinkage and preservation of plasma membrane integrity. For these features,
it has been long considered a non-immunogenic form of cell death, but recent evidence
suggests that it can be immunogenic under stress conditions, with subsequent DAMPs
release. Also, the formation of membrane pores during pyroptosis has been related to
DAMPs release in sepsis. Besides these three kinds of cell death, whose role in DAMPs
release during is well defined, the contribution of other forms of cell death like necroptosis,
ferroptosis, and NETosis is currently an object of study. Beside these passive mechanisms,
some DAMPs have been reported to be actively released via lysosomal exocytosis and
exosomes [19–21]. The main features of DAMPs, like their location and function in normal
conditions, their prevalent mechanisms of release, their target receptors, and their role in
inflammation, are synthetized in Table 1.

HMGB1—HMGB1 can be considered the prototypical alarmin [22–25]. It consists of
215 amino acids subdivided in three domains: the positively charged box A and box B,
and a negatively charged acidic tail. For HMGB1, “location is the key to function”. In
its usual location in the nucleus, it is involved in gene transcription. Post-translational
modifications—including acetylation, phosphorylation, and methylation—of the Nuclear
Localization Sequences (NLSs) of box A and B regulate the ability of HMGB1 to translocate
to the cytoplasm during cellular stress, and then in the extracellular space [22]. When it is
mobilized outside the nucleus, the protein acts as a modulator of inflammatory responses
in many ways. First, it does so by interacting with both PRRs and non-PRRs [13,24].
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Second, depending on its redox state, HMGB1 has a chemoattractant effect (reduced form),
immunosuppressive effect (oxidizing form), or enhances the pro-inflammatory cytokines
release (disulfide-bond possessing form) [22,23].

Histones—Histones are intranuclear proteins that contribute to the normal structure of
chromatin and regulate gene expression. In humans, histones H2A, H2B, H3, H4, and DNA
form the nucleosome complex. Histones can be released during necrosis or undergo post-
translational modification during apoptosis. In the latter case, the modified histones leave
the genomic DNA and translocate to the cytoplasm. Then, via still-unclear mechanisms,
they are firstly exposed at the cell surface and then further released to the extracellular
space. Alternatively, they can be actively secreted by exocytosis or become part of the
NETs (neutrophil extracellular traps) [16]. Extracellular histones stimulate Toll-Like Re-
ceptors (TLRs), promoting pro-inflammatory cytokine synthesis and release [26]. On the
contrary, dysregulation of the mechanisms of methylation, lactylation, and citrullination
of extracellular histones has immunosuppressive effects via downregulation of dendritic
cell-derived IL-12 release, M1 macrophage polarization to M2 phenotype, and protection
from septic shock, respectively [13]. Moreover, histones and their fragments act as antimi-
crobial molecules with different pathogen species-specificity. Besides histones, we should
remember that enzymes responsible of epigenetic regulation—i.e., histone methyltrans-
ferases (HMTs), histone demethylases (HDMs), histone acetyltransferases (HATs), histone
deacetylases (HDACs), and peptide arginine deiminase (PAD)—are involved in many
phases of the innate immune response [27].

CIRP—The Cold-Inducible RNA-Binding Protein (CIRP) is an RNA chaperone protein
that, in its intracellular form (iCIRP), modulates the functions of messenger RNA. As sug-
gested by its name, CIRP is induced by mild hypothermia but it is also passively released
after several other insults such as hypoxic, oxidative, ischemia-reperfusion, and traumatic
stresses [16,25]. Hypoxia causes the migration of CIRP from the nucleus to the cytoplasm.
During stress conditions—including sepsis—iCIRP is released into the extracellular space
becoming eCIRP. eCIRP has been suggested as a novel DAMP [13,25]. For example, eCIRP
promotes the macrophage pyroptosis by interacting with a PRR, the nucleotide-binding
domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3). It also binds an-
other PRR, the TLR4/MD2 (Toll-Like Receptor 4/Myeloid Differentiation factor 2) complex,
which is pivotal in the activation of the NF-κB (Nuclear Factor Kappa B) signaling pathway
for pro-inflammatory cytokine production. Moreover, eCIRP promotes the formation of
NETs, an amalgam of nuclear chromatin, mitochondrial DNA, and neutrophil granule
proteins, that mainly play a defensive role against lung infections. eCIRP also binds the
non-PRR TREM-1, fueling inflammation with subsequent organ dysfunction and mortality
in sepsis [13]. Besides pro-inflammatory eCIRP-dependent NF-κB signaling mechanisms,
endotoxin tolerance and immunosuppressive effects have also been described. In particular,
eCIRP has a strong affinity for the receptor of IL-6 (IL-6R). The interaction between eCIRP
and IL-6R results in the expression of transcriptional repressors and corepressors inhibiting
NF-κB gene reporters, and enhances the transcription of immunosuppressive genes for
immune tolerance and suppression [25].

exRNAs—Extracellular RNAs (exRNAs) can be released by necrosis and apoptosis,
but their inclusion within exosomes prevents their degradation by RNases and makes them
more stable [16]. exRNAs can be double-strand (dsRNA) or single-stand (ssRNA) and bind
to different receptors. dsRNAs bind the TLR3 and RIG-1 (retinoic acid-inducible gene 1)
receptors, while ssRNAs bind the TLR7/8 [28].

cfDNA—Nuclear DNA is released in the extracellular space via various mechanisms.
In sepsis, NETosis seems to be the prevalent one [16,29]. cfDNA triggers various signaling
patterns through the interaction with several receptors, like TLRs (mainly TLR9), ALRs
(Absent in melanoma-2-receptors), and RAGE (Receptor for Advanced Glycation End
products) [30].

ATP—In normal conditions, adenosine triphosphate (ATP) is an intracellular source
of energy and is present in the extracellular milieu (eATP) in very low concentrations.
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ATP can be released passively, but the two main mechanisms of release are through exo-
cytosis and channel pores [16]. Once released, eATP can promote inflammation through
the stimulation of the large family of purinergic receptors. The most studied purinergic
receptors for eATP are the P2X and P2Y. P2 × 7 receptor, a subtype of P2X, is abundant in
different immune cells, where it mediates the assembly of NLRP3 inflammosomes [13,31].
Once again, while high levels of this DAMP have been related to pro-inflammatory im-
mune response, micromolar concentrations of eATP seem to have an immunosuppressive
effect through the inhibition of LPS-stimulated IL-12, and macrophagic TNF-α secretion.
Moreover, eATP-purinergic signaling stops when ATP is split by ectonucleotidases in adeno-
sine, which promotes a negative feedback mechanism that confines local and systemic
inflammation. Adenosine stimulates the A2 receptors to activate the canonical pathway
of cAMP/PKA (adenylate cyclase-protein kinase A), which inhibits the NF-κB. The block
of the NF-κB-mediated transcription inhibits the adhesion to endothelial cells (ECs) and
causes the reduction of superoxide anion synthesis by neutrophils and the lowering of
pro-inflammatory cytokines secretion [32].

NAD—The nicotinamide adenine dinucleotide (NAD) is traditionally linked to intra-
cellular energy production. Many enzymes degrade extracellular NAD (eNAD) so that
small amounts of it can be considered normal, but in stress conditions, the concentrations
of this metabolite can increase. High levels of eNAD can engage purinergic P2X and P2Y
receptors, triggering an inflammatory response like the one mentioned above for ATP.
eNAD has enzymatic and non-enzymatic functions, described in many acute and chronic
disorders, including obesity, cancer, and sepsis. NAD is actively released during exocytosis
and diffusion through transmembrane transporters, or passively from necrotic cells. It
is important to note that the many enzymes that can metabolize eNAD produce several
metabolites that are involved in the further modulation of immune responses like im-
mune cells activation, inflammatory genes transcription, and inflammosome assembly [33].
Moreover, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribo-
syltransferase (NAPRT) have been proposed as DAMPs. These two intracellular enzymes
catalyze the synthesis of NAD from its main precursors—nicotinic acid and nicotinamide—
in their extracellular forms (eNAPRT and eNAMPT); they can bind to TLR4, triggering the
differentiation and polarization of myeloid cells, the activation of inflammasome, and the
secretion of cytokines [34,35].

HSPs—Heat shock proteins (HSPs) are molecular chaperones. HSPs are classified as
high molecular and low molecular weight, expressed in KDa [36]. They can be passively
released, actively secreted via ATP-binding cassette (ABC) lysosomes or granules, or mainly
released by exosomes and ectosomes [16]. Compared to other alarmins, the knowledge on
HSPs’ role in sepsis is limited, but there is evidence that they are involved in the initial
stages of the disease. eHSP-60 and eHSP-70 seem to exert pro-inflammatory effects, whereas
eHSP-27 has predominant anti-inflammatory effects. eHSP-27 modulates the expression of
the IκB (inhibitor of nuclear factor kappa B) with subsequent reduction of inflammation,
oxidative stress, and apoptosis; on the contrary, during the infection, eHSP-60 and eHSP-
70 promote NF-κβ expression with subsequent increased release of IL-1β, TNFα, and
other pro-inflammatory molecules [37]. The effects of HSPs seem to be mediated by the
interaction with some TLRs [28], ad CLRs [38].

Mitochondrial-derived DAMPs (mtDAMPs)—Mitochondrial fragments like the mtDNA,
the transcription factor A mitochondrial (TFAM), ATP, cardiolipin, cytochrome c, succinate,
mtRNA, and mitochondrial N-formyl peptides (mtFPs) have been found to act as alarmins.
As they preserve low-methylated CpG motifs, characteristic of microbial DNA, they are
recognized not only by TLRs (in particular TLR9) but also by NLRP3 inflammasome, and
are stimulatory of interferon genes (STING) [39]. mtFPs strongly promote the chemotaxis
of immune cells and platelets that express formyl peptide receptors (FPRs) [40,41].
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Table 1. Overview of the most studied DAMPs.

Type of
DAMP

Normal Location and
Function

Mechanism of
Release Receptors Pro-Inflammatory Anti-

Inflammatory

Passive Active PRR Non-PRR

HMGB1

Ubiquitous, nuclear,
non-histone

chromatine-binding
protein.

Transcriptional activity of
various proteins, DNA
replication, DNA repair,

and nucleosome
formation.

+ +
TLR2
TLR4
TLR9

RAGE
TREM-1

reduced form,
disulfide-bond

possessing form
oxidizing form

CIRP

Nuclear, RNA chaperone
protein.

Cell proliferation,
survival, and tumor

formation and
progression.

− +
TLR4
IL-6R

NLRP3
TREM-1

Inflammosome
induction

NETs formation

IL-6 binding
induces STAT3 that
enables the NF-κB

pathway

Histones

Nuclear, support the
normal chromatine

structure, regulate gene
expression.

+ + TLRs

TLR-mediated
cytokine release
and membrane

permeability
impairment

Dysregulation of
methylation,

lactylation, and
citrullination cause.

ATP Ubiquitous, intracellular
source of energy. + ++ P2X

High levels →
assembly of the

NLRP3
inflammosome.

Low levels →
inhibition of

macrophagic IL-2
and TNF-α
secretion;

metabolites ADP
and AMP.

NAD

Intracellular and
extracellular metabolite,

and cofactor to many
enzymes.

+ + P2X, P2Y Inflammosome
assembly.

HSP Molecular chaperones. + + TLR2
TLR4 CLRs

eHSP-60 and
eHSP-70

eHSP-70
eHSP-27

RNA Intracellular. + ++

TLR3
(dsRNAs)

TLR 8
(ssRNAs)

RIG-1
(dsRNAs)

DNA Nuclear. + + TLR9
AIM

RAGE

mtDNA Mitochondrial. + − TLR9 NLRP3 Inflammosome
assembly.

mtFPs Mitochondrial. + − FPRs Chemiotaxis
Oxidative burst

Abbreviations: AIM = absent in melanoma; AMP = adenosine monophosphate; ADP = adenosine diphosphate;
ATP = adenosine triphosphate; CIRP = cold-inducible RNA-binding protein; CLRs = c-type lectin receptors;
DAMP = damage associated molecular pattern molecules; DNA = deoxyribonucleic acid; dsRNA = double
stranded RNA; FPRs = formyl peptides receptors; HMGB1 = high mobility group box 1; HSP = heat shock proteins;
IL = interleukin; mtDNA = mitochondrial DNA; mtFPs = mitochondrial N-formyl peptides; NAD = nicotinamide
adenine dinucleotide; NETs = neutrophil extracellular traps; NF-κB = nuclear factor κB; NLRP3 = nucleotide-
binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3; RAGE = receptor for
advanced glycation end products; RIG-1 = retinoic acid-inducible gene 1; RNA = ribonucleic acid; ssRNA = single
stranded RNA; STAT3 = signal transducer and activator of transcription factor 3; TLR = Toll-Like Receptors;
TNF = tumor necrosis factor; TREM-1 = triggering preceptors expressed on myeloid cells-1.

To make it even more complex, it is necessary to point out that the research on
DAMPs is very enthusiastic and leads to the continued discovery of new information about
these molecules and their function in health and disease [42–44]. Furthermore, different
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mechanisms may lead to different DAMPs’ release. For example, the loss of cell membrane
integrity in necrosis can cause the release of mixed DAMPs, whilst apoptosis mainly leads
to the release of nuclear DAMPs following DNA breakup. For these reasons the length of
cell-free (cfDNA) released from apoptotic cells is ~180 bp, while cfDNA dispersed from
necrotic cells can be as long as >10,000 bp. HMGB1 is in its hyperacetylated form if released
by pyroptosis via inflammasome pathway, while it is not if it derives from necrotic or
apoptotic cells. In addition, HMGB1 is in the disulfide form after pyroptosis, in the reduced
or disulfide form after necrosis, and in the fully oxidized form (sulfonyl HMGB1) after
apoptosis. Moreover, different stages of the same mechanism can release different DAMPs,
as reported for apoptosis, where ATP is released at the pre-apoptotic stage, while HMGB1
is released at the late stage [16] (Table 1).

2.1.2. Overview of the PAMPs

LPS—Lipopolysaccharide (LPS), also called endotoxin, is the main constituent of Gram-
negative bacteria outer cell walls. However, the term LPS describes a class of molecules
that share their chemical structure: the O-antigen, the 3-deoxy-D-manno-octulosonic acid
(KDO) and heptose-containing core oligosaccharide, and the lipid A [45,46]. The lipid
A portion is the “endotoxic principle” of LPS, and its endotoxic activity depends on its
structure, length, number, and distribution of lipid chains, as well as on the phosphorylation
status of each sugar unit [46]. Each bacterial species has its own group of LPSs, varying
in their composition. LPS interacts with a variety of proteins and enzymes—such as the
lipopolysaccharide-binding protein (LBP), various cluster differentiation (CD14, CD16,
CD18), antibodies, hemoglobin, lysozymes, and lactoferrin [45,47]. However, extracellular
LPS mainly activates the TLR4. Recently, it has been highlighted that LPS may enter the
cell via a clathrin-mediated endocytosis of outer membrane vesicles (OMVs), or through
the preliminary extracellular binding to the HMGB1 protein, and subsequent conjunction
with RAGE [45].

Flagellin—Flagellin has been recently reported to be a Gram-negative PAMP that
triggers the TLR5. A study by Liaudet et al. has highlighted that flagellin induces the
expression of pro-inflammatory cytokines like IL-8 and of pro-adhesive molecules such as
intercellular adhesion molecule-1 (ICAM-1) in vitro, and that intravenous administration
of flagellin in mice causes a severe lung inflammation, with a stronger chemotaxis and
lung hyper-permeability than the one caused by LPS. These effects have been related to
the nuclear translocation of the transcription NF-κB in the lung. In patients with sepsis,
plasmatic flagellin has a significant positive correlation with the extent of lung injury, the
alveolar–arterial oxygen gradient, as well as with the duration of the sepsis [48]. On the
contrary, other studies have suggested an anti-septic role of flagellin mediated of TLR3,
TLR4, and IL-1RN, and upregulation of vascular cell adhesion protein (VCAM). These data
suggest that a pretreatment with flagellin might facilitate endothelial repair and thereby
promote survival following sepsis [49]. Moreover, flagellin seems to enhance the phago-
some formation and increase reactive oxygen species (ROS) levels in macrophages, in a
TLR5-dependent manner, with beneficial effects in abdominal-sepsis murine models [28,50].

2.1.3. Overview of PRRs, Non-PRRs, and Related Pathways

PRRs are a vast group of receptors capable of recognizing PAMPs and are expressed
constitutively in the host, mainly on immune cells, but also on somatic cells. They are en-
coded by a limited number of germ line genes, and typically non-clonally distributed. PRRs
are divided into five sub-families: the Toll-like receptors (TLRs), the nucleotide-binding
oligomerization domain (NOD)—Leucine Rich Repeats (LRR)—containing receptors (NLR),
the retinoic acid-inducible gene 1 (RIG-1)-like receptors (RLR; also known as RIG-1-like
helicases—RLH), the C-type lectin receptors (CLRs), and the Absent in melanoma-2-like
receptors (ALRs) [51,52]. PRRs are expressed on membranes—both in the cell surface and in
the intracellular compartment—and in the cytoplasm. Their structure is composed of three
domains: ligand recognition, intermediate, and effector. After binding to the recognition



Int. J. Mol. Sci. 2024, 25, 962 8 of 40

domain, the ligand activates, through the effectors domain, signaling pathways that pro-
duce effects like recruiting and releasing of cytokines, chemokines, hormones, and growth
factors; induction of acute or chronic inflammation; initiation of the innate immunity and
subsequent acquired immune response; elimination of dead or mutated cells [7,52,53].

TLRs—To date, 11 TLRs have been described in humans, and some—if not all—of
them are probably involved in the recognition of the major PAMPs and DAMPs. Some
TLRs (TLR1, 2, 4, 5, 6, and 10) are expressed on the surface of immune cells, as hetero- or
homodimers, and they are specialized in the recognition of bacterial products [52,54–56].
Table 2 and Figures 1 and 2 report an overview of the features of TLRs, like their normal
location, morphology, and main ligands and signaling mediators/adaptors. [52,56]. Despite
the initial notion of strength association between one particular TLR and its microbial ligand,
it is now accepted that these receptors might combine in a wide repertoire able to distinguish
closely related ligands [28]. Also, there is preliminary evidence that polymorphisms in Toll
family proteins might explain the variability in individual responses to similar infective
triggers [54,57].

Table 2. Overview of the human TLR.

Type TLR Normal Location PAMP Ligands DAMP Ligand

TLR1 Cell surface Lipoprotein and LTAs Unknown
TLR2 Cell surface Lipoprotein and LTAs HMGB1, HSP60, HSP70, HA
TLR3 Intracellular (endosomal) ds-RNA mRNA

TLR4 Cell surface LPS HSP60, HSP70, HA, HMGB1,
fibrinogen, histones

TLR5 Cell surface Flagellin HMGB1
TLR6 Cell surface Lipoprotein and LTAs Amyloid β, oxidized LDLs
TLR7 Intracellular (endosomal) ss-RNA ss-RNA
TLR8 Intracellular (endosomal) ss-RNA ss-RNA
TLR9 Intracellular (endosomal) CpG-DNA cfDNA, mtDNA, histones

TLR10 Cell surface Diacylated lipopeptides Unknown
TLR11 Intracellular (endosomal) Flagellin, profiling Unknown

Abbreviations: PAMP = pathogen-associated molecular pattern molecules; DAMP = damage-associated molecular
pattern molecules; cfDNA = cell free DNA; CpG-DNA = unmethylated cytosine-phosphate-guanine DNA;
mtDNA = mitochondrial DNA; HA = hyaluronic acid; HMGB1 = high mobility group box 1; HSP = heat shock
protein; mRNA = microRNA; LDLs = low density lipoproteins; LPS = lipopolysaccharide; LTAs = lipoteichoic
acids; ss-RNA = single-stranded RNA, TLR = tool like receptor.

Interestingly, as described for other molecules involved in the pathogenesis of sepsis,
the expression of TLRs and their related cytokines is a dynamic mechanism in the different
phases of the illness [57]. In fact, beside their pro-inflammatory function, some authors have
reported that TLRs are also implicated in the so-called “compensatory anti-inflammatory
syndrome” (CARS), also known as “immunoparalysis” or “immune reprogramming”, in
the early phase of sepsis [5,14,55,58]. Several molecular mechanisms negatively regulate
TLR-induced signaling. These host-derived negative regulators of TLRs can act through
three main mechanisms: detachment from the adaptor molecule complex, demolition
of proteins involved in TLR signaling, and transcriptional regulation of the signaling
pathway [55,58]. Additionally, there is evidence that, even if most TLRs are expressed
ubiquitously, many of them show tissue-specific patterns of expression with high con-
centrations of TLRs-mRNA (Table 3). It is of no surprise that the highest concentrations
of TLRs-related mRNA have been mostly detected in tissues that have contact with the
external environment or a crucial role in immunity [59].
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Figure 1. Examples of TLRs’ morphology. Toll-like receptors (TLR) are membrane receptors, found
both in the cellular surface (square A) where they can exist as hetero- or homodimers (TLR1, 2,
4, 5, 6, and 10), and in the intracellular compartments (square B) as homodimers (TLR3, 7, 8, 9,
and 11). The different colors indicates the different structure of each receptor, and their possible
combinations (e.g., the same TLR2, reported in light blue can form heterodimers with TLR1, TLR6
and TLR10 as well). They are type I transmembrane glycoproteins and share a common structure:
extramembrane domain that includes the leucine-rich repeats (LRRs, yellow rhombuses) with ligand-
binding function; transmembrane (or intermediate domain); intramembrane domain that includes
the same Toll/IL-1R (TIR, violet ovals) domain as IL-1R, which plays a role in signal transduction
through the reclamation of several adaptor molecules (blue triangle). Depending on the nature of these
adaptors, TLRs signaling can be classified into myeloid differentiation factor 88 (MyD88)-dependent
and MyD88-independent pathways. Abbreviations: CpG-DNA = unmethylated cytosine-phosphate-
guanine DNA; dsRNA = double stranded RNA; LPS = lipopolysaccharide; RNA = ribonucleic acid;
ssRNA = single stranded RNA.
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Figure 2. Interaction with LPS. TLR4 recognizes the lipopolysaccharide (LPS) in association with
the myeloid differentiation factor 2 (MD2) and the LRR structural protein CD14. The LBP (LPS-
binding protein) transports the LPS to the CD14 (cluster of differentiation 14) on the cell membrane
of monocytes and macrophages. This interaction further promotes the heterodimerization of TLR4
and subsequent signaling. Yellow rhombuses: Leucine Rich Repeats (LRRs); violet ovals: Toll/IL-1
receptor (TIR) domain; blue triangle: adaptor molecule.

Table 3. Tissue-specific expression of TLRs-mRNA in human tissues.

Type TLR Predominant Concentrations Detected in:

TLR1 Kidneys, lungs, spleen
TLR2 Lungs, spleen, brain, heart, and muscle
TLR3 Placenta
TLR4 Spleen
TLR5 Ubiquitously
TLR6 Ubiquitously
TLR7 Lungs, placenta, spinal cord, spleen
TLR8 Lungs, spleen
TLR9 Skeletal muscle, spleen
TLR10 Spleen, thymus

NLRs—As some pathogens cause infection of the cytoplasm, some PRRs have to be
intracellular. These PRRs are the NLRs [52], and their structure is illustrated in Figure 3A.
The presence of a PYD or CARD domain allows the subdivision of the family into NLRP or
NLRC receptors, respectively. Every NLR—NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, and
NLRC4—forms its own inflammasome [60]. Inflammosomes are cytosolic multiprotein
oligomers that mediate the mechanism of pyroptosis, which is implicated both in the
inflammatory response to pathogens and the damage to the host. The most characterized
one is the NLRP3 inflammosome (or “canonical inflammosome”). The assembly of the
canonical inflammasome requires two steps, priming and activation, mediated by various
stimuli (Figure 3B). The result of these two steps is the activation of the final effector, the
caspase-1, which cleaves the pro-interleukins (pro-IL-1 and pro-IL-18) and the gasdermin
(GDSMD) in their mature forms. IL-1β and IL-18 recruit macrophages and neutrophils
in the site of infection, whilst mature GDSMD forms membrane pores that cause lytic
cell death [31,61]. The non-canonical pattern of pyroptosis is mainly activated by LPS
and involves caspases-4/5/11 which also finally cleave GSDMD [62,63]. On one hand,
pyroptosis has positive effects on the clearance of infected cells; on the other hand, it
contributes to the hyperinflammation in sepsis [12] and to the pathogenesis of many
chronic inflammatory diseases [31,60].
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Figure 3. NLRs—(A). NLRs have a central, nucleotide-binding domain (NACHT), a C-terminus that
identifies and binds the ligand, and a N-terminus with effector function which could be a CARD
(caspase activation and recruitment domain) or PYR (pyrin domain) (*). The interaction with the
ligand causes conformational change and oligomerization. The most characterized NLR is NLRP3.
(B) NLRP3 is required for the activation of the canonical inflammosome. The first signal (priming) is
the NF-kB mediated transcription of the NLRP3 gene together with pro-IL-1B and pro-IL-18. This
first step may be stimulated by activation of TLRs, TNFR, and IL-1R. The second signal is mediated
either by PAMPs or by transmembrane ionic fluxes, reactive oxygen species, and Golgi dispersion.
This signal causes oligomerization, with activation of caspase-1, that cleaves the pro-interleukins in
mature IL-1 and IL-18, and the gasdermin (GDSMD), which then forms membrane pores.

Pyroptosis is not an isolated mechanism since other pathways (such as autophagy)
regulate it. Autophagy is a pivotal homeostasis mechanism that consists of the selective
degradation of macromolecules and damaged organelles via the action of lysosomes. It
has been reported that autophagy can downregulate pyroptosis through the clearance
of DAMPs and PAMPs. In fact, mouse models of sepsis, lacking essential genes of the
autophagy process—i.e., Atg7, Atg8, and Atg16L1—show worse inflammatory injuries
and shortened survival because of the reduced pathogen clearance resulting from the
high activation of both canonical and non-canonical pyroptosis pathways with elevated
levels of IL-1β and IL-8, high release of inflammatory cytokines, and enhanced activity of
inflammasomes [12].

The described mechanism seems linear and logical and designs pyroptosis as a part of
innate immunity. However, recent studies have demonstrated that the network of immunity
is more intricate than it seems. For example, not all types of inflammasomes are involved
in the recruitment of phagocytes. NLRP3 does not recruit phagocytes, as demonstrated
in NLRP3-deleted mice undergoing polymicrobial sepsis after a CLP. Moreover, IL-1 can
be secreted by neutrophils and macrophages in a non-pyroptotic process. Besides this
evidence, pyroptosis has also been studied for its role in adaptive immunity. In fact, IL-1
and IL-18 are well-known stimulators of natural killer, T, and B lymphocytes. Furthermore,
these cells may undergo pyroptosis themselves, with subsequent immunosuppression and
release of DAMPs that triggers an inflammatory vicious circle [64,65].

RLRs—The RIG-I-like receptors (RLRs) family includes three innate immune receptors:
the retinoic acid inducible gene I (RIG-I), the melanoma differentiation-associated protein
5 (MDA5), and the laboratory of genetics and physiology 2 (LGP2). They are all RNA
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helicases, but while RIG-I and MDA5 contain a CARD domain, LGP2 is a CARD-free
structure. For this reason, it does not activate a transduction pathway, but it is a regulator of
the RLR signaling pathway. These receptors recognize viral RNA and initiate the antiviral
responses [66] (Figure 4). Besides PAMPs, some DAMPs, as self-RNAs, can also activate
RLRs. Even if the role of these receptors in anti-viral response—and in some kind of
cancers—has been widely described, their implication in sepsis is less clear [67].
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Figure 4. RLRs—The RNA helicases RIG-I, MDA5, and LGP2 interact with viral RNA (and eventually
with DAMPs). While LGP2 has a regulatory function, RIG-I and MDA5 have a CARD domain. These
two latter receptors interact with a mitochondrial transmembrane adaptor (MAVS) that binds the
kinase TBK1 (TANK-binding kinase 1). The downstream pathway leads to inflammatory and antiviral
cytokines transcription release.

CLRs—C-type lectin-like receptors are transmembrane receptors, primarily found on
myeloid cells. They recognize both PAMPs and DAMPs and can activate or inhibit receptors.
In fact, their intracellular tail can either present a classical immunoreceptor tyrosine-based
activating motif (ITAM) in the intracellular tail, interact with ITAM-containing adaptor
proteins, or contain a hemi-ITAM motif (Figure 5). Surprisingly, the same CLR can integrate
distinct positive and negative signals according to the ligand or the environment charac-
teristics [68] (Figure 5). The role of these receptors in infection has been widely reported.
Regarding sepsis, some of them have been described as mediators of the sepsis-induced
coagulopathy. C-type lectin-like receptor 2 (CLEC-2) is expressed on platelet membranes,
and its soluble form (sCLEC-2) has been receiving attention as a predictive marker for
thrombosis [69].

ALRs—They have been recently identified as PRRs involved in cytosolic and nuclear
pathogen DNA recognition [70]. The interaction with the ligand causes the formation of a
functional inflammasome. The result is an upregulation of IL-1β and IL-18 production and
increase in the levels of interferon. In recent years, members of the ALR family have been
related to autoimmunity [71], but their role in sepsis has not been clarified yet.

Non-PRRs are also involved in the reaction to PAMPs and/or DAMPs, but do not share
the common features of PRRs; they include receptors for advanced glycation end products
(RAGE), triggering receptors expressed on myeloid cells (TREM), and G-protein-coupled
receptors (GPCRs).
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Figure 5. CLRs—(A). Some CLRs have activating function (green arrow) thanks to their activating
ITAM domain. This domain can be included in the intracellular tail, connected to the receptor by
an adaptor, or be half-domain (HITAM). The phosphorylation of the tyrosine (green dot) causes a
downstream signaling that leads to NF-κB pathway activation. (B) Other CLRs contain an inhibitory
motif (ITIM) that recruits tyrosine phosphatases (red dot) to inhibit the signaling pathways (red arrow).
(C) Some CLRs have neither ITAM nor ITIM domains, and their signaling is either uncharacterized
or utilizes alternative pathways (question mark).

RAGE—The RAGE are multiligand transmembrane receptors, members of the im-
munoglobulin superfamily, expressed in many tissues, involved not only in the pathogene-
sis of inflammation and infection but also that of diabetic complications, atherosclerosis,
carcinogenesis, and neurodegenerative diseases. The receptor consists of three extracellular
domains (V, C1, and C2), a transmembrane domain, and a short cytosolic tail. Among
RAGE ligands, we find exclusively DAMPs such as advanced glycation end products
(AGEs), HMGB-1, amyloid-b peptide, and others [72]. They can bind one or more sites
of the V domain, which is structurally like the variable domain of the Fab fragment of
human immunoglobulin. The different modality of the ligand-extracellular domain may
account for the activation of different pathways such as NF-κB, mitogen-activated protein
kinase, and other kinase-mediated responses [73]. Interestingly, even if it has been reported
that RAGE only binds to DAMPs, recent studies have revealed that there is a crosstalk
involving RAGE and TLRs, and that three canonical RAGE ligands—AGEs, HMGB1, and
S100—activate both TLRs and RAGE [72].

TREM—TREM receptors include TREM-1, TREM-2, TREM-3, and TREM-like transcript-
1 and 2 (TLT-1, TLT-2). They show a variegated response to LPS. TREM-1 is a member of
the immunoglobulin superfamily and is upregulated by LPS. TREM-2 is downregulated by
LPS and attenuates the inflammatory response. TREM-3 has been found only in mice [74].

GPCRs—Among G-protein coupled receptors, we include the formyl peptide receptors
(FPRs). In humans, three FPRs have been identified, namely FPR1, FPR2/ALX, and FPR3,
expressed in a variety of cells, with the highest expression in neutrophils for FPR1 and
FPR2, and monocytes/macrophages for FPR3 [39].
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2.1.4. Effects of DAMPs and PAMPs Release during Sepsis: Cellular, Tissue, and
Organ Level

Immune cells—Many studies have analyzed the PAMPs/DAMPs and receptor ex-
pression in the immune cells, mainly in macrophages and neutrophils. For example,
iHMGB1 seems to prevent macrophage cell death in bacterial infection by mediating au-
tophagy, whilst eHMGB1 induces cytokine release via the TLR4/MD2/MyD88/NF-κB
pathway [75,76]. Moreover, when activating the RAGE pathway, it induces inflammasome
and caspase-1 activation with subsequent pyroptosis [22]. The exposure of macrophages
to the LPS has been shown to cause the translocation of the cytosolic enzyme ACLY, with
subsequent histone modification and activation of the NF-κB pathway [77]. Thanks to
the studies on sepsis, the assumption that neutrophils are a short-lived, terminally dif-
ferentiated homogeneous population has been questioned. In fact, recent studies have
revealed that besides the N1 and N2 subsets of neutrophils, several new subsets including
aged, antigen-presenting, and reverse-migrated neutrophils have been described, which
potentially contribute to the pathogenesis of sepsis based on their pro-inflammatory and
immunosuppressive functions. This heterogeneity seem to depend also on DAMPs [22,78].
For example, HMGB1 can activate both TLR4 and RAGE pathways in neutrophils; the first
activates the NADPH oxidase activity, which is essential for bacterial killing, whilst the sec-
ond reduces the NADPH oxidase function. However, HMGB1/RAGE-mediated neutrophil
NADPH oxidase dysfunction has been reported to be connected to both higher survival
of septic shock and reduced bacterial clearance [79]. These conflicting results suggest that
balance of these interactions may be crucial in determining defensive or harmful effects in
sepsis, and may in part be determined by the redox state of HMGB1 [22,80].

Non-immune cells—As already stated, sepsis is a syndrome simultaneously involving
several organs and systems. This assumption is well summarized in one of the most
used scores for sepsis prognosis, the SOFA (Sequential Organ Failure Assessment) score.
In this score, the criteria for the assessment of sepsis explore clinical, laboratoristic, and
therapeutic features belonging to the respiratory, nervous, cardiovascular, hepatobiliary,
coagulation, and urinary systems [81,82]. It is of no surprise that many studies have
reported that DAMPs/PAMPs pathways are able to disrupt the homeostasis of all those
systems (Table 4).
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Table 4. Examples of studies reporting the main observations regarding DAMPs and PAMPs in those organs and systems included in the evaluation of SOFA score.

Respiratory Nervous
System

Cardio-
Vascular Hepatobiliary Coagulation and

Endothelium Kidney

H
M

G
B1 • HMGB1 are among

the most cardiotoxic
DAMPs in sepsis [83]

• HMGB1 levels
increase during acute
liver failure [84]

• Their release by the
hepatocytes is
promoted by LPS in a
caspase1-/gasdermin-
mediated
pathway [22]

• HGBM1 can bind to ECs and
dose-dependently upregulate the
expression of adhesion molecules,
the production of
pro-inflammatory cytokines, and
the hyperpermeability [13,22]

• HGBM1 is essential for platelet
activation and degranulation,
contributing to hemostasis and
NETs formation [22]

• HMGB1—depending on its
oxidized/reduced
abundance—has been proven
to induce a phenotypic of
tubular epithelial cells in
pro-inflammatory cells during
sepsis [85]

H
IS

TO
N

ES

• Hemorrhagic, thrombotic,
and fibrotic phenomena in
the alveoli and septa of
lungs of mice challenged
with lethal doses of
histones [26]

• The lungs of children with
ARDS and sepsis showed
higher levels of some
histones when compared
to only septic children [86]

• Histones are among
the most cardiotoxic
DAMPs in sepsis [83]

• Histones are cytotoxic to the
endothelium in a dose-dependent
fashion, inducing expression of
adhesion molecules, oxidative
stress, pyroptosis, and shedding of
the glycocalix, with imbalance
between procoagulant and
anti-coagulant factors, which
could lead to DIC [84,87,88]

• Cell free histones—in a TLR2 and
4-mediated mechanism—activate
platelets, with subsequent
aggregation, chemokine secretion,
and thrombin formation [84,89]

• Megakaryocytes contain
extranuclear histones that are
transferred to their platelet
progeny, where they are found in
high concentrations in septic
patients [90]
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Table 4. Cont.

Respiratory Nervous
System

Cardio-
Vascular Hepatobiliary Coagulation and

Endothelium Kidney

eC
IR

P

• Induces the NLRP3
inflammosome in
macrophages, which has
been related to ALI and
subsequent ARDS in
sepsis [91]

• Its concentration has been
independently associated
with severe hypoxia and
higher complexity of
respiratory support
during COVID-19 lung
failure [92]

• eCIRP promotes the endothelial
dysfunction via a
NLRP3-mediated pathway [93]

cf
D

N
A

• Higher levels in
patients who
underwent a liver
transplant correlate
with higher risk of
death for liver
abscess [94]

• NETs are enhanced by activated
platelets, contributing to the
clearance of pathogens [95–97]

• cfDNA impairs the expression of
endogenous anticoagulant agents
like the protein C [98]

• NETs may drive an evolution
of kidney macrophages in a
M2 phenotype that promotes
tubular regeneration after
septic harm [85]

eA
TP

an
d

m
et

ab
ol

it
es

• Adenosine may drive an
evolution of kidney
macrophages in a M2
phenotype that promotes
tubular regeneration after
septic harm [85]

m
tD

N
A

• Higher concentration
correlates with higher
vascular permeability,
accumulation of TNF and
IL-6 in lung lavage fluids,
and PMN infiltration in
the airways [39]



Int. J. Mol. Sci. 2024, 25, 962 17 of 40

Table 4. Cont.

Respiratory Nervous
System

Cardio-
Vascular Hepatobiliary Coagulation and

Endothelium Kidney

m
tF

P

• ECs express FPRs that could be
stimulated by mtFPs, with
subsequent increased endothelium
permeability and tissue
hypoperfusion [39]

LP
S • Detrimental effects on

contractility [99]

• Promotes the expression of
coagulation factor III, the main
activator of septic coagulopathy,
on platelets, ECs, and monocytes

TL
R

s • Expressed
neurons [17]

• The co-culture of
macrophages and
cardiomyocytes
exposed to LPS show
the activation of TLR3
and TLR4, with
subsequent activation
of NF-κB-mediated
transcription. The
experimental
inhibition of TLR4
prevents these
events [100]

• Implicated in the
impaired calcium
storage in the
sarcoplasmic
reticulum [101]

• Several TRLs are expressed in the
ECs, with different tissue
distributions that may explain the
various effects of sepsis in different
organs. TLR1 and 4 are found in
the umbilical cord ECs, and TLR3
and 9 in the human aortic
ECs [102]

• TLRs are expressed in platelets [89]
• TLR4 expressed in platelets can be

considered as a bridge connecting
thrombosis and innate
immunity [103]

• TLR4 is activated by the
urinary DAMP uromodulin,
also known as Tamm-Horsfall
protein, which is
non-immunogenic inside the
tubular lumen but becomes
immunogenic after cell
damage and translocation in
the interstitial
compartment [85]

• TLR4 expression is low in the
renal medulla and high in the
cortex. Its expression increases
during ischemia/reperfusion
and sepsis [104]

N
LR

s • NLRC3 negatively
regulates NF-κB during
the progression of
sepsis-induced ALI [105]

• NLRP3
inflammasome is
activated in cardiac
fibroblasts during
sepsis [60]

• eCIRP promotes the endothelial
dysfunction via a
NLRP3-mediated pathway [93]

• NLRs are expressed in platelets,
and the NLRP3 inflammosome has
pro-thrombotic functions [89]

• NLRP3 triggers a
gasdermin-mediated release of
coagulation factor III [106,107]
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Table 4. Cont.

Respiratory Nervous
System

Cardio-
Vascular Hepatobiliary Coagulation and

Endothelium Kidney

C
LR

s

• CLRs are expressed in
platelets [89]

• The stimulation of CLRs—like
CLEC2—by viral particles and
mtDNA promotes platelet
activation, degranulation, and
thrombus formation [69]

R
A

G
E

• RAGE-mediated
signaling has been
associated with acute
inflammatory liver
stress that can
contribute to
multiorgan failure.
Rage −/− mice show
lower levels of hepatic
pro-inflammatory
cytokines and
DAMPs [108]

P2

• Blocking the P2X7R with a
synthetic antagonist in rats with
sepsis reduces the endothelial
dysfunction [109]

Abbreviations: ALI—Acute Lung Injury; ARDS—Acute Respiratory Distress Syndrome; DIC—Disseminated Intravascular Coagulation; ECs—Endothelial Cells; NETs—Neutrophil
Extracellular Traps.
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2.2. Actual and Potential Applications of DAMPs/PAMPs and Related Pathways in
Clinical Practice
2.2.1. Biomarkers for Diagnosis, Severity Stratification, and Prognosis of Sepsis

To explore the possible role of DAMPs and PAMPs as biomarkers for sepsis, we
should reiterate the characteristics of a biomarker as a measurable, accurate, and repro-
ducible indicator of normal and pathogenic biological processes, with both high specificity
and sensitivity.

Over the years, the clinical markers for sepsis have been changing and becoming
more accurate. Traditionally, leukocytosis and high concentrations of C-reactive protein
(CRP) have been related to infection and, together with clinical features, have been used
to identify sepsis and drive therapeutic decision-making. However, it is known that the
WBC (white blood cell count) and the concentration of CPR can be affected by many
factors such as steroid therapy, surgery, smoking, trauma, and others. Recent studies
have been questioning the role of WBC and CRP in sepsis. For example, it has been
highlighted that in urosepsis, a WBC higher than 14 × 109/L can be used as an early
warning factor, but also that WBC can be normal or reduced, together with platelets and
fibrinogen, because of a process of sepsis-induced consumption [110]. In 2016, Pradhan
et al. evaluated the CRP value of 64 patients fulfilling the criteria for SIRS (systemic
inflammatory response syndrome) admitted to ICU (with 51 of them further diagnosed with
sepsis), and reported, for this marker, a sensitivity of 84.3%, a specificity of 46.15%, positive
predictive value (PPV) of 84%, and negative predictive value (NPV) of 42.8%, with the
best diagnostic accuracy at 61 mg/L [111]. Another marker is IL-6, a cytokine synthesized
by T lymphocytes, fibroblasts, endothelial cells, and monocytes. Besides its functions in
immune regulation, hematopoiesis, and oncogenesis, it is an acute phase cytokine involved
in inflammation and sepsis. Its normal serum concentration is <5 pg/mL, and it rapidly
increases after infection, with a peak within 2 h [112] that often precedes the fever and the
rise in CRP and PCT, and reaches values > 500 pg/mL in sepsis [110]. Also, values higher
than 80% have been reported for both high sensitivity and specificity in the diagnosis of
sepsis [113]. Procalcitonin (PCT), the propeptide of calcitonin, emerged as a biomarker for
sepsis because of its sensitivity and specificity, reported to be higher than those of CRP [114].
In normal conditions, serum PCT concentration is <0.1 ng/mL, but in septic patients, the
cells of many parenchymal organs (liver, kidneys, adipose and muscle tissue) produce
large amounts of PCT. Its increase starts in the first hours after the bacterial infection; it
becomes detectable after 4 h, peaks at 6 h, and reaches a plateau at 8–24 h [115]. In the
years, authors have been studying the variation of sensitivity and specificity of PCT in the
context of different types of sepsis (e.g., CAP-associated, urosepsis) and have explored the
cut-offs for clinical decisions, mostly regarding the decision to start, maintain, and dismiss
antibiotic therapy [116]. Among its limitations, mild elevation in the case of hepatic or renal
impairment and after major surgery have been reported [110]. Under stress conditions like
hypoxia and hypoperfusion, cells switch from aerobic metabolism to anaerobic, leading to
the production of lactate (Lac). The normal value of serum Lac should be <2.0 mmol/L.
Even if there is no Lac value that could be considered diagnostic for sepsis—since Lac can
also rise in other situations like cell lysis in some tumors or trauma—in septic patients,
Lac concentrations higher than normal have been related to poor prognosis, while its
clearance in the first hours after fluid resuscitation has been associated with higher 28-day
survival rates [117]. Lately, other markers have caught attention and are emerging in clinical
practice, like proadrenomedullin and presepsin [118]. The mid-regional fragment of pro-
adrenomedullin (MR-proADM) derives from the degradation of adrenomedullin (ADM),
a peptide produced by all cells, but mostly by adrenal medullae, cardiac atria, and lungs.
ADM is essential for the function of the endothelial barrier and the vascular tone [118,119].
Li et al. performed a meta-analysis including 11 studies for a total of 2038 cases of sepsis.
They reported a sensitivity of 0.83 (95% CI: 0.79–0.87) and a specificity of 0.90 (95% CI:
0.83–0.94), an area under the curve (AUC) of 0.91, and the best cut-off value for MR-
proADM diagnosis of sepsis at 1–1.5 nmol/L [120]. Presepsin is the N-terminal fragments
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of the soluble form of a CD14 subtype (sCD14-ST). CD-14 is involved in LPS interaction
with TLR4. The values of presepsin differ in healthy controls (294.2 ± 121.4 pg mL−1)
when compared to septic patients (817.9 ± 572.7 pg mL−1) [121,122]. In a meta-analysis
by Han et al., including 11 publications with 3106 patients, the pooled sensitivity was 0.83
(95% CI: 0.77–0.88), specificity was 0.81 (95% CI: 0.74–0.87), positive likelihood ratio was
4.43 (95% CI: 3.05–6.43), and negative likelihood ratio was 0.21 (95% CI: 0.14–0.30). The
area under the curve (AUC) was 0.89 (95% CI: 0.86–0.92) [123]. Presepsin and MR-proADM
have shown good values of accuracy in another meta-analysis by Liang et al. [124].

Our rapid review on the existing, most-used markers for the diagnosis of sepsis
aims at showing what qualities markers should have to be useful for clinical practice: a
cut-off value, a predictable trend during the progression of the pathology (determining
an ideal timing for measurement and monitoring), and known sensitivity and specificity.
Unfortunately, we have not been able to find—to date—any study which allows us to
consider any of the mentioned DAMPs or PAMPs as a suitable biomarker for the clinical
management of sepsis in humans. In fact, even if there is evidence of a relation between
their increase—or decrease—and the likelihood of a diagnosis of sepsis, we have not found
any precise cut-off, any recommended measurement technique, nor any indication about
the optimal biologic sample, the ideal timing for the first assay or for serial dosing, or data
about their sensitivity and specificity.

However, as regards the risk stratification and prognostic significance of DAMPs,
there is interesting evidence of their potential applications. Histones and HMGB1 protein
levels have been proposed as indicators of prognosis, but studies have provided divergent
results [84,87]. Sawada et al. investigated the relationship between serum histone H3 and
HMGB1 levels, the illness severity score, and the prognosis in postoperative patients in the
ICU. They found that these two DAMPs positively correlated with the SOFA score [125].
Alcamo et al. proposed that the measurement of HMGB1 in the plasma of septic pediatric
patients might be a predictor of MOF, with mild sensitivity (55.3%) but good specificity
(90%) [126]. In community-acquired pneumonia (CAP), some authors found that high blood
levels of HMGB1 were correlated with the severity of the disease, showing higher levels in
higher pneumonia severity index (PSI) risk classes, while other authors reported similar
levels of this alarmin in CAP patients with or without sepsis. To explain these divergences,
considering that there is evidence that the release of HMGB1 predominantly occurs at the
site of infection, Alpkvist et al. remarked that HMGB1 levels measured in lower respiratory
secretions might better correlate with the severity of the disease, and that the specific
pathogen might also affect the levels of this DAMP. S. pneumoniae being the most common
etiology of CAP in all severity classes, they analyzed local (sputum) and systemic (plasma)
HMGB1 concentrations and found that the levels were significantly higher in patients
infected by S. pneumoniae compared to other etiologies, while no correlation was found
between HMGB1 levels in plasma and sputum and between HMGB1 concentration and
pneumonia severity [127]. eCIRP levels seem to positively correlate with sepsis severity
and mortality. Interestingly, in a study on 69 adult patients with sepsis, eCIRP levels
significantly were correlated with the Acute Physiology and Chronic Health Evaluation
II (APACHE II) score, the SOFA score, the serum creatinine level, and the procalcitonin
level. When the eCIRP concentration in the peripheral blood was greater than 10 ng/mL,
the mortality risk increased by 1.05-fold [128]. Among NAD-related enzymes, there is little
evidence of the role of extracellular eNAPRT as an emerging biomarker of sepsis and septic
shock [33,34]. Experiments on animal models of sepsis, induced by E. coli injection CLP,
have highlighted increased concentrations of cell-free DNA (cfDNA) [129,130]. Similar
observations have been reported in human patients with sepsis, where cfDNA levels
not only rise in the very first hours of sepsis but are also correlated with higher SOFA
score—and subsequently disease severity and mortality. Moreover, several fragments of
cfDNA with different length were identified, probably correlating with different sources of
the alarmin (i.e., several organs and tissues) but also with the severity of the hypotensive
stress [131]. These studies on ICU patients have highlighted the high sensitivity and
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specificity of this DAMP for the rapid identification of high-risk patients [131,132]. A
study including 31 preterm neonates with suspected sepsis showed that cfDNA, DNase
I, nucleosome, and CRP concentrations were higher than those measured in non-septic
preterms [133]. Also, higher plasma levels of S100A8/S100A9 and S100A12 measured in
the first 24 h from ICU admission in 49 septic shock patients with similar SOFA scores were
correlated with higher mortality at 28 days [134]. Circulating cell-free mtDNA, measured
via quantitative PCR (qPCR), has been associated with the overall 28-day mortality in
critical patients [135], including those with sepsis. In a study from Yamanouchi et al.,
concentrations of mtDNA peaked on the day of admission (day 1) in patients with trauma,
whereas they increased on day 1 and remained constant until day 5 in septic patients.
Additionally, mtDNA levels on day 1 were significantly higher in non-survivors compared
with survivors of trauma (p < 0.05), but not of sepsis [136]. Wang et al. reported that in
107 patients hospitalized in the emergency department (ED) for sepsis (n = 72) or septic
shock (n = 35), the median mtDNA level was significantly higher in the septic shock
patients, correlated with the lactate concentration and SOFA score but not with CRP and
PCT levels. Moreover, mtDNA and lactate levels in non-survivors were significantly higher,
with the mtDNA levels having a superior prognostic prediction value than that of lactate
levels [137]. Other studies reported similar findings [138,139]. In contrast to mtDNA, only
a few publications can be found on the role of mtFPs in sepsis. In these studies, mtFPs have
been related to vascular leakage, cardiovascular collapse, hyperthermia, blood clotting, and
lung injury [140,141]. A study from Canul-Euan et al. on early onset sepsis in newborns
revealed that the concentration of eHSP-27 (27 kDa) was 2.5-fold lower in septic babies
compared to the healthy ones, while eHSP-60 and eHSP-70 increased 1.8- and 1.9-fold in
the group of septic babies [142]. Other authors reported an increase in eHSP-72 eHSP-90
during sepsis [143–145]. In a chronic kidney disease (CKD) murine model, in which sepsis
was induced, more severe ALI was related to a lower expression of HSP-70, suggesting that
this alarmin could be a predictor of SA-ALI [146]. Similarly, other studies have suggested
that HSP-70 induced attenuation of lung injury in sepsis [147–149]. This anti-inflammatory
effect of HSP-70 has been related to stabilization of IκB through preventing IKK (IκB kinase)
activation in respiratory epithelium [150,151].

Beside DAMPs/PAMPs detection, other authors have focused on receptor detection
and clinical significance. TLR4 hyperexpression has been identified as an indicator of severe
prognosis during SARS-CoV-2 infection [152]. Lenz et al. reported evidence for prognostic
properties of neutrophil TLR2 and TLR9 expression in predicting 30-day mortality in
unselected critically ill patients, [79]. Elevated levels of serum soluble RAGE (sRAGE)
correlate with sepsis severity [73]. sTREM-1 levels correlate with the severity of organ
dysfunction, assessed with the sepsis-related organ failure assessment (SOFA) score [82],
and with 28-day mortality [153].

2.2.2. Treatment Strategies

Even after great improvements in the management of sepsis, the mortality from septic
shock remains high, leading to great focus on research into alternative or complementary
treatments. After our review of the literature, we find it useful to classify these strate-
gies as unselective and selective. The first ones find their presumptive effectiveness in a
general ability to remove PAMPs and DAMPs from the bloodstream; the second ones are
characterized by targeted inhibition or stimulation of PAMPs/DAMPs related pathways.

The first group of approaches refers to the extracorporeal blood purification (EBP)
therapies [154]. It is important to note that it is difficult to compare data from different
studies because of the lack of large-scale randomized clinical trials and great variability in
clinical practice all over the world. In the effort to make uniform the use of EBP techniques,
the terminology has recently been the object of revision [155–158]. The EBPs use an extra-
corporeal circuit to remove and/or regulate the concentration of circulating substances,
and eventually support the functionality of specific organs. The different types of EBPs are
classified depending on the mechanism of solute removal—including diffusion, convection,
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adsorption, and centrifugation, or various combination of them. The major groups are
the whole blood therapies (e.g., CRRT, continuous renal replacement therapy; ECMO,
extracorporeal membrane oxygenation), the plasma therapies, subdivided into plasma
exchange (e.g., plasmapheresis) and plasma absorption (e.g., PAF, plasma adsorption filtra-
tion; PFAD, plasma filtration adsorption dialysis), and the albumin-based therapies. CRRT
is based on the mechanisms of convection and/or diffusion for indirect solute removal.
The techniques of hemoadsorption (formerly referred to as hemoperfusion) are based on
the passage of blood through a sorbent-containing cartridge or a hemofilter, responsible for
selective or broad-spectrum solute removal. Some of the targets of hemoadsorption include
endogenous toxic molecules (e.g., bilirubin, myoglobin), endotoxins, and inflammatory
cytokines [157,159].

Regarding the role of EBPs in septic patients, different techniques are known to be
of some utility thanks to their ability to remove endotoxins and cytokines [160], but also
have several limitations due to many issues including complications (e.g., coagulopathy,
risk of severe electrolyte disorders), need for expertise, and high costs [161,162]. Lately,
some authors have started exploring their potential capacity to remove lethal levels of
DAMPs and PAMPs [84,163]. The surface-treated polyacrylonitrile-co-methallyl sulfonate
membrane (AN69ST), already known for its ability to remove IL-6 and lactate from the
blood of septic patients, has demonstrated good capacity to decrease the concentration
of HMGB1 when compared to polymethylmethacrylate (PMMA), polyethersulfone, and
polysulfone membranes. Unfortunately, studies on AN69ST have only been conducted
in vitro [164,165], whereas in vivo trials are lacking; for PMMA, some studies on animal
models are available [166]. The polymyxin B cartridge (PMX) has demonstrated the abil-
ity to reduce the concentration of endotoxin in vitro, but its benefit for the survival of
septic patients—investigated in three main trials—is controversial. The EUPHAS trial, con-
ducted on 64 patients with Gram-negative abdominal septic shock, reported that—when
compared to the conventional therapy—the use of PMX hemoadsorption increased the
mean arterial pressure (MAP), reduced the requirement of vasopressors, and improved
the SOFA score [167]. On the contrary, the ABDOMIX, including 243 septic shock patients
with peritonitis, failed to demonstrate a reduction in the 28-day mortality in the PMX
group compared to the control group [168]. The EUPHRATES trial, on 450 septic shock
patients, selected after endotoxin activity assay (>0.60 or higher), initially showed similar
results [169]. A post hoc analysis of the subgroup of patients with endotoxin activity of
0.60–0.90 revealed an improvement of the 28-day survival rate, suggesting that the efficacy
of the treatment may be affected by the appropriate selection of patients [170]. Interestingly,
retrospective studies have revealed that, besides its ability to adsorb the endotoxin, the
PMX also removes HMGB1. Sakamoto et al. reported that, in septic shock patients (n = 20),
the PMX treatment causes hemodynamic improvement and SOFA score reduction, but the
study did not mention any data on overall mortality [171]. Other authors have explored
the ability of PMX to reduce HMGB1 in sepsis but, again, the effects on the outcome have
not been investigated [84]. Another hemoadsorption cartridge, CytoSorb®, has been pro-
posed for the treatment of critical patients—including septic patients—for its ability to
remove endotoxin, bilirubin, myoglobin, and various cytokines [172]. Recent studies have
highlighted that this cartridge also adsorbs DAMPs like HMGB1, histones, and S-100, but
in this case, its role in improving the outcome of sepsis is also controversial. Gruda et al.
evaluated the performance of this cartridge in vitro, reporting that it is able to significantly
adsorb cytokines (i.e., MIP1-α, IL-6, and IFN-γ), PAMPs (α-toxin, SpeB, and TSST-1), and
DAMPs (C5a, HMGB-1, and S100-A8) [161]. Chen et al. tested a baboon model of pneumo-
coccal pneumonia and sepsis with organ dysfunction, treated with 24 h administration of
ceftriaxone, and then randomized to blood purification using a filter coated with heparin
sulfate (n = 6) or sham treatment (n = 6) from 4 to 30 h after inoculation. Among the results,
they noticed a decrease in the concentration of peripheral blood pneumococcal DNA, and
a lower activity of the NLPR3 inflammasome. The study is of interest for the choice of a
nonhuman primate model, since baboons have larger size allowing invasive monitoring,
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resemble humans in their lung anatomy and posture, and show similar hemodynamic and
immunologic sepsis pathways. However, since the animals were euthanized at 48 h after
the inoculation—to perform the necropsy and collect tissue samples—there are no data
regarding the impact of the treatment on the mortality. Interestingly, the authors report a
peaking of S. pneumonia DNA concentration 12 h after the administration of ceftriaxone.
Since beta-lactams are bactericidal, the author wonder if the use of bacteriostatic agents
in the first phase of sepsis may lower the release of PAMPs—including the endotoxin,
which is recognized to be one of the major mediators of cardio-circulatory collapse in
sepsis [173]. In a case series of post-neurosurgery septic shock patients, the combination
of CRRT and CytoSorb caused permanent or transient clinical improvement, but even if
the authors hypothesize a role for DAMPs and PAMPs removal, none of them has been
measured [174]. Even if CytoSorb has been approved for the treatment of critical patients
since 2011, some meta-analyses have found no significant impact on mortality, so the au-
thors conclude that there is not striking evidence to recommend its systematic use outside
clinical trials [175–177].

The evidence suggesting that the removal of a single septic mediator is ineffective in
reducing the mortality, and that available hemoadsorption cartridges show unselective
adsorption activity, has induced some authors to develop and investigate the therapeutic
potential of telodendrimer nanotraps (TD-NTs). Telodendrimers are architectural polymers
consisting of a linear polymer and a hyperbranched structure (dendron). The extremities of
the dendron bind to positively or negatively charged molecules, which act as nanotraps
(NT+ and NT−, respectively). The assumption is that, since pro-inflammatory molecules
(e.g., TNF-α, IL-1, IL-6, and HMGB1) are negatively charged and anti-inflammatory
molecules (e.g., IL-11) are positively charged, the use of customized nanotraps could
selectively remove these inflammatory mediators. Shi et al. firstly studied the effect of
intra-abdominal TD-NT administration in a murine septic model of CLP, with different
timing. Given that the mortality rate 48 h after CLP was 62.5%, the administration of NT+
immediately after CLP surprisingly increased the mortality rate (77.8%), hypothetically
because the early removal of pro-inflammatory molecules would inhibit the innate immune
response. On the contrary, the concomitant administration at time 0 of NT+ and NT−
slightly improved the survival rate (37.5%), whilst their application at 3 h and 8 h signifi-
cantly improved the survival rate (50–62.5%). Then, they combined the use of an association
of NT+/NT− with the antibiotic therapy (imipenem/cilastatin 50/50 mg/kg, 50% of its full
dose in mice, to mimic septic hypoperfusion) administered 3 h after CPL. The combination
was able to reach a 100% survival rate before euthanasia on day 42. The study has some
important limitations, mainly in the fact that nanotraps were directly administered in
the abdominal cavity, which is not acceptable for clinical use, and that the effects of the
treatment on the later phase of septic immunosuppression and the long terms effects of the
TD-NTs on the immune system have not been investigated [178]. Another strategy is that of
nanoparticles-based vaccines, like the ciVAX. This vaccine consists of paramagnetic beads
covered with a broad-spectrum engineered opsonin (FcMBL, Fc-mannose binding lectin)
that rapidly binds to PAMPs, like glycoproteins and glycolipids, that are found in more than
120 species of pathogens and toxins. The complete vaccine is obtained by mixing beads
with mesoporous silica (MPS) rods covered with GM-CSF and CpG-rich oligonucleotides.
In a study by Super et al., the vaccine was administered to mice subcutaneously, together
with E. coli fragments. The MPS rods rapidly formed a GM-CSF/CpG-releasing matrix,
attracting immature dendritic cells and activating them. The mature DCs then migrated to
the draining lymph node and interacted with resident B and T cells to start an adaptive
response to the bacterial antigens. The authors then investigated the effect of ciVAX pro-
phylaxis in mice challenged with a lethal intraperitoneal administration of the homologous
antibiotic-resistant E. coli RS218 strain (O18:H7). At day 35, 9% of the unvaccinated mice
vs. 100% of the vaccinated ones survived. Moreover, the immune response seemed to be
prolonged, as a single injection protected >90% of mice from a new challenge at day 90
after the vaccination. The prophylaxis was tested also in pigs, challenged with intravenous
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injection of a human isolate of E. coli 41,949 (OM:H26), and all of them (n = 4) survived to
the end of the experiment (euthanasia at 28 h for n = 2, and 72 h for n = 2) [179].

With regard to the selective strategies, at the moment, the most studied consist of anti-
body neutralization, competitive antagonism, and enzymatic inactivation [180] (Table 5).

Clinical data have shown higher survival rates in septic shock patients who generated
HMGB1 autoantibodies, and administration of HMGB1-neutralizing antibodies not only
altered the early phase inflammatory response but also reduced the susceptibility to sec-
ondary infection [181]. Yang et al. reported that HMGB1 antagonists—like the recombinant
HMGB1 A box or the P5779 peptide derived by the HMGB1 box B—are protective against
sepsis mortality [182–184].

Heparin is one of the most used histone-neutralizing agents, with an effect of prevent-
ing histone-mediated coagulation, but it also alleviates HMGB1-induced inflammation.
However, heparin is not routinely used in critically ill patients, as it unfortunately increases
the risk of fatal bleeding in those with coagulopathy [84].

Histones and their fragments are promising future therapeutic strategies, mainly
because of their species-specific antimicrobial activity; the main limit to their systematic
use is that they are themselves cytotoxic, and their injection may be harmful to patients
with life-threatening infections. To overcome this limitation some authors have proposed to
control the release of histones in NETs or lipids, or to develop harmless and more effective
histone analogs. Moreover, in the future, a role for the epigenetic modification of histones
could emerge [27].

Drotrecogin alfa (activated) is a recombinant human Activated Protein C (rhAPC),
approved by FDA for the treatment of severe sepsis. In vitro data have shown that APC has
antithrombotic, profibrinolytic, and anti-inflammatory effects [185]. Xu et al. demonstrated
that the anti-inflammatory ability of APC, and its subsequent protective role against sepsis,
is related to histone cleavage [26].

In a murine model of neonatal sepsis, Denning et al. reported the potential beneficial
effect of the oligopeptide C23, derived from the protein CIRP, which is able to block the
CIRP from binding its receptor. One hour after intraperitoneal injection of adult cecal
material in C56BL/6 mouse pups, the mice received retro-orbital injection of C23 or of
normal saline. Ten hours later, blood and tissues were analyzed. C23 treatment was able to
more than halve the serum concentrations of pro-inflammatory cytokines IL-6 and IL-1β
and significantly reduce the serum levels of AST and LDH collected for analysis. In the
lungs, C23 treatment reduced expression of cytokines IL-6 and IL-1β by 78% and 74%,
corresponding to a decrease in apoptosis and histologic lung injury score [92,186].

In murine models of thrombosis—including venous and arterial thrombosis—since
it was reported that cfDNA and NETs contributed to the formation and stability of the
thrombi, DNAses were administered in a mouse model of sepsis-induced intravascular
coagulation, with subsequent clot lysis [97]. DNAses administration has also been found
to be effective in a rat model of septic liver injury supported by Venoarterial Extracorpo-
real Membrane Oxygenation (ECMO). In such a model, DNase I significantly attenuated
the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), NLRP3
inflammasome, myeloperoxidase (MPO), IL-1 β, and IL-18, and improved neutrophil in-
filtration [187]. Some authors have also proposed, in mice models of abdominal sepsis, a
combination therapy of DNAses and low-molecular weight heparin (LMWH), but while the
administration of either DNAse I or LMWH improved the survival of septic mice compared
with saline, this was not true for combination-treated mice. These findings suggest that
there may be a negative drug–drug interaction between DNAse I and LMWH [188].

NETs have been reported to be exuberant in sepsis; as such, the inhibition of their
formation is a potential therapeutic target. Given the importance of the enzyme peptidyl
arginine deaminase 4 (PAD4) in NETs formation, and the evidence that PAD4-deficient
mice exhibit less organ damage and higher survival rate in a model of sepsis, it has been
reported that the treatment of mice with CI-Amidine, a pharmacologic inhibitor of PAD4,
decreases NETs formation and improves survival rates in sepsis [189,190].
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Another proposed strategy aims to prevent the activation of mitochondria-related
pathways through protecting the cardiolipin from oxidation with the administration of
antioxidants like quinone-based antioxidants and long omega-3 polyunsaturated fatty acids
(PUFAs), or the use of deformylase, the degrading enzyme for mtFPs [191,192].

With particular focus on inflammation-related hypercoagulability, some authors have
proposed a role for the recombinant thrombomodulin (rTM). Thrombomodulin (TM),
expressed on the endothelium, is crucial in regulating the coagulation system [193]. After
an endothelial injury, TM is released into the intravascular space through cleavage. rTM
seems to function as an inflammatory regulator, since it neutralizes DAMPs, including
histones and HMGB1, and can directly and indirectly regulate NETs formation. For these
reasons, it has shown good efficacy in suppressing inflammation in various experimental
models, including sepsis [194]. In particular, a Phase 2b trial in 371 septic patients with
suspected DIC showed lower mortality rates and sepsis-associated coagulopathy [195].

The role of alkaline phosphatase (AP) as a detoxifying enzyme has been investigated
with regard to SA-AKI [193]. AP can remove one of the two phosphate groups of the lipid A
of the endotoxin, and even if the dephosphorylated endotoxin can still bind to TLR4, it is no
longer able to activate the receptor, showing TLR4-antagonistic effects. In vitro and in vivo
studies on murine models have revealed the presence of phosphatase activity at the tubular
brush border, confirming the protective ability of AP in Gram-negative Escherichia coli
sepsis animal models, but not in Gram-positive sepsis sustained by Staphylococcus aureus.
Furthermore, AP catalyzes the dephosphorylation of eATP to its metabolites (ADP and
AMP). Binding to its receptors in the nephron, adenosine seems to act on the renal vascular
tone, on the regulation of the glomerular filtration rate, and on the renin release [196]. Given
these observations, and after the evidence of good results in animal models of sepsis, some
authors investigated the effects of bovine intestinal AP (biAP) administered intravenously
to suspected or proven Gram-negative septic patients (with or without AKI). No safety
concerns emerged, and in the treated arm, an improvement of endogenous creatinine
clearance (ECC) was observed, with respect to the placebo arm [197].

Moreover, because of its role in SA-AKI, TLR4 has been investigate as a target of
antibodies, peptides, nanoparticles, lipid A analogs, and derivatives of natural prod-
ucts [197,198].

In addition, since 1990, some synthetic anti-lipopolysaccharide peptides (SALPs) have
been objects of research. These peptides can bind and inhibit not only the LPS from
Gram-negative bacteria but also lipoproteins (LP) of Gram-positive origin. The effect of
this binding is—besides its antibacterial action, regardless of the bacterial resistance—the
prevention of uncontrolled inflammation [199]. LPS binders attack both wall and free
endotoxin, targeting one of the three different parts of the LPS (O-antigen, core, Lipid A)
and having various compositions directed to different classes of bacteria. This implies that
the limit of these molecules is the LPS heterogeneity. Therefore, it has been proposed to
search for well-conserved parts of the endotoxin, and a promising candidate could be part
of the inner core region called 3-deoxy-D-manno-octulosonic acid (KDO) [45], or the lipid
A with fully synthetic disaccharide lipid A mimetics (DLAMs) [46]. Among these peptides,
we report, as an example, the LPS-binding peptide 19–2.5, which not only interferes with
the activation of the coagulation and contact system but also prevent the interaction of
LPS with the high molecular weight kininogen (HK), one of the major LPS carriers in
blood [200].

Interestingly, in a P. aeruginosa infection in a mouse burn model, the combination of
prophylaxis (pre-infection) and therapeutic (post-infection) treatment with anti-flagellin
sub-type monoclonal antibody (anti-fla-a) limited the bacterial dissemination and invasive-
ness, with subsequent reduction of septic mortality and morbidity [201]. Similar results
have been reported by other investigators [202,203].

Besides DAMPs and PAMPs modulation, another promising field of research is that of
receptor modulation.
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TLR4 is among the most studied receptors. It is of no surprise that some natural
inhibitors of this receptor have been detected in the past years. Those act at various levels:
extracellular (i.e., soluble CD14, soluble MD2, and soluble TLR4), cell membrane (e.g.,
receptor RP105, TNF-Related Apoptosis Inducing Ligand-Receptor TRAIL-R, and receptor
ST2), and intracellular (e.g., short form of MyD88, interleukin-1 receptor associated kinase
M IRAK M, Toll Interacting Protein TOLLIP, β-arrestin, Suppressor of cytokine secretion 1
SOCS1, and others). Also, some drugs have been investigated for their ability in modulating
TLR4 through various mechanisms. Among molecules interfering with TLR4 and its
mRNA expression, there are many used for several applications, like chloroquine [204],
ketamine [205–207], statins [208,209], and lidocaine [210]. Among drugs acting on the
TLR4 transduction pathway, there are eritoran (E5564), resatorvid (TAK242), ketamine,
opioids [211], vitamin D3, and lansoprazole. Furthermore, some forms of anti-TLR4 and
anti-TLR4-MD2 complex have been texted on cultured cells and in animal models exposed
to LPS [212].

Once again, most of the illustrated agents have been tested in vitro or in vivo in an-
imal (mostly) murine models, and not all of them in the context of sepsis. Moreover,
there are contrasting results on their effect on TLR4 functions; for example, some authors
have reported that vitamin D3 increases the expression of the receptor in tuberculosis
spondylitis patients [213], while others have suggested that its supplementation inhibits the
TLR4/MyD88/NF-κB signaling [214]. It is interesting to remark that two cited molecules,
both antagonists of TLR4, the synthetic lipid A antagonist eritoran and the small molecule
resatorvid, reached phase III clinical trials as antisepsis agents, but both (involving 1961 and
274 patients, respectively) failed to meet their endpoints [215,216]. Nowadays, Monophos-
phoryl Lipid A (MPLA) is the only TLR4 agonist to be approved by the FDA for use as a
vaccine adjuvant in humans (Cervarix R ©, Fendrix R ©) [217], and its effectiveness in sepsis
is under investigation [218,219]. Vega et al. explored its potential as an immunomodulator.
In fact, the molecule is a synthetic and detoxified form of the endotoxin LPS, and when
administered to septic patients, there is a weaker induction of target genes compared to
that induced by LPS stimulation. This effect may depend on the fact that MPLA-induced
TLR4 transduction pathway is preferentially non-MyD88-mediated, following the TRIF-
dependent cascade [219,220]. With regard to other TLRs immune modulators [221], they
are approved medications or still objects of trials in different phases of development for
various conditions, but we have not found available past studies or current clinical trials for
their application in sepsis. Moreover, the TLRs transduction pathway could be modulated
at the effector level. As an example, some authors have developed small molecules that
target the BB-loop region of MyD88, which is essential for the homo (adaptor–adaptor)- and
hetero (receptor–adaptor)-dimerization that is necessary for the function of TIR domains of
TLRs. Most of the studies have been conducted in animal models of inflammatory diseases,
but the results suggest that these molecules might have a future role in the treatment of
sepsis [222].

As RAGE have been reported to be engaged in sepsis pathogenesis, several strategies
have been used to study the effects of RAGE inhibition, such as antibodies against RAGE,
RAGE knockout mice, siRNA to silence RAGE, and soluble RAGE. These studies have
showed that RAGE inhibition limits the release of pro-inflammatory cytokines but also
interferes with phagocytic clearance of apoptotic lymphocytes, thus protecting against
sepsis-induced increases in endothelial permeability and hypercoagulability. Based on
these observations, the inhibition of RAGE pathways has been proposed as a therapeutic
tool against sepsis, the functional outcomes of which may rely on the degree of RAGE
expression in specific tissues, the characteristics of each ligand, and its interaction with
different extracellular domains of the receptor. Unfortunately, experimental results have
yielded conflicting results, so that further studies are required to better define the role of
RAGE in sepsis and its treatment [73,223–225].

Among soluble receptors, we also mention the synthetic sTREM-1 antagonistic peptide,
nangibotide. It inhibits the activation of the TREM-1 receptor, thus decreasing leukocyte
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activation and innate immune response [226], with subsequent protective effects on the
cardiovascular system and survival [227]. The medication has been demonstrated to have
a good safety profile and promising effects on sepsis morbidity and mortality [228,229].

Since the uncontrolled activation of NLRs (mainly NLPR3) and GSDMD have been
described both in human and mouse models of sepsis, caspase 1/4/5/11 have been pro-
posed as drug targets. Some inhibitors of this pathway are unsuitable in clinical practice
since they act like “paninhibitors”, blocking not only pyroptosis but also apoptosis. In
contrast, selective inhibitors have shown promising effects in vitro and in vivo, treating
inflammatory diseases of mice, but unfortunately, little clinical research has been conducted
in human inflammatory diseases [61]. Studies have also suggested that the administration
of inhibitors of NLRP3/caspase-1 pathway-mediated pyroptosis (e.g., MC950, melatonin) is
protective against sepsis-associated encephalopathy, spinal cord injury, and motor neuron
damage in rats [60].

Blocking P2 × 7 receptor with AZ 10,606,120 exacerbates vascular hyperpermeability
and inflammation in murine polymicrobial sepsis [109]. In addition, in mouse models
of CLP-induced sepsis, the targeting of P2 receptors has been suggested as a modulator
of PMNs responses. In fact, the ATP receptor antagonist suramin diminished CD11b
expression and subsequent PMNs activation [230].

Table 5. Examples of “selective” therapeutic strategies targeting DAMPs, PAMPs and their signaling
pathways.

Therapeutic Strategy

Type of DAMP

HMGB1

- HMGB1 neutralizing antibodies
- Heparin, heparin variants, or heparinoids
- Recombinant HMGB1 A box, P5779 peptide derived by the HMGB1

box B
CIRP - Oligopeptide C23

Histones - Histones and their fragments
- Drotrecogin alfa (activated)

ATP, ADP, AMP - Alkaline phosphatase
DNA - DNAses

mtDAMPs
- Quinone-based antioxidants
- Long omega-3 polyunsaturated fatty acids (PUFAs)
- Deformylase

Type of PAMP

LPS - Alkaline phosphatase
- Synthetic anti-lipopolysaccharide peptides (SALPs)

Flagellin - Anti-flagellin sub-type monoclonal antibody

Type of Receptor

TLR4

- Alkaline phosphatase (AP)
- Eritoran
- Resatorvid (TAK242)
- Small agonists/antagonists (e.g., MPLA)

NLRP3 - MC950
- Melatonin

P2 - AZ 10606120
- Suramin

RAGE
- Anti-RAGE antibodies
- siRNAs
- Soluble RAGE

TREM-1 - Soluble TREM-1 (Nangibotide)

3. Findings, Open Problems, and Future Perspectives

Sepsis is a complex and kaleidoscopic syndrome. Since the paradigm about its patho-
genesis has been switched from a pathogen-centered to a pathogen–host-mediated one,
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many features have been elucidated. It has become clearer that, given the multiple and
dynamic possible combinations of pathogen–host interaction, not only is every patient
with sepsis unique but the same patients may also express several clinical manifestations
at different moments of the disease history. However, even if physicians are aware that
every septic patient is inimitable in their clinical features, there is the need to sort patients
into macro-categories to manage them clinically and therapeutically in an evidence-based
fashion. For these reasons, during recent years, many efforts have been made to identify
sepsis phenotypes. For example, Seymour et al. identified four sepsis phenotypes with
different clinical and biochemical features. The α phenotype had fewer abnormal laboratory
values and less organ dysfunction. Patients with the β phenotype were older, had greater
chronic comorbidities, and had higher risk of presenting with renal dysfunction. Those
with the γ phenotype were more likely to have fever, high white blood cell count, higher
erythrocyte sedimentation rate, or C-reactive protein. Finally, those with the δ phenotype
had hypotension, elevated serum lactate levels, and high transaminase levels [231]. Yet,
there is no classification of sepsis based on the expression of DAMPs or PAMPs, even
if, from our review of the literature, it emerges that there might be differences in their
concentration depending on the pathogen, the source of infection, the damaged organs, or
the moment of their measurement.

From our examination of the available scientific works on the topic, two main fun-
damental findings emerged. First, we believe that—despite the enthusiasm showing
through some papers—there is not sufficient evidence to define molecular patterns (MPs)
as biomarkers for imminent clinical use in human sepsis, since we have not been able to
find works reporting data of their normal and sepsis-related cut-off values, nor of their
sensitivity and specificity in the diagnosis of sepsis. There is emerging literature about their
relationship between the severity of sepsis and prognosis, but most of the studies have been
conducted on animal models, in which sepsis features are not completely analog to the
human ones. Second, there is no study which systematically assessed the trend of the con-
centration of PAMPs and DAMPs in the progression of sepsis. However, bringing together
the information of various works, we tried to reconstruct the existence of a temporal line of
DAMPs and PAMPs release during sepsis (Figure 6). In a murine model of sepsis induced
by E. coli injection, cfDNA showed an increase during the first hours of the disease, reaching
a 20-fold increases at 5 h after sepsis induction [130]. This increase in cfDNA seems to
also be explained by low Deoxyribonucleases (DNases) activity during sepsis. However,
the lack of standard values in DNase activity makes the comparison of different studies
quite difficult [232] Sumi et al. reported that plasma eATP, and its metabolites adenosine
diphosphate (ADP) and adenosine monophosphate (AMP), concentrations increased up
to 6-fold during the first 8 h after CLP [230]. HMGB1 levels are significantly elevated at
the later time point of sepsis, reaching a plateau at 16–32 h after the onset of sepsis in
both animal models of sepsis and septic patients, and its circulating levels remain elevated
for weeks [233,234]. In a mouse model, marked eCIRP elevation was observed at 20 h
after sepsis; it continued to increase at 48 h, while the highest increase seemed to occur
at 72 h after the onset of sepsis, suggesting that this rise can be clinically associated with
late-stage immunosuppression in sepsis [91]. With regard to mtDNA it was reported to
increase on day 1 and remain constant until day 5 in patients with sepsis [136]. We are
aware that this reconstruction has many limitations, since the data have been taken from
studies using different sepsis models—mostly murine models—and measurement tech-
niques on different samples; moreover, the underlying mechanism of MPs release has not
been elucidated in the studies, and it is known that different types of cell death and active
release pathways may affect the type of DAMPs found in the circulation [16]. Moreover,
while, for some DAMPs, the trend has been quite precisely described, even with referral to
the folds of concentration increase from the baseline, reporting its modification not only in
the first hours but also in the first days after sepsis onset, this information is lacking for
most of them. We believe that—despite the previously exposed limitations—the use of
animal models is pivotal for the purpose of studying the temporal trend of MPs in sepsis.
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In fact, it could be useful to define this trend in the absence of antibiotic therapy (which
is unethical in humans) and after their administration, to understand how antimicrobial
agents affect the concentration of these molecules (e.g., differences between bacteriostatic
and bacteriolytic agents). In humans, it should be considered that septic patients are often
elderly, multi-morbid, in polytherapy, and managed in intensive of sub-intensive settings.
Nevertheless, even if there is evidence that some commonly used drugs interfere with the
release of DAMPs, there is scarce literature on the interaction among alarmins and these
drugs, which may significantly affect the natural history of sepsis. It is our opinion that
further research on this topic could be of great clinical significance since it could help in the
future definition of the timeline of sepsis, which could be of great importance for prognostic
and therapeutic considerations and decision-making.
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Figure 6. Temporal increase trend of some DAMPs during the first phases of sepsis—Note that, for
the DAMPs for which a precise increase trend (folds from the baseline) has been reported, it has been
indicated in the figure in an in-scale manner (see cfDNA, eATP, and its metabolites). For the other
DAMPs, the lack of this information has been identified with “x?”. Moreover, we highlight that while,
for some DAMPs, the trend even after the first days from sepsis (i.e., HMGB1, mtDNA) has been
described, for others, this information is missing (dotted lines). For these reasons, the study of the
precise concentration trends of DAMPs in sepsis could be an interesting field of research that could
have potential important clinical implications.

Another important observation emerging in our paper is that not all the proposed
therapeutic strategies addressed to MPs modulation have been specifically studied in
human sepsis, since some of them have only been studied in vitro or animal models,
often with small sample sizes. Once again, even if these studies offer some remarkable
data, we should limit the enthusiasm. For example, some approved EBPs techniques
have been demonstrated to have inconclusive effect in reducing sepsis mortality. Data
on one of the most promising EBPs—i.e., hemoadsorption—are limited to some DAMPs
(i.e., histones and HMGB1), and we have not been able to find studies evaluating the
potential removal of other DAMPs. Ideally, a better comprehension of the single patient’s
molecular profile could be targeted in the future with tailored absorption cartridges or,
as some other authors are starting to test, with nanotechnologies, but again, the current
evidence is not enough to systemically recommend these strategies in septic patients. On
the contrary, there is evidence that EPBs might induce serious complications like severe
dyselectrolytemias, arrhythmic events, and hemodynamic instability, and interfere with
the antibiotic therapy itself, which is, to date, the only universally accepted treatment for
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sepsis [162]. Several questions remain unanswered regarding the scheduling, interval,
and frequency of administration and the optimal membrane characteristics (molecular
weight cut-off, surface area, composition) for EPBs in septic patients [161]. Regarding other
strategies, such as the administration of small molecules, antibodies, and vaccines, we
again underline the limits of the use of animal models, mainly of a methodological nature.
In facts, some studies evaluate the efficacy of some agents as more than as therapeutic
agents, such as as prophylaxis, through their administration before the septic challenge.
This strategy, which can be of some usefulness in understanding the mechanism of effect of
the agent, rarely finds its application in real life since we cannot predict the development of
sepsis but only—and in limited cases—estimate the risk of its development (e.g., patients
exposed to invasive procedures, particular categories of patients like those with indwelling
devices or with pre-existing conditions affecting the immune system like diabetes of
immunodeficiency). Given these considerations, to date, only a few of these strategies
have been approved by some drug regulatory agencies, and the available evidence is
too limited to systematically insert them in the standard therapy of sepsis. Additionally,
since most of the studies were conducted on animal models which are euthanized at
predetermined moments of the experiment, there are scarce data on the long-term effects
of MPs modulation, a topic that might be of crucial importance since it is known that
MPs are involved in the pathogenesis of autoimmune diseases and tumors. In fact, the
scientific community is discussing the need to identify and define an “homeostatic window”
of DAMPs and SAMPs (suppressing/inhibiting molecular patterns) concentrations to
guarantee a safe treatment modality for patients [180]. In the light of this analysis, it is our
opinion that besides the enthusiasm, prudence is mandatory, and that future studies on
such strategies are necessary to better understand the role of innate immunity on sepsis
and provide other therapeutic tools.

4. Materials and Methods

This review consists of two research phases. In the first phase, we included studies,
published in English over the last 5 years, on the topics of DAMPs and PAMPs in sepsis. We
searched on PubMed® and Cochrane®. The keywords we searched for were “DAMPs OR
PAMPs AND sepsis OR septic”. The inclusion and exclusion criteria are reported in Table 6.
All the articles were read, and their bibliographies were checked to select other reputed
and relevant works based on the opinion of the authors. In the second phase, we focused
on the research, with the same criteria, of evidence regarding PAMPs and DAMPs in the
single microareas explored in the review (e.g., “DAMPs OR PAMPs AND endothelium).
No ethical approval was required to perform this review.

Table 6. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Type of article: in order of importance, we
considered clinical trials, observational studies,

systematic reviews, ad narrative reviews.
Topic: articles treating other unrelated topics.

Language: only articles written in English.
Year of publication: articles written in the last

5 years.

5. Conclusions

In the recent pandemic years—more than ever—sepsis has been an hot topic, and the
role of DAMPs and PAMPs as biomarkers, prognostic factors, and potential therapeutic
targets has gained crucial attention [235,236]. The literature on the topic is proliferating,
demonstrating the great effort in finding new, faster, and more effective ways of detect-
ing, classifying, and managing sepsis with strategies complementary to the conventional
therapy. Unfortunately, besides a few approved new strategies, many of them are far from
being applied in clinical practice. Several points need to be elucidated since we may affirm
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that many DAMPs and PAMPs express both pro-inflammatory and anti-inflammatory
functions, depending on their localization in the cell (nuclear, cytosol, membranes), in
different cells (immune and non-immune cells), and even in different phases of sepsis. This
evidence might be the starting point for deeper knowledge of the different phenotypes
of sepsis and more rational use of the actual therapeutic options—for example, different
strategies at different moments of sepsis—and the study of new treatment strategies.
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