
Citation: Ferguson, D.T.; Taka, E.;

Tilghman, S.L.; Womble, T.; Redmond,

B.V.; Gedeon, S.; Flores-Rozas, H.;

Reed, S.L.; Soliman, K.F.A.; Kanga,

K.J.W.; et al. The Anticancer Effects of

the Garlic Organosulfide Diallyl

Trisulfide through the Attenuation of

B[a]P-Induced Oxidative Stress, AhR

Expression, and DNA Damage in

Human Premalignant Breast

Epithelial (MCF-10AT1) Cells. Int. J.

Mol. Sci. 2024, 25, 923. https://

doi.org/10.3390/ijms25020923

Academic Editor: Eugenia Piragine

Received: 14 December 2023

Revised: 5 January 2024

Accepted: 9 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

The Anticancer Effects of the Garlic Organosulfide Diallyl
Trisulfide through the Attenuation of B[a]P-Induced Oxidative
Stress, AhR Expression, and DNA Damage in Human
Premalignant Breast Epithelial (MCF-10AT1) Cells
Dominique T. Ferguson 1 , Equar Taka 1, Syreeta L. Tilghman 1 , Tracy Womble 1, Bryan V. Redmond 2 ,
Shasline Gedeon 1 , Hernan Flores-Rozas 1, Sarah L. Reed 1, Karam F. A. Soliman 1 , Konan J. W. Kanga 3

and Selina F. Darling-Reed 1,*

1 Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M
University, Tallahassee, FL 32307, USA; dominique3.ferguson@famu.edu (D.T.F.); equar.taka@famu.edu (E.T.);
syreeta.tilghman@famu.edu (S.L.T.); tracy.womble@famu.edu (T.W.); shasline1.gedeon@famu.edu (S.G.);
hernan.floresrozas@famu.edu (H.F.-R.); sarah1.reed@famu.edu (S.L.R.); karam.soliman@famu.edu (K.F.A.S.)

2 Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
bryan_redmond@urmc.rochester.edu

3 Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
kwk06@fsu.edu

* Correspondence: selina.darling@famu.edu

Abstract: Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon as-
sociated with breast cancer. Our lab previously reported that the organosulfur compound (OSC),
diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle
arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We
hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial
(MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neo-
plastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation,
clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG)
DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P
induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing
AhR, ARNT/HIF-1β, and CYP1A1 protein expression compared with the control in MCF-10AT1
cells. B[a]P/DATS’s co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS
formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated
all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive
effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells
from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its
chemopreventive effects in breast cancer.

Keywords: diallyl trisulfide; phytochemicals; nutraceuticals; organosulfide; chemoprevention;
antitumor; oxidative stress; DNA repair; cancer

1. Introduction

The therapeutic properties of garlic (Allium sativum) have been leveraged by many
cultures since the beginning of time. The garlic panacea plant, notably, was utilized by the
ancient Egyptians, Chinese, Indians, Romans, and Greeks for its many health benefits [1–3].
Supplying anticancer phytochemicals and having minimal adverse effects on the human
body, diets incorporating garlic reduce the risk of cancer, specifically breast, prostate,
colon, and gastrointestinal [4–10]. Modern research has linked the health benefits of garlic
to its anticancer, antioxidant, and antiviral effects, which ultimately enhance the global
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immune response. These health benefits are primarily associated with garlic’s organosulfur
compounds (OSCs), diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide
(DATS) [9,11,12]. Previous studies have shown that OSCs modulate cell signaling pathways
to control cellular proliferation, providing anticancer effects and strong chemoprevention
properties [13,14]. Various studies have proposed the mechanisms involved to explain the
cancer-preventive effects of OSCs, including controlling DNA repair mechanisms, cell cycle
regulation, the inhibition of DNA adduct formation, mutagenesis, free-radical formation,
and tumor growth resulting in garlic’s anti-proliferative effect [14–16].

The OSC, DATS, is produced once the garlic bulb is crushed, ground, or cut, which
induces the release of alliinase, an enzyme that converts alliin to allicin [1]. DATS makes up
approximately 14.6% of the several polysulfides that allicin is converted to and is the most
abundant OSC found in fresh garlic oil, with a quantity of roughly 1000 µg per gram of
garlic bulb, representing up to 35–60% of garlic oil [1–4]. DATS is known to have anticancer
properties against tumor growth through various mechanisms such as the inhibition of
cancer cell proliferation, the inhibition of tumor cell invasion, metastasis, angiogenesis
under redox control, the induction of apoptosis, cell cycle arrest, and the inhibition of
reactive oxygen species (ROS) in many cancers. Thus, the many anticancer properties of
garlic reinforce DATS as a potential chemotherapeutic and chemopreventive agent.

Benzo[a]pyrene (B[a]P) is a ubiquitous, environmental polycyclic aromatic hydrocar-
bon (PAH) produced naturally through the incomplete combustion of organic material. This
compound is responsible for altered epigenetic changes, genotoxic effects in humans and an-
imals, and disordered metabolic changes [5,6]. Several studies have demonstrated that B[a]P
exposure may play a role in breast cancer progression, leading to tumor growth and inciting
a metastatic cascade [7]. Carcinogenic compounds, such as B[a]P, cause DNA strand breaks,
DNA adducts, deletions, mutations, and ROS formation, resulting in genomic instability
and abnormalities that may induce carcinogenesis and the development of malignancies.
This explains the range of genomic aberrations and diversity in breast cancer [8].

Our lab and others have previously reported that DATS can suppress carcinogenic
activity in normal breast and breast cancer cells by inducing cell cycle arrest and apoptosis
while also inhibiting ROS formation, DNA damage, and cell proliferation [9,11]. However,
DATS’s inhibition of B[a]P-induced neoplastic transformation in premalignant breast cells
has not been explored. We hypothesize that DATS will inhibit B[a]P-induced cancer
initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated
the ability of DATS to attenuate B[a]P-induced oxidative stress and damage through
changes in proliferation, clonogenicity, the formation of reactive oxygen species (ROS), 8-
hydroxy-2-deoxyguanosine (8-OHdG) levels, and the expression of metabolic, antioxidant,
DNA damage, and DNA repair proteins in these premalignant breast epithelial cells. This
research uncovers a new and innovative approach to evaluating DATS’s attenuation of
chemically B[a]P-induced precancerous transformation in a premalignant human breast
epithelial cell line.

2. Results
2.1. DATS Elicited a Cytotoxic Decrease and B[a]P Increases Cell Growth of MCF-10AT1 Cells

DATS and B[a]P individual effects at various concentrations were investigated in the
MCF-10AT1 cell line after 24, 48, and 72 h. The viability results showed both concentration-
and time-dependent decreases in cell viability following DATS treatment in MCF-10AT1
cells over 72 h (Figure 1). Cells treated with DATS showed a significant effect (p < 0.0001)
between 12.5 and 200 µM DATS when compared with the control. Cell viability significantly
decreased following 24 h exposure to 12.5 µM and above of DATS when compared with the
control. After 24, 48, and 72 h of treatment, the LC50 was 59.08 ± 0.37 µM, 24.06 ± 0.78 µM,
and 7.91 ± 0.21 µM, respectively. Similarly, the viability results were concentration- and
time-dependent following B[a]P treatment in MCF-10AT1 cells (Figure 1). Treatment with
B[a]P concentrations equal to or higher than 0.01 µM significantly increased (p < 0.0001)
cell viability at 24–72 h of exposure relative to the vehicle control. A treatment of 1 µM
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B[a]P showed the most significant increase in cell viability relative to the vehicle control
(Figure 1). The data from cell viability assays were used to establish DATS’s cytotoxicity
and B[a]P concentrations for further studies.
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Figure 1. The Effect of DATS and B[a]P on the Viability of MCF-10AT1 Premalignant Breast Epithelial
Cells. MCF-10AT1 cells were treated with 0–200 µM DATS or 0.01–1 µM B[a]P for 24–72 h. The effect
of DATS had a significant effect between 12.5 and 200 µM. Treatment with 12.5 µM DATS and above
caused a significant decrease in cell viability at all time points of exposure compared with the control.
Treatment with 0.01 µM B[a]P and above caused a significant increase in cell viability compared with
the control. The graph displays all experiments conducted in n = 8 and averaged for three biological
replicates. The average values ± SEM indicate the results to determine significant differences using
one-way analysis of variance (ANOVA) followed by Dunnett’s Multiple Comparison Test between
the vehicle control and various treatment groups. (ns indicates no significance and **** p < 0.0001).
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2.2. DATS Inhibits B[a]P-Induced Cell Proliferation of MCF-10AT1 Cells Based on BrdU
Proliferation Assay

The BrdU proliferation assay was used to further assess the effect of DATS and/or
B[a]P on cell proliferation over a 12–24 h period. The effects of B[a]P and various CoTx
were concentration- and -time-dependent. Exposure to 1 µM B[a]P caused a significant
increase in cell proliferation at 12 (p < 0.0001) and 24 (p < 0.0001) h when compared with the
vehicle control (Figure 2). There was a significant decrease (p < 0.0001) in cell proliferation
following DATS (40, 60, and 80 µM) treatments when compared with both the vehicle
control and B[a]P alone at 12 and 24 h. Additionally, the CoTx (40–80 µM) also significantly
(p < 0.0001) decreased cell proliferation when compared with the 1 µM B[a]P and vehicle
control, respectively.
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Figure 2. Cell Proliferation Percentage of MCF-10AT1 Cells Treated with B[a]P and DATS. MCF-10AT1
cells were treated with 1 µM B[a]P only, 40–80 µM DATS only, or 1 µM B[a]P + 40–80 µM CoTx for 12
and 24 h. The graph displays all experiments conducted in n = 8 and averaged for three biological
replicates. The average values ± SEM display the results to determine significant differences using
one-way analysis of variance (ANOVA) followed by Dunnett’s Multiple Comparison Test between the
vehicle control and various treatment groups. (ns indicates no significance, **** p < 0.0001 compared
with the control, and #### p < 0.0001 when compared with B[a]P treatment).

2.3. DATS Inhibits B[a]P-Induced Colony Formation of MCF-10AT1 Cells

The clonogenic formation assay was used to examine the ability of a single adherent
cell treated with B[a]P and/or DATS to survive over time and undergo clonogenic expan-
sion (Figure 3A–F). MCF-10AT1 cells were treated with B[a]P (0.1 and 1 µM), DATS (40,
60, and 80 µM), or CoTx (40 µM DATS + 1 µM B[a]P). The control showed a significant
formation of colonies. Treatment with B[a]P significantly increased (p < 0.0001) the num-
ber of colonies by 35% and 49% for 0.1 µM and 1 µM when compared with the control
(Figure 3A,B). Treatments of 40 (p < 0.0001), 60 (p < 0.0001), and 80 (p < 0.0001) µM DATS
significantly decreased colony formation in a concentration-dependent manner at 52%, 63%,
and 75%, respectively, when compared with the vehicle control (Figure 3C,D). Additionally,
we assessed the clonogenic formation of MCF-10AT1 cells treated with 1 µM B[a]P, 40 µM
DATS, or CoTx. Treatment with 1 µM B[a]P significantly increased (p < 0.0001) the number
of colony formations, reaching a maximum of approximately 45% above control levels.
Treatment with 40 µM DATS alone significantly decreased (p < 0.0001) the number of
colony formations by 37% compared with the vehicle control and also significantly reduced
(p < 0.0001) colony formation by 83% when compared with the 1 µM B[a]P. Treatment with
40 µM CoTx significantly reduced (p < 0.0001) the number of colony formations by 60%
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when compared with the control and 3-fold lower when compared with the 1 µM B[a]P
(Figure 3E,F). Furthermore, 40 µM CoTx decreased colony formation compared with 1 µM
B[a]P and vehicle control alone.
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MCF-10AT1 cells. (E), Effects of 1 µM B[a]P alone, 40 µM DATS alone, and 40 µM CoTx on colony
formation on MCF-10AT1 cells. Cells were placed in phenol red-free DMEM supplement with 5%
dextran-coated charcoal-treated HS for 24 h before plating. Then 250 cells/well were plated in
six-well plates. Seven days later, cells were treated with 0.1% DMSO vehicle control. (B,D,F) and
graphs display all experiments conducted in n = 3 and averaged for three biological replicates. The
average values ± SEM display the results to determine significant differences using one-way analysis
of variance (ANOVA) followed by Dunnett’s Multiple Comparison Test between the vehicle control
and various treatment groups. (ns indicates no significance, **** p < 0.0001 compared with the control,
and #### p < 0.0001 when compared with B[a]P treatment).

2.4. Reduction of ROS in B[a]P-Treated MCF-10AT1 Cells by DATS

To measure oxidative stress, MCF-10AT1 cells treated with DATS and B[a]P for 12 and
24 h periods were measured for levels of ROS (Figure 4). B[a]P caused a significant increase
in ROS production, which peaked at 24 h. All treatments with DATS and CoTx (40–80 µM)
concentrations exhibited a concentration- and time-dependent response for 12 and 24 h
with an overall decrease in ROS production. MCF-10AT1 cells treated after 12 h with 40 µM
DATS (p < 0.05) and 60–80 µM DATS (p < 0.01) indicated a significant decrease in ROS
production by 33%, 35%, and 39%, respectively, compared with the control. Similarly,
MCF-10AT1 cells treated after 24 h with 40–80 µM DATS (p < 0.01) also decreased ROS
production by 39%, 52%, and 67% compared with the vehicle control. The 12 h CoTx also
significantly decreased (p < 0.01) B[a]P-induced ROS by 44%, 74%, and 90% at 40, 60, and
80 µM, respectively. For 24 h, CoTx significantly decreased (p < 0.01) B[a]P-induced ROS
by 83%, 95%, and 98%, respectively, at 40, 60, and 80 µM. When compared with the 1 µM
B[a]P, all the treatments also indicated a significant decrease (p < 0.01) in ROS production.
As detected by the ROS assay, these results indicate that all the treatments with DATS and
CoTx effectively inhibited ROS formation.
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Figure 4. DATS Inhibition of B[a]P-induced ROS in MCF-10AT1 Cells. The cells analyzed for ROS
production were treated with B[a]P, DATS, or CoTx for 12 and 24 h and 0.1% hydrogen peroxide was
used as a positive control. The graphs display all experiments conducted in n = 3 and averaged for
three biological replicates. The average values ± SEM display the results to determine significant
differences between the vehicle control and various treatment groups. (ns indicates no significance,
* p < 0.05, ** p < 0.01 compared with the control, and ## p < 0.01 when compared with B[a]P treatment).
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2.5. Inhibition of B[a]P-Induced Oxidative (8-OHdG) DNA Damage by DATS in
MCF-10AT1 Cells

The Epiquik 8-OHdG DNA Damage Quantification Direct Kit was used to measure
oxidative DNA damage levels. B[a]P caused a significant increase (p < 0.0001) in 8-OHdG
when compared with the vehicle, thereby considerably increasing oxidative DNA damage.
All treatments with DATS and CoTx (40–80 µM) concentrations exhibited a concentration-
dependent response with an overall significant decrease (40 µM CoTx p < 0.0001, 60 µM
CoTx p < 0.0001, and 80 µM CoTx p < 0.0001) of 8-OHdG when compared with the control;
all CoTxs also significantly decreased (p < 0.0001) 8-OHdG, indicating a reduction in
oxidative DNA damage and oxidative stress when compared with the 1 µM B[a]P (Figure 5).
While the 8-OHdG levels of CoTx were significantly decreased, the 8-OHdG levels increased
with increasing concentrations of DATS in the CoTx.
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Figure 5. DNA Damage Detection of MCF-10AT1 Cells Treated with DATS and/or B[a]P. MCF-
10AT1 cells were treated with 1 µM B[a]P only or 1 µM B[a]P + 40–80 µM CoTx for 24 h. The graph
displays 8-OHdG (picogram (pg) levels) as an indicator of oxidative DNA damage. The graph
displays all experiments conducted in n = 8 and averaged for three biological replicates. The average
values ± SEM display the results to determine significant differences using a t-test between the
vehicle control and various treatment groups. (ns indicates no significance, **** p < 0.0001 compared
with the control, and #### p < 0.0001 when compared with B[a]P treatment).

2.6. DATS Attenuates B[a]P-Induced Hypoxic Conditions under Acute Response in Premalignant
MCF-10AT1 Cells

Tumor growth is associated with cellular proliferation and the subsequent oxygen
deprivation of the microenvironment [17,18]. Hypoxic proteins are key regulators for cells
to adapt, overcome low oxygen, and maintain oxygen homeostasis. The Aryl hydrocarbon
Receptor (AhR) is a ligand-activated transcription factor that influences tumorigenesis by
mediating carcinogenic toxicity through direct binding to environmental contaminants
such as B[a]P. The hypoxia-inducible factor-1beta (HIF-1β)/aryl hydrocarbon receptor
translocator (ARNT) is a transcription factor that controls adaptive responses from oxidative
stress as an indicator of hypoxic/acute/environmental stress response. Additionally, B[a]P
induces the cytochrome P450 enzyme, CYP1A1, a major contributor to PAH metabolism,
inducing AhR binding to increase ROS generation and DNA adduct formation resulting in
oxidative stress.

AhR expression was evaluated for changes in protein expression following 24 h
exposure to 1 µM B[a]P, 40 µM DATS, and 40 µM CoTx. GAPDH loading control was used
to normalize the protein expression of all the treatments. All the treatments were compared
with a control and the 1 µM B[a]P treatment (Figure 6A,B). In the MCF-10AT1 cells, AhR
expression was significantly increased when exposed to 1 µM B[a]P (p < 0.0001) or 40 µM
DATS (p < 0.0001) when compared with the control, but the effect of AhR expression on
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40 µM DATS-treated cells was significantly decreased (p < 0.001) when compared with 1 µM
B[a]P. The 40 µM CoTx significantly reduced (p < 0.0001) AhR expression when compared
with the control, and significantly decreased (p < 0.0001) AhR expression when compared
with the 1 µM B[a]P. Thus, the reduction in AhR expression by 40 µM CoTx was much
more prominent in all the treatments compared with B[a]P and the control. The presence of
AhR expression was validated in all treatments through Western blot analysis.
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Figure 6. AhR, HIF-1β, and CYP1A1 Expression in Premalignant (MCF-10AT1) Breast Epithelial Cells.
AhR, HIF-1β, and CYP1A1 protein expression were normalized and measured using densitometry
(A–F). The immunoblots represented the protein expression after 24 h-post treatment for AhR, HIF-1β,
and CYP1A1. The graph displays all experiments conducted in n = 3 and averaged for three biological
replicates. The average values ± SEM display the results to determine significant differences using
one-way analysis of variance (ANOVA) followed by Dunnett’s Multiple Comparison Test between the
vehicle control and various treatment groups. (ns indicates no significance, *** p < 0.001, **** p < 0.0001
compared with the control and ### p < 0.001, #### p < 0.0001 when compared with B[a]P treatment).
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HIF-1β/ARNT is induced by B[a]P to cause upregulation in the hypoxic response. HIF-
1β expression was evaluated for changes in protein expression following treatment with the
control, the 0.1% DMSO vehicle control, 1 µM B[a]P, 40 µM DATS, and 40 µM CoTx in both
non-cancerous epithelial MCF-10A, and premalignant MCF-10AT1 cells. All treatments
were compared with the vehicle control and the 1 µM B[a]P treatment (Figure 6C,D). In
MCF-10AT1 cells, 1 µM B[a]P (p < 0.0001) and 40 µM DATS alone (p < 0.001) increased
HIF-1β expression while CoTx significantly decreased (p < 0.0001) HIF-1β expression when
compared with the control. The 40 µM DATS alone significantly increased (p < 0.001) HIF-1β
expression when compared with the B[a]P. Exposure to 40 µM CoTx significantly decreased
(p < 0.0001) HIF-1β expression when compared with 1 µM B[a]P alone, respectively.

The cytochrome P450 1A1 (CYP1A1) expression is present in MCF-10AT1 cells [19].
CYP1A1 expression was evaluated for changes in protein expression with 1 µM B[a]P,
40 µM DATS, and 40 µM CoTx. Vinculin loading control was used to normalize the protein
expression of all the treatments. All treatments were compared with the control and
the 1 µM B[a]P treatment (Figure 6E,F). In MCF-10AT1 cells, 1 µM B[a]P, 40 µM DATS,
and 40 µM CoTx significantly increased (p < 0.0001) CYP1A1 expression when compared
with the control. In addition, when compared with B[a]P alone, CYP1A1 expression
was significantly decreased (p < 0.0001) in the MCF-10AT1 cells exposed to DATS alone.
The CoTx significantly attenuated (p < 0.0001) B[a]P-induced CYP1A1 expression when
compared with B[a]P alone. The results of these experiments indicate that CYP1A1 protein
expression appears to be more pronounced following B[a]P treatment in the premalignant
MCF-10AT1 cells.

2.7. DATS Inhibits B[a]P-Induced DNA Damage and Induces DNA Repair under Acute Response
in Premalignant MCF-10AT1 Cells

The DNA damage response pathway, base excision repair (BER), utilizes 8-oxoguanine
DNA glycosylase (OGG1) to detect and remove single base DNA damage and DNA
polymerase beta (POLβ) to resynthesize the single-strand break. BER repairs DNA damage
caused by oxidation or alkylating adducts to maintain genetic stability and prevent DNA
damage tolerance dysregulation and cancer progression [20,21].

B[a]P induces oxidative DNA damage through the induction of ROS generation. This
oxidative damage can be repaired by inducing the OGG1 repair enzyme. OGG1 was
evaluated for changes in protein expression following treatment with 1 µM B[a]P, 40 µM
DATS, and 40 µM CoTx in MCF-10AT1 cells. GAPDH loading control was used to normalize
the protein expression of all the treatments. All the treatments were compared with the
control and the 1 µM B[a]P treatment (Figure 7A,B). Exposure to 40 µM CoTx significantly
decreased OGG1 protein expression when compared with the control (p < 0.001) and 1 µM
B[a]P alone (p < 0.0001) (Figure 7A,B).

The POLβ enzyme can repair ROS-induced oxidative DNA damage. POLβ expression
was evaluated for changes in protein expression following treatment with 1 µM B[a]P,
40 µM DATS, and 40 µM CoTx in the MCF-10AT1 cell line. GAPDH loading control was
used to normalize the protein expression of all the treatments. All the treatments were
compared with the control and the 1 µM B[a]P treatment (Figure 7C,D). In MCF-10AT1
cells, exposure to 40 µM CoTx significantly decreased (p < 0.001) POLβ protein expression
when compared with the control and significantly reduced (p < 0.0001) POLβ expression
when compared with 1 µM B[a]P alone, respectively (Figure 7C,D). Exposure to 1 µM B[a]P
and 40 µM DATS induced no significant changes compared with the control.
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and POLβ protein expression was normalized and measured using densitometry (A–D). The protein
expression of OGG1 and POLβ was measured using ProteinSimple SW Compass 6.2.0 software. The
immunoblots represented the protein expression after 24 h-post treatment for OGG1 and POLβ. The
graph displays all experiments conducted in n = 3 and averaged for three biological replicates. The
average values ± SEM display the results to determine significant differences using one-way analysis
of variance (ANOVA) followed by Dunnett’s Multiple Comparison Test between the vehicle control
and various treatment groups. (ns indicates no significance, *** p < 0.001 compared with the control
and ### p < 0.001, #### p < 0.0001 when compared with B[a]P treatment).

3. Discussion

B[a]P is a first-class ubiquitous environmental pollutant and a reproductive and devel-
opmental toxicant formed primarily by the incomplete combustion of carbon-containing
fuels [22,23]. Epidemiological evidence has confirmed that increased rates of breast cancer
are associated with exposure to high levels of B[a]P [23]. In vivo and in vitro studies have
shown that the mechanism of B[a]P-induced breast cancer may involve DNA damage,
DNA mismatch repair, DNA adduct formation, and ROS formation, exhibiting its effects of
tumor initiation and malignant transformation in human mammary gland tissue [22,23].

Nutraceuticals, such as the bioactive compounds found in garlic (Allium sativum),
have potential health-associated benefits, including reducing high blood pressure, im-
proving cholesterol levels, and amplifying the immune system [24]. OSCs such as al-
licin, the primary bioactive compound in garlic, play a significant role in garlic’s health-
associated benefits due to its many protective medicinal properties, including anticancer,
anti-inflammatory, antimicrobial, cardioprotective, antidiabetic, and antioxidant effects [24].
However, the overall anticancer properties of OSCs have not been fully elucidated. The
proposed mechanism of the anticancer potential of garlic and its bioactive OSC derivatives
lies in modulating various signaling pathways, leading to its chemopreventive, antiprolif-
erative, anti-inflammatory, and antioxidant effects [24]. Our lab and others have previously
reported that DATS affects chemical-induced carcinogenesis by suppressing ROS forma-
tion and the induction of cell cycle arrest in normal epithelial and cancer cells [9,12,25,26].
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However, there are no in vitro studies examining the impact of DATS on breast cancer
progression as epithelial cells transition through a multiyear, multistep, multiscale, and
multipath process to a cancerous phenotype. To address this deficit in the literature, we
used the Ha-ras-transfected premalignant MCF-10AT1 cell line as a model to evaluate
neoplastic transformation. This cell line is known to produce lesions, thus generating carci-
nomas that resemble atypical hyperplasia and carcinoma in situ in women [27,28]. While it
has been established in a previous study [19] that long-term exposure to B[a]P enhances the
cancerous phenotype in this transformed early-stage progression model, no documented
data have examined garlic’s impact on chemical-induced neoplastic transformation using
this cell line. To gain more insight into the effects of the garlic OSC DATS on B[a]P-induced
cancer as it progresses from an epithelial to a cancerous phenotype, our lab used this MCF-
10AT1 cell line. Thus, the focus of this study was to evaluate how B[a]P-induced activities
can be attenuated by the OSC, DATS, through alterations in cell proliferation, clonogenic
formation, the formation of damaging ROS that can lead to DNA damage, and the interplay
between various proteins expressed (AhR, ARNT/HIF-1β, CYP1A1, OGG1, and DNA
POLβ) as indicators of DNA damage which may lead to the neoplastic transformation of
B[a]P-treated premalignant breast epithelial MCF-10AT1 cells.

Previous studies in our lab and others have shown that DATS effectively inhibits
carcinogen-induced cellular damage in normal epithelial and cancer cells [9,29,30]. How-
ever, there is a paucity of information concerning the impact of DATS on cell viability,
proliferation, and clonogenic formation in carcinogen-induced premalignant breast cells.
The DATS and B[a]P concentrations used in the experiments of this study were chosen
based on established exposures/physiological concentrations and previous studies per-
formed in our lab [9,11,31,32]. DATS is the most potent organosulfide and studies published
by other researchers [31,33,34] used lower concentrations of 20 µM and 40 µM of DATS
since 40 µM is comparable to those used in animal studies. Following our review of previ-
ous studies and our data, we decided to use the lower concentration of 40 µM since the
results were very similar to 60 µM DATS. Additionally, a review of the cell viability studies
using normal breast epithelial cells showed that the higher the concentration of DATS, the
more cell death occurred in the cells [9]. Our objective was to identify a concentration of
DATS to be used as a chemopreventive agent that will cause minimal toxicity in normal
epithelial cells. The WST-1 assay was used to assess the cell viability of MCF-10AT1 cells
following treatment with DATS or B[a]P. In this study, B[a]P significantly increased cell
viability between 0.01 and 1 µM, with a more pronounced effect at 1 µM. Evidence has
shown that DATS can suppress viability in various malignancies (breast, prostate, colon,
lung, stomach, cervix, and bone) by inducing apoptosis and cell cycle arrest, thus exert-
ing its antitumor effect [14,15,35–37]. In these premalignant cells, we found that DATS
significantly decreased cell viability between 12.5 and 200 µM in a concentration- and
exposure-time-dependent manner.

While previous studies have shown B[a]P-induced cell proliferation in breast epithelial
and cancer cells [38–40], there are no documented proliferation studies assessing varying
concentrations of B[a]P in these premalignant cells. In vitro and in vivo studies have
shown that DATS attenuates chemically induced proliferation in different cancers [30,31,41].
BrdU is a pyrimidine analog incorporated into a newly synthesized DNA [42]. A rapidly
proliferating human cell has a total of 24 h to divide within the cell cycle; however, the
S phase does not occur until about 11 h, typically depending on the type of cell [43].
Furthermore, a study by Jaio et al. [44] found that increased cyclin D1 levels, indicative
of G1-S transition, peaked at 12 h in B[a]P-treated human embryo lung fibroblasts. Since
BrdU is incorporated into DNA based on how much is replicated during the S phase of the
cell cycle, we decided to assess both 12 and 24 h time points. The BrdU assay was used to
determine the impact of the combined treatments of DATS/B[a]P on the proliferation of the
MCF-10AT1 cells. These results supported our hypothesis that DATS CoTx(s) effectively
inhibited B[a]P-induced cell proliferation at 12 h (p < 0.0001) and 24 h (p < 0.0001), with a
more pronounced effect at 24 h.
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We also assessed clonogenic expansion to measure cell growth and the survival of
premalignant cells via the colony formation assay. DATS alone and CoTx were also found
to significantly decrease (p < 0.0001) clonogenic formation after seven days of treatments,
whereas B[a]P significantly increased (p < 0.0001) clonogenic formation during the same
time point. While there are no studies showing the effect of DATS on clonogenic expansion,
others have previously reported the impact of B[a]P in MCF-10AT1 cells [19]. A study
performed by Stan et al. [26] reported the impact of DATS on clonogenic formation in ductal
carcinoma in situ and minimally invasive breast cancer cells. Cancer can be induced by the
gain of function mutations to oncogenes or growth factor signaling pathways that may lead
to uncontrolled cell growth or proliferation. A recent case-control study by Kjaer et al. [45]
revealed that abnormal pre-treatment serum levels of Epidermal growth factor (EGFR) and
its ligands were found in women with early-stage breast cancer. Several studies have shown
that B[a]P and its metabolites can promote cell proliferation and tumorigenesis through
increases in MAPK and PI3K/AKT/ERK pathways in normal and neoplastic cells [44,45].
Mello et al. [46] revealed that the transfection of the Ha-Ras oncogene in B[a]P-transformed
MCF-10F floating breast epithelial cells induces a more aggressive tumorigenic phenotype.
We used premalignant MCF-10AT1 cells, transfected with the Ha-Ras oncogene, in our
cell viability, proliferation, and colony formation studies. In 2009, research performed
by Malki et al. [47]demonstrated that the garlic organosulfide, DATS, induced apoptosis
in MCF-7 cells with a reduced effect in MCF-12A normal epithelial cells. DATS affects
cell viability, proliferation, and colony formation, most likely due to the cancer initiation
induced by the Ha-Ras oncogene transfected in MCF-10AT1 cells. This effect is enhanced
when these transfected cells are treated with B[a]P, most likely due to the impact of DATS
on the B[a] P-induced mutations generated during the chemical-induced transformation
of these cells. DATS’s inhibitory effects on in vivo and in vitro cancer models are much
more pronounced than in in vitro chemical-induced epithelial cell models [41,48–52]. When
DATS was used in this study, it was an effective attenuator of B[a]P-induced proliferation
and clonogenic formation in these premalignant cells. DATS’s significant inhibition of cell
viability, cell proliferation, and clonogenic expansion in this study provides new insight
into it as an effective inhibitor in preventing premalignant cells from further undergoing
B[a]P-induced neoplastic transformation.

B[a]P, a prototype of polycyclic aromatic hydrocarbons (PAHs), is formed as a by-
product from various thermal processes, such as the burning of fossil fuels, cigarettes,
wood, and organic materials [53,54]. The effects of B[a]P occur through the biotransfor-
mation of cytochrome P450 and microsomal epoxide forming the carcinogenic metabolite
BPDE where ROS are produced as a by-product and DNA adducts are created, leading to
erroneous replication and mutagenesis [54–56]. Since it is highly likely that ROS changes
may precede growth changes, we aimed to capture this phenomenon by assessing an earlier
time point of both 12 and 24 h. In this study, B[a]P significantly increases (p < 0.0001) ROS
generation, which is a possible indicator of oxidative damage. Increased levels of intracellu-
lar ROS may cause DNA damage, leading to mutations and neoplastic transformation from
alteration in replication and transcription [57]. Our most recent findings, showing that
DATS effectively attenuated B[a]P-induced ROS formation, are also supported by previous
studies [12] performed in this lab. Similarly, these studies showed that DATS was effective
in attenuating B[a]P-induced lipid peroxide formation. In this study, DATS attenuated
ROS and effectively reduced carcinogen-induced free radical induction, thus exhibiting a
cytoprotective effect against PAHs in a premalignant cell line.

The aryl hydrocarbon receptor (AhR) pathway mediates toxicity and the tumor-
promoting properties of environmental contaminants [58]. B[a]P is a primary ligand
of AhR that directly binds to the receptor and induces its biological effects associated with
the major stages of tumorigenesis [58,59]. In this study, AhR expression was significantly
increased (p < 0.0001) following 24 h exposure to 1 µM B[a]P in MCF10AT1 cells. These
results were supported by Dononi et al. [19], who recently reported that the mRNA and
protein expression of AhR and G-protein coupled receptor 30 (GPR30), both markers of
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poor prognosis in cancer patients [60,61], were concomitantly expressed following low-
dose chronic exposure to B[a]P in these premalignant cells. Their study correlated these
cells within a triple negative context and found that low-dose, chronic exposure to B[a]P
and/or Bisphenol A (BPA) increased the cancerous properties of the MCF-10AT1 cells.
Further, Stanford et al. [62] found that activation of the AhR led to the development of
breast epithelial cells with molecular and functional characteristics of cancer stem-like
cells. According to Guarnieri et al. [63], higher AhR expression is correlated with a greater
expression of genes encoding inflammatory factors and invasive behavior in cancer cells.
The CoTx significantly decreased (p < 0.0001) the AhR response at the same time point,
thus attenuating the AhR expression in B[a]P-treated premalignant breast epithelial cells.
These results provide new evidence of DATS’s ability to attenuate chemically induced AhR
expression in a premalignant cell model and its chemopreventive potential by inhibiting
neoplastic progression.

The aryl hydrocarbon receptor nuclear translocator (ARNT), also known as hypoxia-
inducible factor-1beta (HIF-1β), plays a crucial role in regulating tumorigenesis [64]. To
become active, AhR must form a heterodimeric complex with ARNT that triggers the
transcriptional activation of several target genes, including aldehyde dehydrogenase family
3, subfamily 1 (ALDH3A1), NAD(P)H dehydrogenase quinone (NQO1), glutathione-S-
transferase alpha 1 (GSTA1), UDP glucuronosyltransferase family 1 member A6 (UGT1A6),
and CYP1A1 and CYP1A2 to form the “AhR gene battery”. In this study, we have demon-
strated that ARNT/HIF-1β expression was significantly increased (p < 0.0001) following
24 h exposure to 1 µM B[a]P in MCF-10AT1 cells. An increased expression of AhR and
ARNT suggests an interaction and formation of an active heterodimeric complex. Several
studies [65–68] have been published concerning the interaction between active AhR and
the inducible transcription factor, NF-kappaB, in inflamed stromal and tumoral cells. These
studies provide further evidence that active AhR plays a role in cancer progression. CoTx
significantly decreased (p < 0.0001) ARNT/HIF-1β response at the same time point in B[a]P-
treated MCF-10AT1 cells. The results presented in this study align with the reduction in
oxidative damage and provide new evidence of DATS’s ability to suppress the expression
of AhR and ARNT/HIF-1β when concurrently combined with B[a]P to inhibit further
neoplastic transformation.

The cytochrome P450 enzyme, CYP1A1, is a significant contributor to the metabolism
of PAHs by inducing AhR through the binding of environmental pollutants, such as
B[a]P, leading to the development of tumorigenesis [69,70]. In the current study, CYP1A1
protein expression was significantly increased (p < 0.0001) following 24 h exposure to
1 µM B[a]P in the MCF-10AT1 cell line. CYP1A1 expression was significantly increased
(p < 0.0001) in MCF-10AT1 cells treated with DATS alone or DATS CoTx when compared
with the control but decreased (p < 0.0001) considerably when compared with the B[a]P.
While DATS CoTx reduced AhR, ARNT/HIF-1β, and CYP1A1 expression when compared
with B[a]P, the increase in CYP1A1 expression when compared with the control is in
alignment with previous studies. Various studies [71,72] show that natural products
and phytochemicals may exert their chemopreventive effects by inducing or inhibiting
CYP1A1 expression. Studies have shown that the increase in CYP1A1 expression induces
ROS formation [73–77]. Thus, the reduction in CYP1A1 expression by DATS in the CoTx
premalignant cells may explain the attenuation of ROS production observed in this study.
The increase in CYP1A1, AhR, and ARNT/HIF-1β expression observed in the MCF-10AT1
cells exposed to DATS alone when compared with the control is unexplained. DATS may
inhibit growth and migration in these premalignant cells in a similar fashion as observed
in a study using a newly identified AhR agonist, Flavipin, in triple-negative breast cancer
cells [78]. The induction of AhR, ARNT, and CYP1A1 by Flavipin decreased cell migration
and invasion in T47D and MDA-MB-231 cells. More studies must be performed to gain
a better understanding of the impact of DATS single exposure on these premalignant
cells. Based on our previous and current findings [79–83], the reduced expression of
AhR, HIF-1β, and CYP1A1 in concert with decreased ROS production and 8-OHdG levels
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after exposure to the DATS CoTx suggests that natural products like OSCs may exert
their chemopreventive effect by competing with PAHs for both AhR and ARNT/HIF-1β
receptors. This inhibits CYP1A1 protein expression, thus attenuating B[a]P-induced toxicity
in premalignant breast epithelial cells.

The DNA repair system plays a significant role in maintaining cell genomic stabil-
ity [84]. Tandem mutations, mCG → TT, may be generated through the promotion of the
double misincorporation of a single lesion during DNA replication by base substitution
errors with adenine instead of cytosine [85]. Previous research in our lab and by others
has shown that B[a]P-induced oxidative DNA damage and ROS formation may lead to
DNA strand breaks in nontumorigenic breast epithelial cells and human breast cancer
cells [12,40,86]. In Nkrumah-Elie et al. [9], the DATS-mediated attenuation of cellular
carcinogenesis was shown in B[a]P-induced normal breast epithelial MCF-10A cells by
mechanisms including lipid peroxide production, DNA strand break formation, and cell
cycle arrest. Outside of the research performed in our lab, few studies have evaluated OSCs,
specifically DATS, and their role in inhibiting DNA strand breaks through the activation of
DNA repair. In this study, 1 µM B[a]P significantly increased (p < 0.0001) 8-OHdG, an indi-
cator of induced oxidative DNA damage and stress, in a premalignant breast epithelial cell
line. Our findings indicate that varying concentrations of DATS ranging from 40 to 80 µM
with 1 µM B[a]P co-treated significantly attenuated (p < 0.0001) B[a]P-induced increases
in 8-OHdG levels in premalignant breast epithelial cells, thus indicating a suppression of
oxidative DNA damage and stress. This study investigated the most effective concentration,
40 µM CoTx, in inhibiting B[a]P-induced DNA damage. The data presented in this study
of DATS-induced reduction in oxidative stress correlates with the decrease in 8-OHdG
levels. Therefore, DATS can alleviate intracellular ROS and DNA damage, thus exerting a
chemopreventive effect and preventing neoplastic transformation.

BER is a major genome maintenance pathway that uses OGG1 to recognize and remove
8-oxo-7,8-dihydroguanine (8-oxoG) from oxidative DNA damage to prevent genomic
instability [87]. DNA polymerase β (POLβ) is recruited to fill the single gap caused by
the DNA glycosylase-initiated removal of 8-oxo-G with guanine to repair lesion damage
from ROS and alkylating agents [88,89]. These experiments demonstrated that B[a]P had
no effect while the 40 µM DATS CoTx significantly decreased (p < 0.001) OGG1 and POLβ
protein expression in premalignant MCF-10AT1 cells. The inhibition of OGG1 and POLβ
with 40 µM CoTx suggests that the observed decrease in 8-OHdG levels and oxidative
DNA damage may occur through another mechanism in these transforming premalignant
breast epithelial cells. The results from this research suggest that DATS CoTx may prevent
further oxidative damage while inhibiting OGG1 and POLβ DNA repair mechanisms, thus
allowing premalignant cells to undergo cell death and prevent B[a]P-induced cancerous
transformation. Further studies must be performed to gain a better understanding of the
underlying mechanisms of DATS on chemically induced DNA damage and subsequent
cancer progression in these cells.

4. Materials and Methods
4.1. Cell Line, Chemicals, and Reagents

MCF-10AT1 cells were acquired from the Animal Model and Therapeutic Core (AMTEC)
Barbara Ann Karmanos Cancer Institute, Wayne State University (Detroit, MI, USA). Dul-
becco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) phenol red-free
media, Hanks Balanced Salt Solution (HBSS), Phosphate-Buffered Saline (PBS), 10X Trypsin
in HBSS, hydrocortisone, HEPES, calcium chloride, epidermal growth factor, horse serum,
human insulin (Novolin R), and penicillin/streptomycin were purchased from Thermo
Fisher Scientific (Wilmington, DE, USA). DATS (99.2% purity, 200 mM stock) was obtained
from LKT Laboratories (St. Paul, MN, USA) and dissolved in dimethyl sulfoxide (DMSO)
(200 mM stock). B[a]P (10 mM stock), DMSO, The CELLPRO-RO Roche Cell Viability and
Proliferation Reagent WST-1, and all other chemicals were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and stored at −20 ◦C. The Bromodeoxyuridine (BrdU) Cell Pro-
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liferation Assay kit was acquired from Cell Signaling Technology (Danvers, MA, USA).
The Reactive Oxygen Species (ROS) Detection Assay Kit was purchased from BioVision
Incorporated (Milpitas, CA, USA). The EpiQuik-8-OHdG DNA Damage Quantification
Direct Kit (Colorimetric) was purchased from EpiGentek (Farmingdale, NY, USA). The
Qiagen Genomic-tip 20/G, Genomic DNA buffer set, and proteinase k were obtained from
Qiagen (Germantown, MD, USA). The primary antibodies used were anti-DNA polymerase
β (ab26343) and anti-Ogg1 (ab62826) purchased from Abcam (Boston, MA, USA), and the
loading control GAPDH mAb (#D16H11) was purchased from Cell Signaling (Danvers,
MA, USA). The anti-Erk1 primary antibody, HeLa lysate controls, Anti-Rabbit Detection
Module, 8 × 25 capillary cartridges, and 12–230 Separation Module were purchased from
ProteinSimple (San Jose, CA, USA).

4.2. Cell Model and Culture

MCF-10AT1, previously known as MCF10AneoT cells, are derived from the MCF-10
human breast epithelial model system. MCF-10AT1 cells are transfected with T24 Ha-ras,
derived from xenograft-passed MCF10AneoT cells in immune-deficient mice and are shown
to produce lesions resembling atypical hyperplasia and carcinoma in situ in women [27,28].
These lesions generate carcinomas and can progress into neoplastic transformation [28].
This model highlights neoplastic transformation in a transformed ras-transfected premalig-
nant cell line.

MCF-10AT1 cells were cultured in phenol red-free DMEM/F12 media containing
calcium chloride (1.05 mM), epidermal growth factor (20 ng/mL), horse serum (5%) 1%
penicillin (100 U/mL)/streptomycin (0.1 mg/mL), human insulin (10 µg/mL), HEPES
(1M), and hydrocortisone (0.5 µg/mL). Cells were housed in a humidified incubator at
37 ◦C, 5% CO2, and allowed to grow to 75–90% confluency. The media were replaced every
2–3 days, and the cells were sub-cultured every 5 days.

4.3. Cell Treatments

MCF-10AT1 cells were cultured and divided into the following distinct treatment
groups: (1) 40, 60, or 80 µM of DATS, (2) 1 µM of B[a]P, or (3) B[a]P and DATS co-treatments
(CoTx), consisting of 40, 60, or 80 µM of DATS and 1 µM B[a]P, concurrently treated.
The cell viability studies were conducted utilizing cells treated with or without DATS
(12.5, 25, 50, 75, 100, 150, 180, and 200 µM) and with or without B[a]P (0.01, 0.1, 0.25,
0.5, and 1) for 24, 48, and 72 h. The Lethal Concentration 50 (LC50) was determined by
logistic regression analysis using GraphPad Prism 9.0 software (San Diego, CA, USA). The
clonogenic formation studies were completed with cells treated with (0.01 and 1 µM) B[a]P,
(40, 60, and 80 µM DATS) or CoTx with (1 µM) B[a]P and (40, 60, or 80 µM) DATS for
7 days. The cells were prepared under low light conditions in media for all experiments
and treatments, employing 0.1% DMSO as the vehicle control. Once treated, the cells were
placed in a humidified incubator and cultured for 12 or 24 h at 37 ◦C, 5% CO2. After
undergoing treatment, the adherent cells were subjected to trypsinization, collected, and
centrifuged at 1200 rpm for 5 min. Subsequently, the cell pellets were reconstituted by
resuspension in PBS devoid of Mg2+ or Ca2+.

4.4. Determination of Cell Viability

MCF-10AT1 cells (2 × 104/well) were plated in serum-free media (100 µL/well) in
84 wells of a 96-well plate. The plate was left overnight in a humidified incubator at 37 ◦C
with 5% CO2 for adherence. The media were removed, and the wells were subjected to
triplicate treatment with 100 µL of the previously described treatment media (as mentioned
above) at n = 8 replicates. After 24–72 h of incubation, the CELLPRO-RO Roche Cell
Viability and Proliferation Reagent, water-soluble tetrazolium salt (WST-1), was employed
to assess cell viability according to the manufacturer’s protocol.
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4.5. Bromodeoxyuridine (BrdU) Cell Proliferation (Chemiluminescent) Assay

Cell proliferation was assessed using the Cell Signaling Technology BrdU Cell Pro-
liferation Assay Kit (Danvers, MA, USA), adhering to the manufacturer’s protocol and
established methodologies from previous studies [12]. The MCF-10AT1 cells were seeded
at a 5 × 104/well density into 84 wells (100 µL/well) of a 96-well plate and subjected
to treatments outlined above for 12 and 24 h in triplicate experiments at n = 8 replicates.
Post-treatment, the cells were placed in a humidified incubator at 37 ◦C, 5% CO2 for 24 h,
then underwent fixation, primary and secondary antibody labeling, and luminal enhancer
solution. Luminescence measurements at 450 nm were determined using the Bio Tek
Synergy H1 Microplate Reader (Bio-Tek Instruments, Inc., Winooski, VT, USA).

4.6. Clonogenic Formation Assay

Cells were cultured in 5% dextran-coated charcoal-treated HS-DMEM/F12 media with
the above-mentioned supplements. They were then seeded (2.5 × 102/well) and allowed
to incubate for 7 days at 37 ◦C with 5% CO2 in a six-well plate, facilitating adherence and
proliferation. In the subsequent week, the cells underwent treatment with the previously
described supplemented serum-free media in triplicate experiments with n = 3 replicates for
7 more days. Media changes with the respective treatments were administered for 5 days.
The media was aspirated after 2 weeks, and the cells were fixed using a glutaraldehyde
solution for 30 min and allowed to dry overnight. The next day, cells were stained with
crystal violet for 30 min, rewashed, and left to dry overnight. The colonies were counted
on the following day.

4.7. Reactive Oxygen Species (ROS) Detection Assay

MCF-10AT1 cells (1 × 104/well) were seeded in serum-free media into 84 wells
(100 µL/well) of a 96-well plate and allowed to adhere overnight in a humidified incubator
at 37 ◦C, 5% CO2. The reactive oxygen species determination protocol, set by the manufac-
turer’s instructions from BioVision Incorporated, was utilized for the ROS Detection Assay
Kit. Briefly, pre-warmed ROS assay buffer was used to dilute the ROS (1000×) label to a
final stock solution (1:1000). The adherent cells were washed in ROS assay buffer (100 µL),
aspirated, and incubated for 45 min in 100 µL of diluted 1X ROS label solution. Then, the
ROS label solution was aspirated. As described earlier, treatments (100 µL) were applied to
each well in triplicate experiments at n = 8 for 12 and 24 h. Using 0.1% H2O2 as a positive
control, fluorescence measurements at Ex/Em = 495/529 were conducted with the BioTek
Synergy H1 Microplate Reader (Bio-Tek Instruments, Inc., Winooski, VT, USA).

4.8. 8-Hydroxy-2-Deoxyguanosine (8-OHdG) Detection

Operating under the method applied in prior studies [12], 8-OHdG was identified and
measured upon completion of the EpiQuik 8-OHdG DNA Damage Quantification Direct
Kit (Colorimetric).

4.9. Western Blot

The cell pellets were obtained from untreated cells in media alone, 0.1% DMSO vehicle
control, B[a]P (1 µM), DATS (40 µM), and CoTx (1 µM B[a]P combined with 40 µM DATS),
respectively, following a 24 h treatment. A mixture of 0.5% TritonX-100 and a protease
inhibitor cocktail was added to each pellet, and the Pierce BCA Protein Assay kit was
used to determine the protein concentration. Each sample possessed 50 µg of protein,
and the primary and secondary antibodies were used at a dilution of 1:1000. Following
the incubation with the secondary antibody, the protein was identified, and a digital
immunoblot was captured. The primary antibodies assessed included CYP1A1 (ab235185)
obtained from Abcam, the Hypoxia Pathway Antibody Sampler Kit (#15792), AhR mAb
(#83200), and loading control GAPDH mAb (#D16H11) or Vinculin mAb (#13901) purchased
from Cell Signaling.
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4.10. Capillary Electrophoresis (Wes) Western Analysis

The cell pellets were procured from untreated cells in media alone, 0.1% DMSO
vehicle control, B[a]P (1 µM), DATS (40 µM), and CoTx (1 µM B[a]P combined with 40 µM
DATS) following a 24 h treatment. A solution of 0.5% TritonX-100 mixed with a protease
inhibitor cocktail was added to each pellet. Protein concentration was assessed using the
Pierce BCA Protein Assay kit, with each sample comprising 2 mg/mL of protein for Wes
analysis. Primary and secondary antibodies were used at a dilution of 1:125. Samples
were prepared, heated, and loaded into the microplate, and then the Protein Standard
Ladder, primary and secondary antibody, antibody diluent (blocking buffer), Streptavidin-
HRP, wash buffer, and chemiluminescent solution were pipetted into the corresponding
microplate wells. The microplate and capillary were then loaded into the device as directed
by the manufacturer’s instructions (ProteinSimple, San Jose, CA, USA). The protein was
identified upon completion of the capillary reaction and a digital immunoblot was captured.
Thereafter, ProteinSimple SW Compass 6.2.0 software was used for the quantification and
analysis of the digital image of the blots. Normalization of ProteinSimple WES™ data
was accomplished through GAPDH. The primary antibodies examined were anti-Ogg1
(ab62826) and anti-DNA polymerase β (ab26343) purchased from Abcam, along with the
loading control GAPDH mAb (#D16H11) from Cell Signaling.

4.11. Statistical Analysis

All experiments were performed in triplicate (n = 3) with a minimum of three bi-
ological replicates. Analysis of all experimental data was performed using GraphPad
Prism 9.0 software (San Diego, CA, USA). The results, presented as average values ± SEM,
were assessed to identify significant differences employing one-way analysis of variance
(ANOVA) and then Dunnett’s Multiple Comparison Test between the DMSO vehicle (*),
B[a]P (#), and distinct treatment groups.

5. Conclusions

Our results indicate that DATS and CoTx may prevent B[a]P-induced carcinogenesis
by attenuating cell proliferation, clonogenic formation, oxidative stress, DNA damage
(generation of GC: TA transversion mutations), and the expression of proteins’ regulat-
ing metabolism and oxidative stress. Therefore, our findings suggest that garlic and its
OSCs may have prophylactic effects and be an effective chemopreventive agent due to its
anti-proliferative, antioxidant, antitumor, and anticancer abilities. Our findings uncover
novel experimental evidence concerning the role of garlic organosulfide, DATS, in early
transformed premalignant cells. Future studies must be performed to gain more insight
into the role of garlic as a chemopreventive agent against the development of aggressive
breast cancer phenotypes and fully decipher the precise mechanism by which DATS and
OSCs elicit their effects.
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