
Citation: Ryabov, V.V.; Maslov, L.N.;

Vyshlov, E.V.; Mukhomedzyanov, A.V.;

Kilin, M.; Gusakova, S.V.;

Gombozhapova, A.E.; Panteleev, O.O.

Ferroptosis, a Regulated Form of Cell

Death, as a Target for the

Development of Novel Drugs

Preventing Ischemia/Reperfusion of

Cardiac Injury, Cardiomyopathy and

Stress-Induced Cardiac Injury. Int. J.

Mol. Sci. 2024, 25, 897. https://

doi.org/10.3390/ijms25020897

Academic Editor: Massimo Iacoviello

Received: 10 December 2023

Revised: 5 January 2024

Accepted: 9 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Ferroptosis, a Regulated Form of Cell Death, as a Target for the
Development of Novel Drugs Preventing Ischemia/Reperfusion
of Cardiac Injury, Cardiomyopathy and Stress-Induced
Cardiac Injury
Vyacheslav V. Ryabov 1 , Leonid N. Maslov 1,* , Evgeniy V. Vyshlov 1, Alexander V. Mukhomedzyanov 1 ,
Mikhail Kilin 1 , Svetlana V. Gusakova 2, Alexandra E. Gombozhapova 1 and Oleg O. Panteleev 1

1 Laboratory of Experimental Cardiology, Department of Emergency Cardiology, Cardiology Research Institute,
Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia;
rvvt@cardio-tomsk.ru (V.V.R.); evv@cardio-tomsk.ru (E.V.V.); sasha_m91@mail.ru (A.V.M.);
kilin112233@gmail.com (M.K.); gombozhapova@gmail.com (A.E.G.); panteleev.o.o@yandex.ru (O.O.P.)

2 Department of Biophysics and Functional Diagnostics, Siberian State Medical University,
Tomsk 634050, Russia; gusacova@yandex.ru

* Correspondence: maslov@cardio-tomsk.ru

Abstract: The hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI)
is about 6% and has not decreased in recent years. The leading cause of death of these patients is
ischemia/reperfusion (I/R) cardiac injury. It is quite obvious that there is an urgent need to create
new drugs for the treatment of STEMI based on knowledge about the pathogenesis of I/R cardiac
injury, in particular, based on knowledge about the molecular mechanism of ferroptosis. In this study,
it was demonstrated that ferroptosis is involved in the development of I/R cardiac injury, antitumor
drug-induced cardiomyopathy, diabetic cardiomyopathy, septic cardiomyopathy, and inflammation.
There is indirect evidence that ferroptosis participates in stress-induced cardiac injury. The activation
of AMPK, PKC, ERK1/2, PI3K, and Akt prevents myocardial ferroptosis. The inhibition of HO-1
alleviates myocardial ferroptosis. The roles of GSK-3β and NOS in the regulation of ferroptosis
require further study. The stimulation of Nrf2, STAT3 prevents ferroptosis. The activation of TLR4
and NF-κB promotes ferroptosis of cardiomyocytes. MiR-450b-5p and miR-210-3p can increase
the tolerance of cardiomyocytes to hypoxia/reoxygenation through the inhibition of ferroptosis.
Circ_0091761 RNA, miR-214-3p, miR-199a-5p, miR-208a/b, miR-375-3p, miR-26b-5p and miR-15a-5p
can aggravate myocardial ferroptosis.
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1. Introduction

The hospital mortality rate in patients with ST-segment elevation myocardial infarction
(STEMI) is 4.6–7.5% and has not decreased in recent years [1–5]. Mortality is particularly
high among patients with cardiogenic shock and microvascular obstruction [6,7]. It is
quite obvious that there is an urgent need to create novel and more effective drugs for the
treatment of acute myocardial infarction (AMI). The study of the molecular mechanism of
ferroptosis could contribute to the creation of such drugs.

Until 1972, it was generally accepted that the only form of cell death is necrosis.
However, after the discovery of apoptosis by Currie’s group [8], the state of affairs changed,
and researchers got used to the idea that cell death could be regulated. If cell death is
regulated, it can therefore be prevented or, on the contrary, stimulated. In 1972, Vladimirov
and Archakov discovered a form of cell death that was distinguished by lipid peroxidation
and the involvement of Fe2+ [9]. This form of cell death has been considered to play an
important role in the pathogenesis of ischemic and reperfusion cardiac injury [10,11]. It has
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been assumed that lipid peroxidation induces the rupture of the cell membrane and cell
death [10,11]. It has been suggested that antioxidants can prevent lipid peroxidation and
cell death [10].

In 2012, Dixon et al. called this form of cell death “ferroptosis” [12]. They gave
the following definition: “Ferroptosis is an iron-dependent form of nonapoptotic cell
death” [12]. Dixon et al. suggested that ferroptosis is dependent upon intracellular Fe2+,
triggered by erastin and inhibited by ferrostatin-1 [12]. Ferroptosis is a type of cell death
triggered by oxidative stress [12]. Ferroptosis ends with plasma membrane rupture; in this
respect, it is similar to necrosis.

2. The Main Manifestation of Ferroptosis

Ferroptosis ends with cell membrane rupture and intracellular protein release [10–13].
However, intracellular protein release occurs in necrosis, necroptosis, and pyroptosis [14–16].
Lipid peroxidation is accompanied by malondialdehyde (MDA), reactive oxygen species
(ROS), and 4-hydroxynonenal (4-HNE) formation [10,11,17]. In one study, the MDA level
was increased by 30–300% [17–22]. The 4-HNE level was increased by 40% [18]. Glu-
tathione (GSH) was reduced by 70–97% in ferroptosis [18,19,23]. Some protein expression
has also shown to be altered in ferroptosis. In other studies, the expression of acyl-CoA
synthetase long-chain family member 4 (ACSL4) was increased by 130–300% [19,21,23].
Elsewhere, the expression of prostaglandin endoperoxide synthase 2 (PTGS2) was increased
by 200–300% [21,24]. In some studies, the expression of the transferrin receptor (TFR-1)
was reduced by 30% [18] or increased 2-fold [19,25]. The expression of cystine/glutamate
transporter (SLC7A11) (xCT) was reduced by 90% [18]. In other studies, ferritin heavy
chain-1 (FTH1) expression was decreased by 70–170% [19,24]. Elsewhere, the glutathione
peroxidase-4 (GPX4) level was decreased by 40–70% [19,20,22–25]. However, some in-
vestigators could not find alterations in the GPX4 level in ferroptosis [18]. None of the
listed markers are specific for ferroptosis. Therefore, investigators usually evaluate the
four or five marker levels [17,19,21,23–26]. An important indicator of the involvement of
ferroptosis in a pathological process is a decrease in its intensity after the use of deferox-
amine, ferrostatin-1, UAMC-3203, dexrazoxane, and liproxstatin-1 which are ferroptosis
inhibitors [12,27,28].

3. Inhibitors of Ferroptosis

The first articles in which the Fe2+ chelator deferoxamine was considered an inhibitor
of ferroptosis were published 10 years ago [29,30]. However, the first articles which
considered deferoxamine as an inhibitor of lipid peroxidation were published over 50 years
ago [31,32]. In 2012, the first article that demonstrated the ability of ferrostatin-1 to inhibit
ferroptosis was published [12]. In 2014, the first article that demonstrated the ability
of liproxstatin-1 to inhibit ferroptosis was published [33]. The ability of UAMC-3203 to
inhibit ferroptosis was later demonstrated by Devisscher et al. [34]. Ferrostatin-1 stability
in rat plasma (% recovery after 6 h) is 1.1% [34]. UAMC-3203 stability in rat plasma
(% recovery after 6 h) is 100% [34]. Therefore, UAMC-3203 is more effective in a long-term
study than ferrostatin-1. In 2009, it was reported that the Fe2+ chelator dexrazoxane can
mitigate anthracycline cardiotoxicity [35]. The investigators suggested that dexrazoxane
prevents cardiomyocyte death, which is triggered by “ROS and iron”, after the application
of anthracycline. Later, dexrazoxane was considered a pharmacological tool for studying
ferroptosis [36]. It was reported that dexrazoxane can cross cell membranes and reduce
the intracellular free Fe2+ level [28]. At present, deferoxamine, ferrostatin-1, UAMC-3203,
liproxstatin-1, and dexrazoxane are used in the study of ferroptosis.

4. The Role of Kinases in the Regulation of Ferroptosis

It has been demonstrated that the activation of AMP-activated protein kinase (AMPK),
extracellular signal-regulated kinase 1/2 (ERK1/2), phosphoinositide 3-kinases (PI3K),
Akt kinase, protein kinase C (PKC), NO synthase (NOS), heme oxygenase-1 (HO-1),



Int. J. Mol. Sci. 2024, 25, 897 3 of 22

cyclooxygenase-2 (COX-2), and Janus kinase-2 (JAK2) promote an increase in cardiac toler-
ance to ischemia/reperfusion (I/R) [37]. In contrast, the stimulation of c-Jun N-terminal
kinases (JNKs) and glycogen synthase kinase-3β (GSK-3β) contributes to a decrease in
cardiac tolerance to I/R [37]. It could be hypothesized that these enzymes regulate the
ferroptosis of cardiomyocytes.

In one study, mice were subjected to CAO (60 min) and reperfusion (24 h) [38]. Accord-
ing to Gomez et al. (2008), an intravenous administration of the GSK-3β inhibitor SB216763
prior to reperfusion contributed to a decrease in infarct size by about 34% [38]. Ischemic
postconditioning exhibited the same infarct-reducing effect [38]. The investigators argue
that the infarct-reducing effect of postconditioning is a consequence of the phosphorylation
(inactivation) of GSK-3β [38].

AMPK. It was found, in another study, that ferulic acid reduced infarct size in rat with
coronary artery occlusion (CAO, 30 min) and reperfusion (120 min) [39]. Ferulic acid simul-
taneously inhibited ferroptosis in myocardial tissue [39]. Pretreatment with compound C,
an AMPK inhibitor, abolished the inhibition of ferroptosis and the infarct size reduction in
rats [39]. Glycation end-products stimulated ferroptosis in isolated rat cardiomyocytes [40].
Ferrostatin-1 and deferoxamine inhibited ferroptosis. This effect was eliminated by com-
pound C [40]. Consequently, AMPK is involved in the cytoprotective effect of ferroptosis
inhibitors. One study reported that Puerarin, an active ingredient in the traditional Chinese
medicine Pueraria, inhibited lipopolysaccharide (LPS) and induced myocardial ferrop-
tosis in rats [19]. This effect was abolished by compound C [19]. Consequently, AMPK
is involved in inhibition of ferroptosis. Another study found that ischemia/reperfusion
induced ferroptosis in an isolated rat heart [41]. The α2-adrenergic receptor (α2-AR) ago-
nist, dexmedetomidine, suppressed ferroptosis. This effect was abolished by compound
C [41]. According to one study, canagliflozin, a sodium–glucose cotransporter-2 inhibitor,
alleviated palmitic acid-induced ferroptosis of the HL-1 cardiomyocyte cell line [42]. Com-
pound C eliminated this effect of canagliflozin. Another study reported that embryonic rat
heart-derived H9c2 cells were exposed to H2O2 which induced ferroptosis of these cells [43].
Idebenone, an analog of coenzyme Q10 (CoQ10), mitigated ferroptosis. The investigators
obtained evidence that AMPK could be involved in the inhibition of ferroptosis [43]. In
another study, it was found that CAO (30 min) and reperfusion (24 h) induced ferroptosis
in a rat heart [44]. Britanin, a bioactive sesquiterpene lactone isolated from Inula lineariifolia,
reduced infarct size, alleviated ferroptosis, and increased the p-AMPK level in myocardial
tissue [44]. These data demonstrated the involvement of AMPK in inhibition of ferroptosis
(Figure 1).

ERK1/2. In one study, it was reported that hypoxia/reoxygenation (H/R) induced
ferroptosis of H9c2 cells [45]. Dexmedetomidine alleviated ferroptosis, increased cell
viability, and triggered the phosphorylation (activation) of ERK1/2. The inhibition of
ERK1/2 by U0126 reversed the cytoprotective effect of dexmedetomidine and mitigated
the dexmedetomidine-triggered suppression of ferroptosis [45]. Consequently, ERK1/2 is
involved in the inhibition of ferroptosis (Figure 1).

Protein kinase A (PKA). As we have already reported above, H/R induced ferroptosis
of H9c2 cells [45]. Dexmedetomidine partially reversed this effect. The PKA inhibitor
H89 eliminated the inhibition of ferroptosis by dexmedetomidine. SiRNA against CREB
also partially reversed the dexmedetomidine-triggered inhibition of ferroptosis, where
CREB is a cAMP response element-binding protein. The investigators concluded that
dexmedetomidine alleviated H/R injury of H9c2 cells by suppressing ferroptosis through
the activation of the cAMP/PKA/CREB signaling pathway (Figure 1).

PKC. One study found that doxorubicin and erastin, a ferroptosis inducer, resulted in
ferroptosis of H9c2 cells [46]. Pretreatment with the E-prostanoid 1 receptor agonist 17-PT-
PGE2 increased cell viability and inhibited ferroptosis [46]. The PKA and PKC inhibitor
staurosporine (20 nM/L) reversed the 17-PT-PGE2-triggered inhibition of ferroptosis [46].
It should be noted that staurosporine, at a final concentration of 20 nM/L, completely
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blocks PKC and partially inhibits PKA [47,48]. Consequently, it could be argued that the
activation of PKC promotes the inhibition of ferroptosis (Figure 1).
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Akt. In one study, H9c2 cells were subjected to H/R [49]. H9c2 cells were transfected
with a microRNA miR-199a-5p inhibitor to down-regulate miR-199a-5p and an miR-199a-5p
mimic to up-regulate miR-199a-5p prior to H/R. The miR-199a-5p inhibitor increased cell
viability, suppressed ferroptosis, and increased the p-Akt/Akt ratio [49]. The Akt inhibitor
LY294002 abolished the cytoprotective effect of the miR-199a-5p inhibitor and reduced
the p-Akt/Akt ratio [49]. Consequently, the activation of Akt promotes the inhibition of
ferroptosis and an increase in cell viability in H/R. In another study, it was found that
doxorubicin induced a cardiotoxic effect which is accompanied by ferroptosis [22]. LCZ696,
an angiotensin receptor and neprilysin inhibitor, protects the rat heart against doxorubicin
and suppresses ferroptosis. The Akt inhibitor LY294002 alleviates the cardioprotective
and anti-ferroptotic effects of LCZ696. Investigators have suggested that sirtuin-3, a
soluble mitochondrial NAD-dependent deacetylase, is involved in the cardioprotective
effect of LCZ696. It has been shown that LCZ696 protects H9c2 cells against the cytotoxic
effect of doxorubicin and inhibits doxorubicin-induced ferroptosis. Sirtuin-3 knockout
abolishes both protective effects of LCZ696. In addition, these investigators found that
LCZ696 stimulates the expression of superoxide dismutase-2 (SOD2). They concluded that
the cardioprotective effect of LCZ696 is mediated via the activation of the Akt/sirtuin-
3/SOD2 pathway [22]. Thus, the stimulation of Akt alleviates ferroptosis of cardiomyocytes
(Figure 1).

NOS. We have already reported above that the miR-199a-5p inhibitor suppressed
ferroptosis and increased H9c2 cell survival in H/R through the activation of Akt [49]. It
was found that the miR-199a-5p inhibitor increased the concentration of NO in a culture
supernatant of H9c2 cells [49]. The miR-199a-5p inhibitor increased the p-eNOS/eNOS ratio.
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The Akt inhibitor LY294002 abolished an increase in the p-eNOS level. The investigators
concluded that the miR-199a-5p inhibitor increased H9c2 cell tolerance to H/R through the
stimulation of the Akt/eNOS pathway. However, the anti-ferroptotic effect of canagliflozin
is accompanied by a decrease in the inducible NOS (iNOS) mRNA level in HL-1 cells [42].
Thus, there is no definition of the role of NOS in the regulation of ferroptosis in myocardial
tissue (Figure 1).

PI3K. One study reported that doxorubicin induced the death and ferroptosis of H9c2
cells [23]. Pretreatment with 740Y-P, a PI3K activator, mitigated both effects of doxorubicin
and increased HO-1 expression [23]. Lapatinib, an ErbB-2 and EGFR tyrosine kinase in-
hibitor, enhanced doxorubicin-induced ferroptosis and reduced the p-Akt level in H9c2
cells [23]. In another study, it was found that trastuzumab, an anticancer drug, induced
ferroptosis of cardiomyocytes both in vivo and in vitro and also reduced the p-PI3K/PI3K
ratio [50]. Ferrostatin-1 and deferoxamine inhibited ferroptosis of cardiomyocytes and
increased the p-PI3K/PI3K ratio [50]. It has also been reported that suberosin exhibits car-
dioprotective and anti-ferroptotic effects which are associated with an increase in the PI3K
mRNA in rats pretreated with the ferroptosis inducer thiazolidinedione [51]. Suberosin is a
natural product that is isolated from the roots and aerial parts of Cudrania tricuspidata [51].
These data demonstrate that the stimulation of PI3K promotes the inhibition of ferroptosis
(Figure 1).

COX-2. Zhang et al. (2023) did not find convincing evidence of the involvement of
COX-2 in the regulation of palmitic acid-induced ferroptosis in HL-1 cells [42].

HO-1. Doxorubicin-induced ferroptosis is associated with an increase in the HO-1
mRNA level in murine hearts [36]. Sepsis-induced ferroptosis is accompanied by an in-
crease in HO-1 expression in the murine heart [52]. The cardioprotective effect of the α2-AR
agonist dexmedetomidine in mice with sepsis has been associated with a decrease in HO-1
expression in the murine myocardium [52]. One study reported that sickle cell disease in-
duced cardiomyopathy and ferroptosis in the murine heart and promoted the upregulation
of HO-1 in myocardial tissue [53]. The inhibition of HO-1 by tin protoporphyrin-IX caused
the suppression of ferroptosis in mice with SCD. In contrast, the induction of ferroptosis
promoted HO-1 expression in mice [53]. In another study, it was found that the chronic
administration of di(2-ethylhexyl) phthalate (DEHP) induced ferroptosis in the murine
heart [54]. This effect is associated with an increase in HO-1 expression in myocardial tissue.
One study reported that doxorubicin induced ferroptosis and increased HO-1 expression
in HL-1 cells [55]. HMOX1 knockdown vector (HMOX1 short hairpin RNA (shRNA))
reduced HO-1 expression and inhibited the ferroptosis of HL-1 cells [55]. Cardiac-specific
Sirtuin 1 knockout aggravated the cardiotoxic effect of doxorubicin and ferroptosis in
mice [55]. Both effects were accompanied by an increase in HO-1 expression in myocardial
tissue [55]. It was reported elsewhere that the HO-1 inhibitor zinc protoporphyrin sup-
pressed isoproterenol-induced myocardial ferroptosis [56]. It was found, in another study,
that the cytoprotective and anti-ferroptotic effects of the MiR-432-5p mimic are associated
with an increase in the HO-1 level in isolated cardiomyocytes subjected to H/R [57].

These data demonstrate that HO-1 is involved in the pathogenesis of ferroptosis of
cardiomyocytes (Figure 1).

GSK-3β. It was shown, in one study, that britanin reduced infarct size, alleviated
ferroptosis, and increased the p-GSK-3β level in myocardial tissue of rats with I/R of
the heart [58]. Bian et al. (2023) showed that palmitic acid induced ferroptosis of human
cardiomyocyte AC16 cells [59]. This effect was associated with a reduction in the phos-
phorylation of Akt and GSK-3β. Celastrol, a bioactive compound isolated from the herb
Tripterygium wilfordii, inhibited ferroptosis and increased cell viability. Celastrol simulta-
neously triggered the phosphorylation of Akt and GSK-3β. The investigators suggested
the Akt/GSK-3β signaling pathway participated in the anti-ferroptotic and cytoprotective
effects of celastrol [59]. According to Gomez et al. (2008), the phosphorylation-induced
inactivation of GSK-3β plays a negative role in cardiac tolerance to reperfusion [38]. Conse-
quently, a decrease in the phosphorylation (activation) of GSK-3β could promote ferroptosis.
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Bian et al. (2023) [59] did not provide an explanation for this discrepancy and did not
discuss Gomez’s data. Consequently, the role of GSK-3β in the regulation of ferroptosis
requires further study.

In summary, these data demonstrate that the activation of AMPK, HO-1, ERK1/2,
PKA, PKC, Akt, and PI3K promotes the inhibition of ferroptosis. In contrast, the simulation
of GSK-3β contributes to the ferroptosis of cardiomyocytes.

5. The Role of Non-Coding RNA in the Regulation of Ferroptosis in the Heart

In recent years, much attention has been paid to studying the role of non-coding
RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs (lncRNAs), and circular
RNAs in the pathogenesis of cardiovascular diseases, in particular, in the regulation of
ferroptosis [60,61].

It was found, in one study, that lncRNA Snhg7 plasmid induced ferroptosis of -1 cells
via the activation of T-box transcription factor 5 (Tbx5) [62]. It was demonstrated, in another
study, that the serum level of small extracellular vesicle-encapsulated (SEMA5A-IT1) RNAs
negatively correlated with the serum creatine kinase-MB (CK-MB) level in patients with a
cardiopulmonary bypass [63]. SEMA5A-IT1 RNAs are lncRNAs. Human cardiomyocyte
AC16 cells were exposed to H/R. The cells were transfected by the lentiviral vectors of
SEMA5A-IT1. These lncRNAs increased cell survival, inhibited apoptosis and ferroptosis
through an increase in miR-143-3p expression. The miR-143-3p mimic exhibited the same
cytoprotective effects as lncRNAs [63].

In one study, erastin, a ferroptosis inducer, induced ferroptosis and the death of H9c2
cells [64]. H9c2 cells were transfected with a lentiviral vector expressing miR-190a-5p
which inhibits GLS2 gene expression (this gene encodes the synthesis of glutaminase 2).
miR-190a-5p overexpression increased cell viability and inhibited ferroptosis. In contrast,
anti-miR-190a-5p decreased cell survival and enhanced erastin-induced ferroptosis [64].
In a different study, mice underwent permanent CAO for 3 days [65]. CAO induced an
increase in the miR-15a-5p level 2-fold. The investigators suggested that miR-15a-5p could
regulate the tolerance of cardiomyocytes to H/R [65]. HL-1 cells were exposed to hypoxia
for 24 h which induced the death of 30% of cells. MiR-15a-5p aggravated hypoxia-induced
cell death through a reduction in GPX4 expression and an increase in the MDA and ROS
levels in HL-1 cells. The investigators concluded that miR-15a-5p could be involved in the
development of I/R cardiac injury through the activation of ferroptosis [65]. One study
reported that Erastin induced ferroptosis and the death of HL-1 cells [66]. It was found
that circRNA1615 reduced the cytotoxic effect of erastin. Investigators have proposed that
the cytoprotective effect of circRNA1615 is a result of its anti-ferroptotic effect [64]. In a
different study, rats underwent permanent CAO [67]. The duration of CAO was 28 days. An
adverse remodeling of the heart was developed which was accompanied by the activation
of ferroptosis. CAO induced an increase in miR-375-3p content in myocardial tissue by
approximately 4-fold. It was found that miR-375-3p inhibited GPX4 expression. Ferrostatin-
1 and the miR-375-3p inhibitor suppressed ferroptosis and improved the contractility of
the heart. The investigators suggested that miR-375-3p induced ferroptosis through the
inhibition of GPX4 expression, and the miR-375-3p inhibitor alleviated this process and
prevented the adverse remodeling of the heart [67]. We have reported above that the miR-
199a-5p inhibitor increased H9c2 cell viability and suppressed ferroptosis in H/R through
the activation of Akt [49]. In one study, cultured rat cardiac microvascular endothelial
cells (CMEC) were subjected to hypoxia [19]. Exosomes were isolated from the incubation
medium of CMEC and added to H9c2 cells exposed to H/R. H/R induced ferroptosis and
the death of H9c2 cells. The exosomes increased cell viability and inhibited ferroptosis.
These exosomes contained miR-210-3p. The exosomes inhibited erastin-induced cell death
and ferroptosis. The miR-210-3p inhibitor abolished the cytoprotective and anti-ferroptotic
effects of exosomes. In another study, the miR-210-3p mimics suppressed ferroptosis [21].
Elsewhere, cultured human cardiac myocytes were subjected to hypoxia (1% O2) for
24 h [68]. Hypoxic cardiomyocytes secreted exosomes containing miR-208a/b. Erastin
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induced ferroptosis of cultured human cardiac fibroblasts (CFs). Exosomes enhanced
erastin-induced ferroptosis of CFs. miR-208a/b inhibitors reversed the pro-ferroptotic
effect of exosomes. The investigators concluded that hypoxic cardiomyocyte-derived
exosomes can aggravate ferroptosis of CFs through miR-208a/b expression [68]. In a
different study, exosomes isolated from the plasma of mice with permanent CAO inhibited
erastin-induced ferroptosis and increased the survival of the Lewis lung carcinoma cell line
LLC and osteosarcoma cell line K7M2 [69]. These exosomes contained miR-22-3p. This
microRNA inhibited erastin-induced ferroptosis and increased tumor cell viability [69].
These data demonstrate that miR-22-3p is an inhibitor of ferroptosis.

One study showed that hypoxia induced ferroptosis and the death of H9c2 cells [44]. It
was found that miR-26b-5p mimics aggravated hypoxia-induced cell death and stimulated
ferroptosis of H9c2 cells [44]. In a different study, the miR-214-3p level was increased
in the infarcted region of the murine heart and in neonatal rat cardiomyocytes (NRCMs)
subjected to hypoxia [70]. An increase in miR-214-3p content is accompanied by ferroptosis,
and in this study, the miR-214-3p inhibitor (antagomir) improved cardiac contractility,
reduced infarct size, and alleviated ferroptosis in myocardial tissues. Consequently, miR-
214-3p induced ferroptosis of NRCMs. The miR-214-3p inhibitor protected NRCMs against
hypoxia. The investigators suggested that malic enzyme 2 is a target of miR-214-3p. They
proposed that miR-214-3p is an endogenous trigger of ferroptosis which suppresses malic
enzyme-2 expression [70].

In one study, lipopolysaccharide from Escherichia coli induced sepsis-like cardiomy-
opathy in mice [71]. miR-130b-3p overexpression improved the contractility of the septic
heart, reduced the serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) levels,
and inhibited ferroptosis in myocardial tissue. LPS induced ferroptosis and the death of
H9c2 cells. The miR-130b-3p mimic inhibited ferroptosis and increased cell viability [71]. In
contrast, the miR-130b-3p inhibitor decreased cell viability and stimulated ferroptosis [71].
H/R caused an increase in the circ_0091761 RNA level in H9c2 cells. As found in one study,
ferrostatin-1 resulted in a decrease in lactate dehydrogenase (LDH) release, decreased
circ_0091761 expression, and inhibited ferroptosis of H9c2 cells [72]. The circ_0091761
inhibitor (si-circ_0091761) increased H9c2 cell viability and suppressed ferroptosis. H/R
caused an increase in miR-335-3p content in H9c2 cells [72]. Si-circ_0091761 increased
miR-335-3p expression in H9c2 cells in H/R. miR-335-3p mimics increased cell viability
and inhibited ferroptosis. The investigators concluded that circ_0091761 enhanced H/R-
induced cell death and ferroptosis and that circ_0091761 and an miR-335-3p mimic could
protect the heart against I/R [72]. Elsewhere, HL-1 cells were exposed to hypoxia (1% O2)
for 18 h [73]. Hypoxia reduced miR-450b-5p content in HL-1 cells and induced ferroptosis.
miR-450b-5p mimics increased cell viability, reduced cTnI release from HL-1 cells, and
suppressed ferroptosis in these cells [73].

In one study, neonatal rat ventricular cardiomyocytes were exposed to H/R [57]. H/R
induced cell death and ferroptosis. An miR-432-5p mimic plasmid increased cell viability
and inhibited ferroptosis [57]. The cytoprotective effect of the miR-432-5p mimic was
associated with an increase in the expression of nuclear factor erythroid 2-related factor
2 (Nrf2). In addition, the miR-432-5p mimic increased HO-1 expression in cardiomyocytes
and decreased it in the Kelch-like ECH-associated protein 1 (Keap1) protein level. It was
reported that Keap1 is an endogenous inhibitor of Nrf2 [57]. It was found that miR-432-5p-
Lipo reduced infarct size by about 30% and inhibited ferroptosis in myocardial tissue in
rats with CAO (30 min) and reperfusion (4 h) [57]. The investigators concluded that the
miR-432-5p mimic inhibits ferroptosis through the activation of Nrf2 and HO-1 expression
in cardiomyocytes and the inhibition of Keap1 expression [57].

Thus, circ_0091761 RNA, lncRNA Snhg7, miR-214-3p, miR-199a-5p, miR-208a/b, miR-
375-3p, miR-26b-5p and miR-15a-5p can aggravate ferroptosis. In contrast, miR-190a-5p,
circRNA1615, miR-22-3p, miR-450b-5p, miR-130b-3p, miR-335-3p, miR-432-5p, miR-143-3p,
SEMA5A-IT1 RNAs and miR-210-3p can inhibit ferroptosis. These data demonstrate that
miR-450b-5p, miR-432-5p and miR-210-3p can increase the tolerance of cardiomyocytes
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to hypoxia/reoxygenation through the inhibition of ferroptosis. Circ_0091761 RNA, miR-
214-3p, miR-199a-5p, miR-375-3p, miR-26b-5p, miR-335-3p, and miR-15a-5p can aggravate
H/R-induced injury of cardiomyocytes through the enhancement of ferroptosis (Figure 2).
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6. The Role of Transcription Factors in the Regulation of Ferroptosis

Nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is a transcription factor that
regulates the transcription of cell antioxidant defense genes; therefore, it could be suggested
that Nrf2 can regulate and suppress ferroptosis [74].

In one study, it was found that H/R induced ferroptosis of H9c2 cells which was
associated with a reduction in the Nrf2 mRNA level [75]. In another study, adriamycin
resulted in cardiomyopathy which was accompanied by ferroptosis and increased NADPH-
oxidase (NOX2, NOX4) expression in the myocardial tissue of rats [76]. Astragaloside IV
reversed cardiomyopathy and ferroptosis and increased Nrf2 and GPX4 protein content in
the myocardium. The investigators suggested that the anti-ferroptotic effect of astragaloside
IV is mediated via the activation of the Nrf2/GPX4 signaling pathway [76]. One study
found that the intravenous administration of antioxidant histochrome (1 mg/kg) prior to
reperfusion reduced infarct size by about 30% and improved contractility of the heart in
rats with CAO (60 min) and reperfusion (24 h) [77]. Histochrome inhibited ferroptosis
in vivo. Histochrome increased the tolerance of isolated cardiomyocytes to oxidative stress
induced by H2O2 and increased Nrf2 expression in these cells. It was proposed that the anti-
ferroptotic effect of histochrome is mediated through an increase in Nrf2 expression and
the activation of GPX4 [77]. In another study, it was reported that H/R caused ferroptosis
of H9c2 cells [78]. Icariin, a flavonoid extracted from epimedii, increased cell viability
and inhibited ferroptosis of H9c2 cells. Icariin inhibited erastin-induced ferroptosis and
reduced the cytotoxic effect of erastin. H/R resulted in a reduction in the Nrf2 and HO-1
mRNA levels in H9c2 cells by about 70%. Icariin reversed this negative effect of H/R.
The investigators suggested that the anti-ferroptotic effect of icariin is mediated via the
stimulation of the Nrf2/HO-1 signaling pathway [78]. In another study, it was found
that erastin caused ferroptotic H9c2 cell death [26]. Gossypol acetic acid (GAA), a natural
product taken from the seeds of cotton plants, prevented ferroptosis and cell death. An
isolated rat heart was subjected to global ischemia (30 min) and reperfusion (2 h). GAA
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increased GPX4 protein expression but reduced Nrf2 protein expression in myocardial
tissue in I/R [26]. These data demonstrate that an increase in cardiac tolerance to ferroptosis
could be developed without the involvement of Nrf2. In one study, rats underwent CAO
(30 min) and reperfusion (4 h) [79]. H9c2 cells were exposed to H/R. Naringenin, a
flavonoid from citrus fruits, reduced infarct size and inhibited ferroptosis in the rat heart.
Pretreatment with naringenin increased the Nrf2 and GPX4 protein levels in myocardial
tissue. Naringenin increased cell survival in H/R, inhibited ferroptosis, and increased Nrf2
and GPX4 protein content in H9c2 cells [79]. The investigators concluded that naringenin
inhibits ferroptosis of cardiomyocytes through the activation of the Nrf2/GPX4 signaling
pathway [79].

One study reported that doxorubicin induced the death and ferroptosis of H9c2
cells [80]. The cytotoxic effect of doxorubicin was associated with a decrease in the p62,
Nrf2, GPX4, and HO-1 protein levels (p62 is a nuclear pore glycoprotein) [80]. Resver-
atrol alleviated the cytotoxic effect of doxorubicin, inhibited ferroptosis, and increased
p62, Nrf2, GPX4, HO-1 protein content in H9c2 cells. Ferrostatin-1 also mitigated the
cytotoxic effect of doxorubicin, inhibited ferroptosis, and increased GPX4 and HO-1 ex-
pression, but had no effect on the p62 and Nrf2 levels. The investigators proposed that the
p62-Nrf2/GPX4/HO-1 signaling pathway is involved in the anti-ferroptotic effect of resver-
atrol [80]. GPX4 and HO-1 are involved in the anti-ferroptotic effect of ferrostatin-1 [80].
In a different study, it was found that xanthohumol, a flavonoid isolated from Humulus
lupulus, protected H9c2 and neonatal cardiomyocytes against ferroptosis induced by Fe-
SP ([N, N′-disalicylidene-1,2-phenylenediamine] Fe3+) [20]. The anti-ferroptotic effect of
xanthohumol was accompanied by an increase in GPX4 expression and a decrease in Nrf2
expression in cardiomyocytes. An isolated rat heart was subjected to ischemia (30 min) and
reperfusion. Xanthohumol reduced infarct size, inhibited ferroptosis, increased the GPX4
protein level, and reduced Nrf2 content in myocardial tissue [20]. These data demonstrate
that an increase in Nrf2 expression is not a prerequisite for the inhibition of ferroptosis. One
study reported that streptozotocin-induced diabetes resulted in ferroptosis in the myocar-
dial tissue of mice [81]. Another found that the chronic administration of sulforaphane, an
activator of Nrf2, alleviated diabetic cardiomyopathy in mice and inhibited ferroptosis [40].
AMPK knockout abolished the anti-ferroptotic effect of sulforaphane [40]. Consequently,
AMPK is involved in the anti-ferroptotic effect of Nrf2 activation. It was reported that
doxorubicin caused ferroptosis in the murine heart [82]. This effect was accompanied by
the downregulation of Nrf2 expression [82].

In one study, doxorubicin was shown to induce the cardiomyopathy and ferroptosis
of cardiomyocytes [83]. This effect was associated with a decrease in protein arginine
methyltransferase-4 (PRMT4) expression and a reduction in isolated cardiomyocytes’ vi-
ability. Cardiomyocyte-specific PRMT4 overexpression was induced by an intravenous
administration of adeno-associated virus 9 (AAV9) carrying PRMT4 under the cTnT pro-
moter (AAV-PRMT4). Cardiomyocyte-specific PRMT4 knockdown was induced by an intra-
venous administration of short hairpin RNA (shRNA) against PRMT4 (AAV-shPRMT4) [83].
PRMT4 overexpression aggravated doxorubicin-induced cardiomyopathy and stimulated
ferroptosis. In contrast, PRMT4 knockdown alleviated doxorubicin-induced cardiomyopa-
thy and inhibited ferroptosis. PRMT4 overexpression reduced Nrf2 and GPX4 expression.
PRMT4 knockdown increased Nrf2 and GPX4 expression [83]. These data demonstrate the
important role of Nrf2 and GPX4 in the regulation of ferroptosis. We have reported above
that dexmedetomidine inhibits ferroptosis [41]. The anti-ferroptotic effect of dexmedeto-
midine is associated with an increase in Nrf2 and GPX4 expression. In one study, rats
underwent CAO (30 min) and reperfusion (120 min) [84]. Shenmai injection (SMJ), a
traditional Chinese medicine, was injected intraperitoneally at the onset of reperfusion.
Ferrostatin-1 and ML385, an inhibitor of Nrf2, were administered intraperitoneally 30 min
before CAO. SMJ reduced IS and improved contractility in reperfusion, and ferrostatin-1
increased cardiac tolerance to I/R and inhibited ferroptosis. In contrast, erastin aggra-
vated I/R cardiac injury and ferroptosis. SMJ increased the GPX4 and Nrf2 protein levels
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in myocardial tissue. Pretreatment with ML385 abolished the anti-ferroptotic effect of
SMJ [84]. These results show the important role of GPX4 and Nrf2 in the regulation of
ferroptosis. It was shown elsewhere that 6-gingerol, a polyphenol extracted from gin-
ger, inhibited streptozotocin-induced ferroptosis in murine hearts and upregulated GPX4,
Nrf2, and HO-1 expression [85] These data confirm the important role of GPX4, Nrf2, and
possibly HO-1 in the inhibition of ferroptosis. In a different study, it was reported that
5-Fluorouracil, a potent antitumor agent, induced cardiomyopathy and ferroptosis in the
myocardium of mice [86]. Ferrostatin-1 alleviated the cardiotoxic effect of 5-fluorouracil,
inhibited ferroptosis, and increased GPX4 and Nrf2 expression [86].

In one study, sepsis was induced by cecal ligation, and a puncture caused septic
cardiomyopathy in rats [87]. Sepsis was associated with the activation of cardiac ferroptosis.
Ferrostatin-1 and resveratrol, a polyphenol compound extracted from strawberries, grapes,
and peanuts, alleviated septic cardiomyopathy, inhibited ferroptosis, and increased GPX4
expression in the rat heart. Resveratrol increased the levels of Nerf2 and Sirtuin-1. The
investigators suggested that the anti-ferroptotic effect is a result of the stimulation of
the Sirt1/Nrf2 signaling pathway [87]. We have reported above that doxorubicin and
erastin induced ferroptosis of H9c2 cells [46]. Pretreatment with 17-PT-PGE2 increased
cell viability, inhibited ferroptosis, and increased GPX4 and Nrf2 protein expression [46].
Erastin reduced the GPX4 level in H9c2 cells. Furthermore, 17-PT-PGE2 reversed this effect
of erastin and increased GPX4 content in H9c2 cells. The inhibitor Nrf2 ML385 abolished a
17-PT-PGE2-induced increase in the GPX4 level [46]. Consequently, it could be proposed
that the anti-ferroptotic effect of 17-PT-PGE2 is mediated through the stimulation of the
Nrf2/GPX4 signaling pathway.

Thus, the stimulation of the Nrf2/GPX4 and Nrf2/AMPK signaling pathways can
prevent the development of ferroptosis. However, an increase in cardiac tolerance to
ferroptosis could be developed without the involvement of Nrf2.

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that
increases cardiac tolerance to I/R [37].

One study reported that doxorubicin resulted in the death and ferroptosis of HL-1
cells [88]. Ferroptosis was accompanied by a reduction in the p-STAT3/STAT3 ratio. The
STAT3 inhibitor c188-9 aggravated doxorubicin-induced ferroptosis [88]. The STAT3 activa-
tor colivelin inhibited doxorubicin-induced ferroptosis [88]. Consequently, the stimulation
of STAT3 inhibited myocardial ferroptosis.

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a transcrip-
tion factor which is involved in the cardioprotective effect of delayed ischemic precondi-
tioning [37]. NF-κB is responsible for the regulation of genes involved in inflammation and
immune responses [89].

One study found that lipopolysaccharide induced cardiac injury and myocardial
ferroptosis in rats, increased interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-1α
(TNF-1α) levels in the heart and serum [24]. In addition, LPS caused an increase in the
p-NF-κB-p65/NF-κB-p65 ratio and tall-like receptor-4 (TLR4) expression in the rat heart.
Ferrostatin-1 alleviated LPS-induced cardiac injury, inhibited ferroptosis, reduced the pro-
inflammatory cytokine levels, and decreased TLR4 and p-p65 expression in myocardial
tissue [24]. In another study, heat shock (HS) of H9c2 cells was induced by the impact
of high temperature (43 ◦C for 2 h) [90]. HS resulted in ferroptosis and an increase in
TLR4, NF-κB, IL-1β, and IL-6 expression. Liproxstatin-1 reversed these effects of HS. TLR4
inhibitor TAK-242 or NF-κB inhibitor pyrrolidine dithiocarbamate alleviated HS-induced
ferroptosis [90]. The investigators concluded that inhibition of the TLR4/NF-κB signaling
pathway can alleviate ferroptosis of cardiomyocytes.

These data convincingly demonstrate that ferroptosis is associated with an increase in
pro-inflammatory cytokine production and the stimulation of TLR4 and NF-κB expression.
The activation of TLR4 and NF-κB promotes ferroptosis of cardiomyocytes.
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7. Inflammation

It was reported that sepsis-induced ferroptosis is accompanied by an increase in
the serum and myocardial IL-6 levels in mice [52]. LPS induced cardiomyopathy and
ferroptosis which are accompanied by an increase in the IL-6, IL-1β, and TNF-1α levels in
the murine myocardium and serum [17,19,91]. Streptozotocin-induced cardiomyopathy is
associated with the activation of myocardial ferroptosis, an increase in IL-6, IL-1β, and TNF-
1α expression in the heart and an increase in serum IL-6, IL-1β and TNF-1α concentration
in mice [85].

These data demonstrate that ferroptosis is associated with myocardial inflammation.
Both processes are interconnected. However, it is unclear whether ferroptosis is a trigger
for inflammation or whether inflammation is a trigger for ferroptosis.

8. Ischemia/Reperfusion of Cardiac Injury

In one study, it was found that retreatment with ferrostatin-1 reduced infarct size in
mice with CAO (30 min) and reperfusion (24 h) [36]. In another study, an isolated murine
heart was exposed to global ischemia (30 min) and reperfusion (2 h) [92]. I/R induced car-
diac injury and led to a decrease in GPX4 expression. The ferroptosis inhibitor liproxstatin-1
reduced infarct size and increased the GPX4 level [92]. In a different study, rats underwent
CAO (30 min) and reperfusion (2 h) [93]. Streptozotocin-induced diabetes aggravated I/R
cardiac injury. Ferrostatin-1 reduced infarct size in rats [93]. CAO (30–60 min) and reper-
fusion (2–24 h) caused ferroptosis in myocardial tissue in rats and mice [39,79,84,94–101].
According to Tang et al. (2021), deferoxamine (200 mg/kg intraperitoneally) had no effect
on infarct size and did not alter ferroptosis in myocardial tissue [94]. We also could not
find an infarct-reducing effect of deferoxamine (60 mg/kg intravenously) in rats with CAO
(45 min) and reperfusion (120 min) [102]. However, deferoxamine at a dose of 60 mg/kg
abolishes the infarct-sparing effect of hypoxic preconditioning [102]. Consequently, it could
be hypothesized that Fe2+ is not a ferroptosis rate-limiting factor. It is possible that even a
small Fe2+ content in a cell is completely enough to induce ferroptosis in I/R of the heart.

It has been found that H/R triggers ferroptosis of H9c2 cells [25,78,103–105]. In one
study, it was found that deferoxamine inhibited this process [103]. It was reported else-
where that miR-15a-5p is involved in the development of I/R cardiac injury through the
activation of ferroptosis [65]. In another study, it was shown that antioxidant histochrome
inhibited ferroptosis and reduced infarct size in rats with CAO (60 min) and reperfusion
(24 h) [77]. A different study reported that CAO (30 min) resulted in myocardial ferroptosis
and contractile dysfunction in mice [66]. Ferrostatin-1 improved cardiac contractility and
inhibited ferroptosis [66]. In one study, it was found that H/R caused ferroptosis of H9c2
cells [21,26,45,49,75,78]. It was also reported in one study that ferrostatin-1 increased cell
viability and alleviated ferroptosis [49]. Another found that I/R of an isolated rat heart
resulted in ferroptosis [106]. A different study reported that permanent CAO (28 days)
induced myocardial ferroptosis which was alleviated by ferrostatin-1 [67]. In one study,
isolated neonatal rat cardiomyocytes were exposed to hypoxia which caused the ferroptosis
and oxidative stress of these cells [107]. Isolated rat hearts were subjected to ischemia
(30–40 min) and reperfusion (60–120 min) [41,108]. This I/R triggered myocardial ferropto-
sis [41,108]. One study found that pretreatment with ferrostatin-1 alleviated I/R cardiac
injury and inhibited ferroptosis in mice with CAO (30 min) and reperfusion (2 h) [94].

In one study, rats underwent CAO (2, 4, and 6 h) and reperfusion (3, 6, 12, and 24 h) [109].
It was found that ischemia contributed to an increase in the serum CK-MB level in

proportion to the duration of ischemia. However, CAO had no effect on the MDA, F2+,
GPX4, and FTH1 levels in myocardial tissue. The MDA, Fe2+, GPX4, and FTH1 levels were
increased in reperfusion. MDA content reached its maximum after CAO (2 h) and 12 h of
reperfusion and decreased 24 h after the restoration of coronary perfusion. GPX4 content
reduced after CAO (2 h) and 6 h of reperfusion. The FTH1 level reached its maximum
after CAO (2 h) and 6 h of reperfusion [109]. Pretreatment with ferrostatin-1 (3 mg/kg,
intraperitoneally) before reperfusion reduced infarct size and prevented an increase in
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the serum CK-MB level [109]. These data demonstrated that reoxygenation triggered the
process of ferroptosis that is involved in reperfusion cardiac injury.

These data convincingly show that I/R induces the activation of myocardial ferroptosis.
Ferrostatin-1 and liproxstatin-1 inhibit ferroptosis and increase cardiac tolerance to I/R.
Consequently, ferroptosis is involved in I/R cardiac injury. Deferoxamine has no effect on
infarct size. It is possible that intracellular Fe2+ content does not limit the ferroptosis rate
in I/R of the heart, and even a small intracellular Fe2+ concentration is enough to trigger
ferroptosis in reperfusion of the heart.

9. Chemotherapeutic Agent-Induced Cardiomyopathy

Many antitumor drugs induce cardiomyopathy in cancer patients [110]. It is an impor-
tant problem for the treatment of cancer. There is evidence that ferroptosis is involved in the
development of this doxorubicin-induced cardiomyopathy and the toxic injury of isolated
cardiomyocytes, H9c2 cells, and HL-1 cells [22,23,36,46,55,80,82,83,88,111–114]. Indeed,
the ferroptosis inhibitor ferrostatin-1 prevents the appearance of doxorubicin-induced
cardiomyopathy and ferroptosis and increases cell viability [36,46,80,83,88,113]. Ferrop-
tosis participates in adriamycin-induced cardiomyopathy [76]. 5-Fluorouracil induces
cardiomyopathy and ferroptosis in the myocardium of mice [86]. Ferrostatin-1 alleviates
its cardiotoxic effect [110]. Ferroptosis is involved in the cardiotoxic effect of trastuzumab,
an anticancer drug [50]. The Fe2+ chelator dexazoxane mitigates doxorubicin-induced
cardiomyopathy and ferroptosis [115]. It was reported that deferoxamine (250 mg/kg)
mitigates doxorubicin-induced cardiomyopathy and suppresses ferroptosis [116].

Thus, these data demonstrate convincing evidence that ferroptosis participates in the
development of chemotherapeutic agent-induced cardiomyopathy.

10. Septic Cardiomyopathy

There is evidence that ferroptosis is involved in sepsis-induced cardiomyopathy [117].
Cecal ligation and puncture induces septic cardiomyopathy and ferroptosis in the murine
myocardium [52,87]. Ferrostatin-1 alleviates septic cardiomyopathy and inhibits ferropto-
sis [87]. Lipopolysaccharide from Escherichia coli causes sepsis-like cardiomyopathy and
ferroptosis in mice [17,19,24,71,81,118]. Ferrostatin-1 alleviates LPS-induced cardiomyopa-
thy and inhibits ferroptosis [24,71,87,118]. The Fe2+ chelator dexrazoxane also mitigates
LPS-induced cardiomyopathy and suppresses ferroptosis [118]. LPS causes cell death and
the ferroptosis of H9c2 cells and neonatal rat cardiomyocytes [119].

These data demonstrate that ferroptosis could be involved in septic cardiomyopathy.

11. Diabetic Cardiomyopathy

There is evidence that ferroptosis participates in diabetes-induced cardiomyopa-
thy [120,121]. Streptozotocin induces diabetic cardiomyopathy and ferroptosis in the
myocardial tissue of mice [40,75,81,85,122,123]. The ferroptosis inhibitor liproxstatin-1
prevents the development of diabetic cardiomyopathy [40]. Ferrostatin-1 and deferox-
amine alleviates cardiomyopathy and ferroptosis [40]. The combination of a high-fat
diet and low-dose streptozotocin induces cardiomyopathy [124]. Deferoxamine alleviates
streptozotocin-induced cardiomyopathy [124]. A high-fat diet (HFD) induces a metabolic
syndrome (MS)-like state with cardiac anomalies and ferroptosis in rats [125]. An MS-like
state (type 2 diabetes) develops in db/db mice and is accompanied by cardiomyopathy and
ferroptosis [126,127]. Ferrostatin-1 inhibits cardiomyopathy and ferroptosis [126]. HFD
causes an MS-like state (type 2 diabetes) which is associated with cardiomyopathy and
ferroptosis in mice [59,128].

In summary, diabetes mellitus causes cardiomyopathy and ferroptosis in myocar-
dial tissue. It is suggested that ferroptosis is involved in the pathogenesis of diabetic
cardiomyopathy.
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12. Stress-Induced Cardiac Injury

Takotsubo syndrome (TTS) is distinguished by contractile dysfunction and usually
affects the apex of the heart without coronary artery obstruction. TTS is distinguished by
an increase in the blood levels of myocardial necrosis markers, microvascular dysfunction,
and myocardial edema [129]. Stress-induced cardiomyopathy (TTS) is a rare disease. It
is observed in 0.6–2.5% of patients with acute coronary syndrome [129]. However, the
hospital mortality among patients with TTS corresponds to 3.5–12%, which is equivalent to
the mortality of patients with STEMI [129]. The incidence of takotsubo syndrome is nine
times higher in women aged 60–70 years than in men. Not all, but 70–80% of patients with
TTS had physical or emotional stress that preceded this disease. Most patients with TTS
have neurological or psychiatric illnesses. In patients with TTS, catecholamine levels are
elevated, so it is believed that the occurrence of TTS is associated with excessive activa-
tion of the adrenergic system and contractile dysfunction. Stress-induced cardiac injury
(SICI) is the result of the activation of the β1-adrenergic receptor (β1-AR) by endogenous
catecholamines in rats [130].

There is indirect evidence that ferroptosis is involved in SICI. The β1- and β2-AR
agonist isoproterenol induces the death and ferroptosis of H9c2 cells [131]. Ferrostatin-1
increases H9c2 cell viability. The administration of isoproterenol at a dose of 5 mg/kg
subcutaneously for 14 days induces cardiomyopathy and myocardial ferroptosis [131].
Isoproterenol (100 µM) causes the death and ferroptosis of isolated neonatal rat cardiomy-
ocytes [56]. Ferrostatin-1, liproxstatin-1, and deferoxamine increase cell tolerance to the
cytotoxic effect of isoproterenol. Antioxidant N-acetylcysteine inhibites an isoproterenol-
induced decrease in the GPX4 level in cardiomyocytes. The administration of isoproterenol
(50 mg/kg/day subcutaneously) for 3 weeks results in cardiomyopathy and cardiac fibrosis
which is accompanied by ferroptosis [56]. Ferrostatin-1 (1 mg/kg/day) for 3 weeks reduces
the serum cTnI level and prevents the development of isoproterenol-induced contractile
dysfunction, cardiac fibrosis, and ferroptosis. Isoproterenol increases the HO-1 level in
isolated cardiomyocytes and in myocardial tissue. The administration of the HO-1 inhibitor
zinc protoporphyrin (5 mg/kg/day) for 3 weeks reduces the serum cTnI level and prevents
the development of isoproterenol-induced contractile dysfunction, cardiac fibrosis, and
ferroptosis [56].

It has been reported that SICI is associated with an increase in the myocardial con-
jugated diene and MDA levels in rats [132–134]. Antioxidant butylated hydroxytoluene
(ionol) mitigates SICI in rats [132]. The β1- and β2-AR antagonist propranolol abolishes
lipid peroxidation [132]. The investigators did not detect other markers of ferroptosis.
Therefore, it could be proposed, but not claimed, that stress causes ferroptosis.

These data demonstrate that the chronic activation of β1- and β2-ARs promotes the
development of myocardial ferroptosis which triggers cardiomyopathy. HO-1 is involved
in isoproterenol-induced cardiomyopathy and ferroptosis. Stress induces lipid peroxidation
in myocardial tissue which is abolished by propranolol and ionol. These data indirectly
demonstrate that ferroptosis could be involved in SICI.

13. Unresolved Issues and Prospects for the Use of Ferroptosis Inhibitors for the
Treatment of Cardiovascular Diseases

The following constitute the therapeutic landscape of the use of anti-ferroptotic
compounds for the treatment of cardiovascular diseases: deferoxamine, ferrostatin-1,
liproxstatin-1. There is no convincing evidence of the cardioprotective effect of de-
feroxamine in I/R of the heart. Therefore, performing a clinical trial of the use of
deferoxamine for the treatment of AMI is inappropriate. Ferrostatin-1 and liproxstatin-1
have the greatest promise for clinical use. Ferrostatin-1 increases cardiac tolerance to I/R.
Ferrostatin-1 mitigates doxorubicin-induced cardiomyopathy. However, it is unclear
whether ferrostatin-1 can aggravate cancer progression. Ferrostatin-1 alleviates septic
cardiomyopathy and diabetic cardiomyopathy. Ferrostatin-1 increases cell resistance to
the cytotoxic effect of isoproterenol. These data suggest that ferrostatin-1 could protect
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the heart against stress-induced injury. Liproxstatin-1 also augments cardiac tolerance
to I/R. It mitigates diabetic cardiomyopathy. However, its cardioprotective effect in
sepsis or doxorubicin-induced cardiomyopathy has not been evaluated. Liproxstatin-1
increases cardiac resistance to the cardiotoxic effect of isoproterenol. These findings
suggest that liproxstatin-1 could increase cardiac tolerance to stress. Thus, there is con-
vincing evidence of a need for clinical trials of ferrostatin-1 and liproxstatin-1 for the
treatment of AMI, takotsubo syndrome, sepsis, and diabetes. A comparative analysis
of ferrostatin-1 and liproxstatin-1 efficacies for the treatment of experimental cardio-
vascular pathologies has not been performed. Therefore, it is unclear which of the
two compounds is more effective. The main disadvantage of both liproxstatin-1 and
ferrostatin-1 is their poor solubility in water. Therefore, it is impossible to use these
compounds for intravenous administration in humans in acute pathologies such as
AMI, takotsubo syndrome, and sepsis. It is necessary to create water-soluble ferroptosis
inhibitors similar to liproxstatin-1 and ferrostatin-1.

Calcium overload plays an important role in reperfusion cardiac injury [15]. However,
the involvement of an Ca2+ overload in the pathogenesis of ferroptosis has not been
studied before. There is only indirect evidence for the involvement of ferroptosis in the
pathogenesis of SICI. Studies using ferroptosis inhibitors are needed.

14. Conclusions

The stimulation of PKA, AMPK, ERK1/2, PKC, PI3K, and Akt promotes the inhibition
of ferroptosis. In contrast, the activation of HO-1 contributes to the development of
myocardial ferroptosis (Figures 3 and 4). The role of GSK-3β and NOS in the regulation of
ferroptosis requires further study.

Circ_0091761 RNA, lncRNA Snhg7, miR-214-3p, miR-199a-5p, miR-208a/b, miR-
375-3p, miR-26b-5p and miR-15a-5p can aggravate myocardial ferroptosis. In contrast,
miR-190a-5p, circRNA1615, miR-22-3p, miR-450b-5p, miR-130b-3p, miR-335-3p, miR-432-
5p, miR-143-3p, SEMA5A-IT1 RNAs and miR-210-3p can inhibit ferroptosis. miR-450b-5p
and miR-210-3p can increase the tolerance of cardiomyocytes to hypoxia/reoxygenation
through the inhibition of ferroptosis (Figures 3 and 4).

The activation of the Akt/sirtuin-3/SOD2, cAMP/PKA/CREB, Nrf2/GPX4, and Nrf2/
AMPK signaling pathways can prevent the development of ferroptosis (Figures 3 and 4). In
some cases, cardiac tolerance to ferroptosis could be developed without the involvement of
Nrf2. The stimulation of STAT3 inhibits myocardial ferroptosis. Ferroptosis is associated
with an increase in pro-inflammatory cytokine production and the stimulation of TLR4 and
NF-κB expression in the heart. The activation of TLR4 and NF-κB promotes ferroptosis
of cardiomyocytes. Ferroptosis is associated with myocardial inflammation. However, it
is unclear whether ferroptosis is a trigger for inflammation or whether inflammation is a
trigger for ferroptosis.

It has been convincingly shown that I/R induces the activation of myocardial ferrop-
tosis. The ferroptosis inhibitors increase cardiac tolerance to I/R. Consequently, ferroptosis
is involved in I/R cardiac injury. Deferoxamine does not alter infarct size. It is possible
that intracellular Fe2+ content does not limit the ferroptosis rate in I/R of the myocardium.
Ferroptosis participates in the development of chemotherapeutic agent-induced cardiomy-
opathy. Ferroptosis could be involved in septic cardiomyopathy. Ferroptosis is involved in
the pathogenesis of diabetic cardiomyopathy. The chronic activation of β1- and β2-ARs
promotes the development of myocardial ferroptosis and cardiomyopathy. HO-1 partici-
pates in isoproterenol-induced cardiomyopathy and ferroptosis. There is indirect evidence
that ferroptosis could be involved in SICI (Figure 5).
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