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Abstract: Obesity affects nearly 660 million adults worldwide and is known for its many comorbidi-
ties. Although the phenomenon of obesity is not fully understood, science regularly reveals new
determinants of this pathology. Among them, persistent organic pollutants (POPs) have been recently
highlighted. Mainly lipophilic, POPs are normally stored in adipose tissue and can lead to adverse
metabolic effects when released into the bloodstream. The main objective of this narrative review is
to discuss the different pathways by which physical activity may counteract POPs’ adverse effects.
The research that we carried out seems to indicate that physical activity could positively influence
several pathways negatively influenced by POPs, such as insulin resistance, inflammation, lipid
accumulation, adipogenesis, and gut microbiota dysbiosis, that are associated with the development
of obesity. This review also indicates how, through the controlled mobilization of POPs, physical
activity could be a valuable approach to reduce the concentration of POPs in the bloodstream. These
findings suggest that physical activity should be used to counteract the adverse effects of POPs.
However, future studies should accurately assess its impact in specific situations such as bariatric
surgery, where weight loss promotes POPs’ blood release.

Keywords: endocrine disruptors; inflammation; insulin resistance; lipid; adipogenesis; microbiota;
bariatric surgery; adipose tissue

1. Introduction

Obesity is an excessive accumulation of fat mass within the body contributing to
ectopic lipid deposits. Obesity is clinically characterized by a BMI (Body Mass Index)
greater than 30 kg/m2 and is linked to metabolic disorders, psychosocial consequences,
and impaired quality of life. These deposits depend on the cellular modification of the
adipose tissue related to morbi-mortalities. Globally, obesity is increasing and is consid-
ered a true pandemic. Its prevalence tripled between 1975 and 2016. Worldwide, more
than 660 million adults are obese. Moreover, this increase also affects children and is ob-
served in all socio-economic groups. The latest WHO report specific to the European
Region counted 59% of adults and nearly one child out of three (29% of boys and 27% of
girls) as being overweight or living with obesity. Android obesity, which is specifically
characterized by visceral fat accumulation, may be accompanied by comorbidities such as
cardiovascular disease [1], hormone-dependent cancers (National Cancer Institute, Obesity
and Cancer 2017), type 2 diabetes (T2DM) [2], and metabolic dysfunction-associated fatty
liver disease (MAFLD) [3]. Owing to these comorbidities, obesity is estimated to cause
millions of deaths [4] each year worldwide (WHO, 2021). It is therefore crucial to address
the causes contributing to the increasing prevalence of obesity. In most cases, no single
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determinant is exclusively responsible for the development of obesity. In this narrative
review, we focus on one of the factors contributing to this multifactorial pathology. Specif-
ically, we highlight the role of exposure to chemical substances, in particular persistent
organic pollutants (POPs), in the development of obesity. The impact of POPs on human
health has been studied for many years. Their presence has been linked to the development
of numerous pathologies. Many studies have demonstrated the effects of POPs on the
development of obesity [5,6]. However, the exact mechanisms by which POPs facilitate
the development of obesity are still under investigation. Several interesting clues have
been identified. Many of these clues may be influenced by physical activity (PA). The
use of PA to counteract and prevent pathologies has gained popularity in recent years. In
particular, PA is recognized as an easy-to-implement, low-cost intervention with signifi-
cant protective results for various pathologies. This review will address how PA, through
several mechanisms, could help controlling the adverse effects of POPs. The methodology
used to select the articles included in the review can be found in Supplementary Materials,
Figure S1.

2. Persistent Organic Pollutants (POPs)
2.1. What Are Persistent Organic Pollutants (POPs)?

POPs are organic compounds coming mainly from pesticides and industrial chemicals.
These molecules have four specific properties. Firstly, these molecules have the capacity to be
transported over very long distances (e.g., between two countries, traveling through air, water,
soil, and the food chain). Secondly, they are bioaccumulable, implying that these molecules
enter the organism; have the capacity to accumulate in the organism; and, even more seriously,
can be transmitted from generation to generation. Thirdly, they are toxic, which means that
they are a significant danger to the health of human beings and to wildlife. Fourthly, they are
persistent, meaning that it is difficult to degrade these molecules, and they can stay in the
environment for many years (Stockholm Convention, UN environment program).

2.2. Dose-Response Relationship and Synergistic Effects of POPs

In many cases, POPs do not follow a linear dose-response relationship [7]. In other
words, POPs can be more dangerous at low doses than at moderate or high doses. Some
POPs have been reported to have an inverted U-shaped dose-response relationship. While
many studies have evaluated the individual effects of several POPs, the human body is
affected by mixtures of POPs [7]. The assessment of mixtures is essential, as POPs can
have synergistic effects on each other. When a POP is added to a mixture, it can have an
additional, multiplying, or antagonistic effect. The principle of antagonism can therefore
explain why in certain situations, POPs do not have the expected effect. For example, a
POP promoting the development of adipose tissue associated with a POP limiting the
development of adipose tissue should theoretically lead to a cancellation of their respective
effects. However, it is possible to assume that in case of non-equal concentration of the
two POPs and/or different dose response relationships, the results could differ.

2.3. POPs Nowadays

Many chemical molecules are no longer authorized on the market because of their
POPs-related properties. However, problems remain due to POPs’ relatively long life
expectancy, their half-life in organic tissues, and their unconscious industrial produc-
tion around the world. Another problem consists of the presence of POPs used before
their embargo and therefore remaining in the living environment, for example, in build-
ing materials. Currently, molecules used before their ban are regularly found in our
environment. Furthermore, POPs banned in many countries are still observed and/or
produced in specific locations/occasions [8,9]. In addition, some POPs are still used
in the context of integrated vector management (e.g., dichlorodiphenyltrichloroethane
[DDT]). Eradication of POPs remains difficult because of their characteristics and be-
cause many molecular alternatives (e.g., industrial, pesticides) still need to be found,
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knowing that these alternatives must meet multiple criteria to be considered viable (e.g.,
yield, price, efficacy, safety). POPs’ ability to travel great distances represents a threat
for populations. It should be mentioned that new molecules are regularly added to
the official comprehensive list of POPs (established under the Stockholm Convention
Listing of POPs in the Stockholm Convention; Stockholm Convention Secretariat, http:
//www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx, accessed
on 12 March 2023). Human concerns regarding these molecules are due to regular exposure
via food and water pollution [10]. Following this exposure, and owing to their lipophilic
properties, POPs will be stored in adipose tissue and will be able, under certain circum-
stances, to be released into the bloodstream [11]. The presence of POPs in the human body
may cause many disruptions by affecting physiological mechanisms. In this regard, in vitro
and in vivo models and epidemiological research have highlighted that POPs could be
obesogens [5].

2.4. POPs as Obesogens

At the beginning of the 21st century, links between POPs and adipose tissue were
highlighted in the scientific literature. Based on several publications over the last 20 years,
the idea emerged that POPs may be determinants of obesity. Indeed, some POPs have
an obesogenic effect [5,12]. Simply put, obesogens are chemical substances capable of
increasing fat storage, promoting fat production, and reducing fat utilization. Obesogenic
molecules can be defined as “chemicals that alter homeostatic metabolic setpoints, disrupt
appetite controls, perturb lipid homeostasis to promote adipocyte hypertrophy, stimulate
adipogenic pathways that enhance adipocyte hyperplasia, or otherwise alter adipocyte dif-
ferentiation during development” [13]. More precisely, “obesogens are chemicals that elicit
increased white adipose tissue mass (WAT) after exposure in vivo [. . .]. Potential obesogens
are chemicals that can induce differentiation of adipocytes in vitro but have not yet been
demonstrated to increase WAT accumulation in vivo” as defined by Heindel et al. [5]. The
same authors explained that obesogens can affect many different tissues and parameters
related to metabolism (e.g., tissue development; inflammation; oxidative stress; circadian
rhythms; brain metabolic control; and epigenetic, microbiome, and signaling pathways).
Several different categories of POPs are currently directly associated with obesity, such
as organochlorine pesticides [OCPs] (e.g., found in insecticides designed to fight against
malaria), polychlorinated biphenyls [PCBs] (e.g., found in plastics, paints, and electrical
components), per- and polyfluoroalkyl substances [PFASs] (e.g., found in cosmetics, in
the textile sector, and in phytosanitary products), and polybromodiphenylethers [PBDEs]
(e.g., found in the textile and plastic sectors). Obesogenic effects have also been observed
for other categories, like dioxins [14]. It should nevertheless be noted that the presence
of multiple cofactors makes it difficult to accurately determine the impact of POPs on
human obesity.

Taken together, this reflects the harmfulness of POPs to the body and to the conse-
quences of obesity on individuals and society. There is a need to find solutions to effectively
address this problem. Many countries are banning the use of these chemicals, but as ex-
plained above, some remain in our environment. Several articles have looked at the impact
of different types of diet on exposure to POPs [15,16]. To our knowledge, only a few studies
have evaluated the effect of PA on POP concentrations and/or adverse effects. Recent
reviews [5,6] have examined the molecular pathways underlying the ability of POPs to
promote the development of obesity. From these reviews, several crucial insights emerged,
such as adipogenesis, lipid accumulation, insulin resistance/alteration of insulin sensitivity,
inflammatory function, and gut microbiota dysbiosis. The practice of PA could positively
counteract these effects. It may also promote the elimination of POPs. Following a short
explanation of the importance of PA in the context of obesity, the interest of PA for each
insight will be discussed.

http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx
http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx
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3. PA and POPs in the Context of Obesity
3.1. PA and Obesity

PA is defined as “any bodily movement produced by skeletal muscle contraction re-
sulting in an increase in energy expenditure over resting energy expenditure” [17]. Adapted
physical activity is a form of PA with a preventive and curative aim considering the clinical
and motivational state of the person in order to promote bio-psycho-social well-being [18].
Bio-psycho-social well-being could be defined as a positive interaction between the well-
being of the body (e.g., functional abilities, functioning of physiological processes), the
well-being of the mind (e.g., behavioral and psychic processes) and the well-being of living
interactions (e.g., communication, social/environmental interaction). Each of these aspects
has its own characteristics. The body, mind, and interactions of living beings are parameters
that must be combined to provide the best possible support for an individual. The proven
effects of PA on the reduction/prevention of diseases and associated disorders, particularly
obesity-related comorbidities, and more globally on the improvement of quality of life,
have led to the inclusion of the “physical activity prescription” in the public health codes
of many countries.

According to the American College of Sports and Medicine (ACSM, 2013) and EASO
consensus statement [19], PA recommendations to prevent obesity are similar to those for
the general population (i.e., at least 150 min/week of moderate PA or at least 75 min/week
of vigorous PA combined with resistance training at least two times/week). However, to
gain more benefits and allow for maintenance of the positive adaptations obtained after
weight loss, more than 300 min/week of moderate to vigorous PA is recommended (ACSM,
2011 and 2013). Despite this, it is nowadays considered that any PA, even less than the
recommendations previously mentioned, is better than no activity. Nevertheless, specific
PA programs have proven more effective that the general recommendations. To be more
precise, a meta-analysis highlighted a significantly greater decrease in waist circumference
with combined or aerobic training alone than resistance training alone [20]. Moderate- to
high-intensity aerobic physical training is the most effective type of PA to significantly
reduce visceral adipose tissue (VAT) in obesity [21]. Furthermore, an intervention on the
mobilization of WAT, in particular reducing VAT, plays a key role in treating obesity-related
inflammation. To conclude the meta-analysis observations, PA promotes the mobilization of
free fatty acids (FFAs) from their storage sites by enhancing the sensitivity of adipocytes to
the lipolytic influence of catecholamines and their muscular utilization through activation
of the AMPK/PGC1α signaling pathway [22].

PA is recognized for its many beneficial effects on obesity. For example, PA can
improve physical capacities (e.g., muscle strength) [23], improve cognitive capacities [24],
change body composition [25], influence metabolism [25], reduce inflammation [25], and
affect the hormonal system [25]. In this article, we highlight how POPs can increase
adipose tissue development, increase fat accumulation, reduce insulin sensitivity, increase
inflammation, and modify gut microbiota. PA could therefore counteract the obesity-related
adverse effects of POPs. PA may also limit the development of obesity by reducing POP
blood concentrations. This specific point will also be discussed later in this review.

3.2. The Link between POPs, PA, Adipogenesis, and Lipid Accumulation

Adipogenesis is the differentiation process whereby preadipocytes become adipocytes.
Adipogenesis favors lipid accumulation and the development of adipose tissues. Adipo-
genesis and lipid accumulation can be increased through several physiological pathways
and transcription factors. Among these, PPARγ, STATs, C/EBPα, C/EBPβ, C/EBPδ, and
SREBP-1 are central [26]. PPARγ is a nuclear receptor and a transcription factor regulating
adipocyte differentiation and gene expression. STATs are proteins able to increase adipocyte
differentiation in cases of ectopic expression. C/EBPs are a set of proteins that have an
active role at different phases of adipogenesis. SREBP-1 is another transcription factor and
protein implicated in lipogenesis. Interestingly, many of these transcription factors interact
with each other during adipogenesis. For example, the ectopic level of C/EBPβ can be
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related to PPARγ expression [27], and this can also be true for the ectopic expression of
STAT5 [28].

It is established that some obesogenic POPs have the ability to increase adipogene-
sis [29]. POPs can influence the activity and/or expression of the main molecular pathways
involved in lipid metabolism through transcription factors (i.e., PPARγ, C/EBPα, C/EBPβ,
and SREBP-1), as observed under in vitro conditions [30–32]. This would lead to an in-
creased differentiation of adipocytes. C/EBPδ may also be an interesting factor to consider
when evaluating POPs’ effects, but there is a lack of studies on this subject. Most studies
have investigated POPs with antiadipogenic properties. One study did not find any effects
of PDBE 99 exposure on C/EBPδ [31]. In addition, an increased expression of adipogenesis-
specific gene markers such as LPL were observed in in vitro conditions [30].

To our knowledge, there is a lack of evidence about the direct or indirect effects of PA
in relation to adipogenesis and lipid accumulation in the presence of POPs. Nevertheless, it
is known that PA can be involved in the activity and/or expression level of PPARγ [33,34],
C/EBPα, C/EBPβ, and C/EBPδ [35,36] as well as for SREBP-1 [37], as observed in animal
models. Thus, better control of adipogenesis through regular PA could promote a reduced
risk of obesity development. It is possible to expect that PA, by regulating the expression
and activation of the previously cited adipogenesis factors affected by POPs, may prevent
the development of obesity. Finally, it is important to mention that, to our knowledge, no
study has investigated the direct relationship between PA, the previously cited transcription
factors, and POPs.

Glucocorticoid receptor (GR) is a key factor in adipogenesis. A study indicated the
inhibition of adipogenesis with GR antagonists [38]. In contrast, another study observed an
increase in adipose tissue development factors (e.g., cell proliferation and triglyceride accu-
mulation) with a GR agonist [39]. Interestingly, some POPs may disrupt GR expression [40].
Independently of the effect of POPs, the protective effect of PA on GR has already been
established [41]. Although studies seem to indicate that GR and POPs can interact with
each other [42], the ability of PA to counteract the adverse effects of POPs via an effect on
GR remains to be established. The understanding of this relation would allow for a better
comprehension of how PA may contribute to reducing POPs’ adverse effects in the context
of obesity.

Other molecular mechanisms are involved in the development of adipose tissues
and lipid accumulation. The Notch pathway, TYK-2/STAT-3 pathway, FABP, FAS, AhR,
and hormonal actions are also central. The Notch pathway is a signal transduction factor
participating in lipid metabolism. The inhibition of the Notch pathway can reduce obesity
development during a high-fat diet [43]. TYK-2 is part of the JAK family and refers to
an enzyme as well as a gene encoding the enzyme. It is known that the alteration of
the TYK-2/STAT-3 pathway can increase obesity development [44]. TYK-2 and STAT-3
are part of the JAK/STAT signaling pathway. FABP is a fatty acid/lipophilic substances
transport protein, and FAS is an enzyme participating in fatty acid biosynthesis. AhR (aryl
hydrocarbon receptor) is a ligand-activated transcription factor implicated in adipocyte
differentiation and related to PPARγ activity [45]. Its inhibition can prevent the devel-
opment of obesity [46]. Even more interesting, the inhibition of AhR has the potential
to reverse obesity [47]. Key hormonal factors implicated in adipogenesis and lipid accu-
mulation include epinephrine, norepinephrine, estrogens, and androgens. Epinephrine
and norepinephrine are hormones highly implicated during lipolysis. Androgens have
antiadipogenic effects, and estrogens have proadipogenic effects, following the results
observed on in vitro rat preadipocytes [48]. However, the pro and antiadipogenic effects of
androgens and estrogens can be debated [26].

POPs have the capacity to negatively alter β-oxidation, to promote lipotoxicity, to alter
lipid export, and to promote triglyceride synthesis, contributing to enhanced lipid accumu-
lation in the body [49]. Studies have reported differences between a low-fat diet and high-fat
diet. POPs may also be linked to the development of obesity by increasing activation of the
Notch pathway, by causing alteration of the TYK-2/STAT-3 pathway, and by increasing
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FABP expression and FAS upregulation, observed under in vitro conditions [32,50,51]. The
ability to limit lipid accumulation is also impaired by POPs. Indeed, POPs are associated
with an inhibition of adrenergic-, epinephrine-, and norepinephrine-induced lipolysis
pathways [52]. Other studies have reported the alteration of mitochondrial function with
high POPs concentrations in vivo [53]. The ability to prevent the thermogenic response
of adipocytes with an AhR agonist (i.e., PCB 126) was also observed under in vitro con-
ditions [54]. For these reasons, and because of its importance in energy expenditure, the
thermogenic response principle is central in the context of obesity. A recent in vitro study
evaluated the effect of a mixture including 29 POPs [55]. Although four of these POPs were
AhR agonists, the global mixture was assessed to antagonize AhR activity. However, and
according to the results of the same study, some POPs antagonizing AhR activity can have
a non-monotone and non-linear dose–response relationship. The obesogenic effect of POPs
known to be AhR agonists has been demonstrated in other articles [14]. The alteration
of AhR activity promoting the development of obesity could depend on POPs’ mixture
composition and individual POP concentrations.

In the context of factors related to lipid accumulation, PA can positively influence some
molecular pathways such as the Notch pathway, and studies show that PA can modulate
the TYK-2/STAT-3 pathway [56,57]. The levels of proteins involved in fatty acids transport
and related to FABP would also be modified. For example a study observed a decrease
of FAB4 plasma levels following PA [58]. In addition, a study reported the capacity of
chronic PA to reduce FAS activity on obese rats but not for lean rats [59]. Moreover, it has
been shown that PA improves mitochondrial respiration and, more globally, mitochondrial
function, including protein content [60,61]. Furthermore, PA is known to influence the
production of hormones such as adrenaline [62], which could counteract the inhibition
of adrenergic-, epinephrine-, and norepinephrine-induced lipolysis caused by POPs. It
is important to mention that PA is recognized as a central approach in increasing energy
expenditure [63] given that studies demonstrate its impact on the thermogenic function
of adipose tissue and on reducing AhR and cytoplasmic levels, notably in humans [64,65].
The positive impact of PA on β-oxidation, lipid export, and triglyceride synthesis is also
well known. New research should focus on establishing if these results are still observable
in rodent models exposed to different POPs. To our knowledge, no study has assessed
the ability of PA to directly counteract the adverse effects of POPs on the Notch pathway,
on the TYK-2/STAT-3 pathway, on FABP, on FAS, or on AhR. One study observed that an
intervention including diet and PA may attenuate the obesogenic effect of PFASs [66].

A study indicated that POPs could disrupt the translocation and transactivation of
androgen receptors [67]. This result should be taken with caution because it could change
depending on the POP concentrations and combinations. This study also observed different
results between different POPs mixtures or compounds, emphasizing the importance of
the cocktail effect. Another study reported a low but significant agonist effect of DDT on
estrogenic activity [68]. Several studies assessed the effect of PA alone with these hormones.
An increase in dihydrotestosterone (i.e., androgen metabolite) was observed following
PA and more precisely resistance training [69]. For estrogens, a meta-analysis concluded
that PA reduced estradiol body concentrations but also positively influenced SHBG (sex
hormone binding globulin), a hormonal regulator that reduces hormone activity [70]. To
our knowledge, no study has directly compared PA and POPs on androgens and estrogens.

3.3. The Link between POPs, PA, and Insulin Resistance/Insulin Sensitivity

The reduction of insulin sensitivity is one of the determinants of obesity, and relations
between insulin resistance and obesity are well known [71,72]. A lack of insulin sensitivity
and insulin resistance are partially caused by the alteration of various physiological factors
of insulin regulation. Examples of these factors include JNK, IRS, PTEN, the PI3K-Akt path-
way, and GLUT4. JNK and PTEN are modulators of key parameters of insulin sensitivity.
In some circumstances, they can participate in insulin resistance. IRS and the PI3K-Akt
pathway are two key elements of insulin sensitivity leading to the activation of GLUT4. In
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return, GLUT4 helps to control glycemia by transporting glucose. To be more precise, JNK
is a signal transducer implicated in cellular anabolism and catabolism related to insulin
sensitivity, obesity, and insulin resistance [73]. JNK also has a key role in macrophage
activity. IRS is a protein, the role of which mostly consists of transmitting intracellular
signals coming from insulin receptors. They participate to glucose metabolism. PTEN
is a tumor suppressor known for its ability to inhibit the PI3K-Akt pathway [74] and for
GLUT4 translocation. Dysregulation of the PI3K-Akt pathway can lead to insulin resis-
tance. Alteration of GLUT4 activity can limit glucose transport. Additionally, inflammatory
factors such as TNFα can promote insulin resistance. Finally, it is interesting to note that
thyroid function is a master regulator of lipid homeostasis and glycemia homeostasis. Its
dysregulation may contribute to insulin resistance development [75].

As explained by a recent review [6], POPs can influence the previously cited mecha-
nisms of insulin sensitivity. Thus, some POPs can increase TNFα expression and influence
the JNK molecular pathway [76,77]. In addition, POPs can influence thyroid dysfunction,
to which ROS and the JNK pathway may contribute [77]. Other insulin resistance factors,
such as dysfunction of insulin signaling and negative impacts on the Akt pathway (i.e.,
reduction of phosphorylated Akt), on GLUT4 expression [78], and on insulin receptor/IRS
were evidenced [79]. Moreover, POPs are known to increase PTEN expression [78], which
inhibits the PI3K enzyme and Akt pathway [80]. This insulin resistance is even more prob-
lematic as it contributes to ROS production through its link with hyperglycemia and ROS,
which promote lipid peroxidation. Lipid peroxidation is part of a vicious circle because it
in turn promotes insulin resistance. A recent review summarized the major interactions
between oxidative stress, inflammation, hyperglycemia, and insulin resistance [81]. In ad-
dition, some researchers have proposed that insulin resistance could cause an uncontrolled
release of POPs into the bloodstream [82]. POPs are determinants of obesity, which itself
is a determinant of the development of insulin resistance. In conclusion, POPs are able to
reduce insulin sensitivity by both indirect and direct mechanisms. For example, they may
promote inhibition of key insulin-sensitivity factors or disrupt molecular mechanisms.

It is well known that PA is an effective strategy to prevent and reduce insulin resistance.
Studies showed an improvement in insulin sensitivity through PI3K/Akt pathway activity,
the reduction of JNK activity [83], glucose transport via GLUT4 [84], and insulin receptor
tyrosine phosphorylation as well as IRS phosphorylation [85,86]. A study reported many
combined potential beneficial effects of PA on specific molecular pathways that impact
insulin transduction [87], such as GLUT4 expression, insulin receptor expression, IRS2 pro-
tein expression, insulin-stimulated receptor tyrosine phosphorylation, insulin-stimulated
tyrosine phosphorylation of IRS1, PI3K activity, and insulin-stimulated Akt phosphoryla-
tion. Positive effects on the activity of PTEN have also been observed following PA, and
these effects could participate to promote insulin sensitivity [88]. To summarize, unlike
POPs, which can reduce insulin sensitivity, PA can improve insulin sensitivity. Directly
comparing POPs exposure and PA on insulin resistance is thus essential.

Few studies have investigated the beneficial effect of PA as a countermeasure to the ad-
verse effects of POPs on insulin resistance. A study compared the effect of tetrachlorodibenzo-
p-dioxin (i.e., a POP) and PA on glucose metabolism and the IRS/PI3K/Akt pathway [89].
The results showed that while PA had positive effects on some parameters (e.g., IRS2), the
ability of PA during POP exposure to counteract altered insulin sensitivity appeared to
be limited. A second study indicated that children with maternal exposure to PFAS and
reporting high PA scores displayed null HOMA-IR indexes in contrast to children with
lower PA scores [90]. The interaction between DDT and PA was noted in 1977 during the
assessment of blood glucose levels on rats [91]. This study also showed that, when exposed
to DDT, PA increased the insulin levels of exercised rats in comparison with sedentary rats.
A recent study investigating different PFASs demonstrated that an intervention including
diet and PA could protect the individual from diabetogenic effects [92]. Our knowledge
about the interaction of POPs and PA and their effect on insulin sensitivity remains lim-
ited. Thus, it would be interesting to determine the cumulative effect of PA and POPs on
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insulin-related factors like JNK, PTEN, and GLUT4. A schematic representation of possible
interactions between POPs and PA on insulin sensitivity is shown in Figure 1.
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Figure 1. Potential interactions between POPs and PA on insulin sensitivity. Numerous mechanisms
interact to ensure stable insulin sensitivity. However, POPs can disrupt these mechanisms (red
arrows), and conversely, PA could limit their disruption (green arrows). However, these results are
based on studies that did not directly compare exposure to POPs and the practice of PA. There is
therefore a lack of knowledge about the level of protection that PA can provide following exposure to
POPs (yellow question marks).

3.4. The Link between POPs, PA, and Inflammatory Function

POPs may influence certain factors related to inflammation, which is associated with
insulin resistance and obesity [93]. The easiest way to observe the inflammation caused by
chemical substances is to measure proinflammatory cytokines (e.g., IL-1β and TNFα), anti-
inflammatory cytokines (e.g., IL-10 and IL-4), and inflammatory markers (e.g., C-reactive
protein). It is also possible to measure hormone concentrations more or less directly related
to inflammation. Thus, leptin and adiponectin should be considered. As a reminder,
leptin is recognized for its influence on satiety as well as inflammation. Another molecule,
adiponectin, is recognized for its anti-inflammatory capacities, its influence on insulin
sensitivity, and its influence on lipid/glucose metabolism.

Intestinal exposure to POPs can promote NF-κB protein activation via the ATM/NEMO
pathway, leading to an increase in IL-6 and TNFα, as observed in a rodent model [94].
NF-κB is a protein implicated in cytokine production but also in insulin resistance. POPs
are also thought to be linked to inflammation via the AhR protein and expression of the
inflammatory cytokine IL-1β, as found in an in vitro experimentation [95]. In addition, this
study demonstrated an increase in macrophage polarization and a significant increase in
CCL2, CCL3, and CCL4, cytokines involved in the inflammatory function. Other inflamma-
tion factors appear to be impacted by POPs exposure. A human study showed that these
molecules contribute to altered levels of IFNγ, IL1-β, IL-2, IL-5, IL-8, IL-12p70, IL-17A,
TNFα, and TNFβ [96]. Interestingly, another study indicated that POPs could be the cause
of a chronic pro-inflammatory state [97]. Inflammatory markers such as the C-reactive
protein seem to increase in the presence of some POPs, while others do not show any effect
or are inversely associated with it [98]. The impact of POPs on inflammation-related factors
may also involve alteration of leptin signaling, leptin gene expression, and leptin receptor
expression [99]. This discovery is therefore linked to the phenomenon of leptin resistance,
which is known to facilitate the development of obesity. Adiponectin can be negatively
associated with POPs [100], as observed in a human study. The link between POPs and
adiponectin could be explained indirectly by the hypoxia phenomenon caused by adipose
tissue expansion. However, this may not be applicable to all POPs [101]. Other factors
promoting inflammation that are impacted by POPs, such as ROS [102,103], adipose tissue
dysfunction, altered lipid metabolism, and macrophage infiltration [104], should also be
considered. According to the result of a study [105], intestinal inflammation can also be
caused by POPs in an AhR-dependent manner.

Regarding factors related to inflammation, PA limits the activation of the NF-κB
protein, in particular by promoting the increase of its inhibitor IκB [106]. Another study
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showed that PA promotes the release of anti-inflammatory cytokines such as IL-1ra and IL-
10. This increased concentration of anti-inflammatory cytokines results from the production
of IL-6 following PA [107]. Together with this IL-6 production, PA may inhibit other
inflammatory factors like IL-1β and TNFα and this can result in changes to hormonal
status, PA intensity, and PA duration [107,108]. A meta-analysis focusing on overweight
and obese adults indicated that PA in association with caloric restriction can be more
efficient than caloric restriction alone to reduce TNFα levels. The results were dependent
on lifestyle behaviors (i.e., sedentary levels) [109]. In parallel, we have already mentioned
the influence of PA on the AhR protein, the inflammatory role of which was discussed
earlier. Although it is recognized that immediate assessment of inflammation following
PA elevated inflammatory markers, chronic PA can reduce CRP concentrations [110]. A
meta-analysis [25] highlighted that PA was associated with a decrease in leptin and an
increase in adiponectin in children. Thus, PA can help to reduce leptin resistance [111].
Interestingly, both hormones are strongly linked to the insulin resistance phenomenon
and to inflammatory function [112]. PA is also essential for reducing oxidative stress, and
different training modalities may have different effects and targets [113]. Furthermore,
oxidative stress is known to be linked to insulin resistance, which was previously described
as a major determinant of obesity and POPs’ release into the bloodstream.

All the previously cited articles only assessed the effect of PA on inflammation without
POPs exposure. Evidence for comparable effects in organisms contaminated by POPs
remains scarce. PA was recognized as a key approach to limit the oxidative stress caused by
some POPs by increasing the activity of antioxidant enzymes such as SOD, CAT, GSH-Px,
and MDA scavenging [114]. A study reported a decrease in IL-6, CCL2, and macrophages
in the PA group exposed to one PCB in comparison with a sedentary group. The results
also showed reduced oxidative stress and increases in various antioxidant enzymes (e.g.,
GPx) [115]. Regarding hormones, a study assessed the effect of PA on leptin–adiponectin
ratio following maternal exposure to specific PFASs [90]. Interestingly, this ratio was used
to assess adipose tissue dysfunction. Another study reported links between PFASs, leptin,
and adiponectin, but PA did not appear to prevent the related alterations [116]. A study
also demonstrated the interaction between PA and POPs on inflammatory factors but in
the context of wound healing [117]. The study observed that IL-1β levels, TNFα levels,
CCL2 levels, and IL-6 levels following PA changed the function of POPs exposure. With
the knowledge linking PA, inflammation, and POPs being limited, future studies should
explore this research area.

3.5. The Link between POPs, PA, and Gut Microbiota

Exposure to specific POPs can cause dysbiosis of the gut microbiome, as observed
in a mouse model [118]. A recent review highlighted how dysbiosis can contribute to the
development of obesity [119]. Additionally, it is important to mention that the adverse
effects of obesogenic chemicals may be facilitated by the alteration of gut microbiota [120].
Another study reported alterations of gut microbiota, metabolism, and inflammatory
function when exposed to POPs [105]. The study also reported an important relationship
between POPs, gut microbiota, and AhR. Our narrative review already exposed the effect
of AhR during obesity development.

A recent review focused on PA and its effect on the gut microbiota. One of the objec-
tives of the review was to determine how different PA could modulate gut microbiota, for
example, by affecting the Bacteroides–Firmicutes ratio or the gut microbiota diversity [121].
Interestingly, PA in obese children can reduce the abundance of Proteobacteria phylum, and
Proteobacteria are known to be associated with the gut microbiota profile of adult people
living with obesity [122,123]. It is possible to suggest that PA may protect individuals from
microbiota dysbiosis in the early stages of their life when exposure to POPs is critical.

Following these insights, it was necessary to assess if there was a clear interaction
between PA and POPs exposure. One study found that when mice were exposed to PCBs,
the abundance of Proteobacteria was decreased, but PA attenuated this decrease [118]. A



Int. J. Mol. Sci. 2024, 25, 883 10 of 24

second study presented more mitigated results when observing the effect of PA on the gut
microbiota of mice following maternal exposure to PCBs [124].

3.6. Effects of PA on the Mobilization of POPs

Some of the above-mentioned studies suggest that PA could be a valuable strategy
to counteract POPs’ adverse effects. However, one may also argue that PA could also
promote the release of POPs into the bloodstream. This may be associated with adverse
effects. Few articles have focused on the effects of PA on POP blood concentration levels.
It is therefore essential to assess if PA can increase POPs’ excretion and elimination or, in
contrast, increase their interaction with organs.

Following their entrance into the body, most POPs can be found in adipose tissues,
where they are stored, but also in the blood flow. As suggested in a study [125], POPs
moving in the bloodstream may be eliminated or transformed by several mechanisms.
These include biotransformation (i.e., chemical reaction altering a substance) and biliary
clearance/excretion [126]. Both mechanisms can be influenced by PA [127–129]. In fact,
a study highlighted the ability of aerobic exercise to facilitate DDT degradation [114].
Interestingly, the authors explained that anaerobic and aerobic conditions have different
biotransformation rates. A more recent study seemed to confirm the ability of PA to
eliminate POPs from the human body [130]. The results demonstrated that PA can reduce
benzo(a)pyrene urine levels with a sex-dependent effect. In fact, the elimination potential
was more important for females than males. Secondary results showed better elimination
of benzo(a)pyrene for people with a low BMI.

The excretion of POPs via urine or sweat can also contribute to the reduction of POP
concentrations [131–133]. Nevertheless, clearance through perspiration does not impact all
POPs similarly [131]. The urinary system is known to be influenced by PA, with an increase
in diuresis [134]. Nonetheless, one study directly compared the effect of some POPs and
an intervention including PA with kidney function, which is part of the urinary system.
The results showed alteration of kidney function in relation with PFASs, but PA did not
prevent this association [135]. The sweating phenomenon is increased with PA [136]. It is
interesting to note that the quantities of POPs excreted may depend on the type of activity
involved in sweat production [133]. More participants should be included in similar studies
to confirm these results and extend the identification of the associated mechanisms. Other
authors [137] mitigated the importance of POPs excretion by sweat. However, it is possible
that by including all ways of excretion, the results on health may be greater. Moreover,
various POPs remain to be studied when assessing sweat and urine rates of excretion.

Although POPs can be eliminated, transformed, or excreted, PA can also increase the
concentration of POPs into the bloodstream. Indeed, exercise-induced lipolysis may have
the potential to promote the release of POPs into the bloodstream [138] since POPs are
stored in adipose tissue. The results of the previously cited study nevertheless revealed
different rates of release between different PCBs. Increasing the release of POPs into the
bloodstream from adipose tissues might facilitate the global reduction of POPs accumulated
throughout life if combined with elimination, transformation, and excretion processes. To
our knowledge, no study has addressed this issue by considering the release–elimination
ratio. Yet, this is crucial information to assess the ability of PA to control the adverse effects
of POPs in the context of obesity.

Furthermore, few articles have focused on POP blood concentrations during PA.
Recent observations seem to indicate that the effect of PA on POP blood concentrations
can vary as a function of individual characteristics (e.g., sex, age, country, exposure rate
to POPs, and body composition). In addition, these recent observations also revealed that
each POP category (e.g., PCBs, PBDEs, OCPs) can react differently to PA [125,139,140].
For example, in a study, OCP blood concentrations were shown to be reduced following
PA, and PCB blood concentrations did not change significantly [125]. This aspect is still
debated in the current literature [141,142]. Another study observed that obese individuals
had significantly more plasma concentrations of various POPs than lean individuals and
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athletes [143]. Only DDT plasma concentrations were reported to be lower in athletes than
in lean individuals.

A schematic representation of the relations between POPs and PA in the context of
obesity is presented in Figure 2.
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Figure 2. Potential mechanisms showing how physical activity (PA) may counteract the adverse
effects of persistent organic pollutants (POPs) in the context of obesity. These different factors may
interact with each other by direct or indirect mechanisms. With its positive impact on insulin function,
lipid accumulation, adipogenesis, inflammation, and gut microbiota, PA can counteract a large variety
of alterations caused by POPs. By increasing or improving physiological mechanisms such as sweat,
urine, biotransformation, and biliary clearance, PA may reduce POP blood concentrations. The effects
of POPs and PA can be modulated by the environment and inter-individual differences. The scheme
is only an analytical summary of the isolated effects of POPs, and its validity needs to be confirmed
in the case of POP cocktails or for different concentrations. Red box (global POPs’ potential negative
influence), green box (global PA potential positive influence). Red arrows (potential adverse effects
of POPs), green arrows (potential protective effects of PA). AhR (aryl hydrocarbon receptor), AI
cytokines (anti-inflammatory cytokines), Akt (or Protein Kinase B (PKB)), AMPK (AMP-activated
protein kinase), Ao-enzymes (antioxidant enzymes), C/EBPα (CCAAT enhancer-binding protein
alpha), C/EBPβ (CCAAT enhancer-binding protein beta), C/EBPδ (CCAAT enhancer-binding protein
delta), CRP (C-reactive protein), FABP (fatty acid-binding protein), FAS (fatty acid synthase), GLUT4
(glucose transporter type 4), IL-1β (interleukin 1 beta), IR (insulin receptor), IRS (insulin receptor
substrate), JNK (Jun N-terminal kinase), lipid management (includes alterations of lipolysis, thermo-
genic function, triglyceride synthesis, β-oxidation, and lipid export), M respiration (mitochondrial
respiration), NF-κB (nuclear factor-kappa B), PA (physical activity), PI3K (phosphoinositide 3-kinase),
POPs (persistent organic pollutants), PPARγ (peroxisome proliferator-activated receptor gamma), PI
cytokines (proinflammatory cytokines), PTEN (phosphatase and TENsin homolog), ROS (reactive
oxygen species), SREBP-1 (sterol regulatory element-binding protein-1), TNFα (tumor necrosis fac-
tor), TYK-2/STAT-3 pathway (tyrosine kinase 2/signaling transducer and activator of transcription
3 pathway).
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3.7. Is PA an Accurate Solution to Prevent POPs’ Adverse Effects?

The present review emphasizes the performance of PA in relation to the adverse
effects of POPs. However, PA could be potentially harmful in some situations if not used
with caution. Third main difficulties need to be considered. The first one is the increased
exposition to POPs during PA caused by environmental pollution. The second one is the
increased lipolysis during PA, which facilitates POPs’ liberation into the bloodstream. The
third one is the presence of POPs in physical activity equipment and associated items.

Firstly, a study reported an increased risk (×3) of exposure to a high level of POPs
during PA [140]. A multifactorial approach including various respiratory parameters
and mucociliary clearance (i.e., reduced during PA) can explain these results [144]. Then,
practicing PA during high-pollution-level periods and/or close to POP sources would
increase the inhalation of pollutants and their transport in the ventilatory tract. Another
study observes the presence of a large variety of PFASs in the water of swimming pools
and suggest that the presence of PFASs may be related to sunscreen, conditioners, and
disinfectants [145]. Thereby, it is possible to suppose that PA should be practiced in non-
polluted environments if possible. In addition, a study investigated the link between
dietary intake, some POPs, and sports [146]. The results showed that different dietary
habits, in comparison with the general population, could increase the risk of exposure
to POPs.

Secondly, PA increases lipolysis within the adipose tissue and reduces triglycerides [147,148].
POPs being lipophilic, the degradation of lipolysis within the adipose tissue would inevitably
cause POPs’ release into the bloodstream. Although increasing the release of POPs into the
bloodstream from adipose tissues may facilitate the global reduction of POPs accumulated
through life as previously explained, it may also cause adverse effects by facilitating the interaction
of POPs with vital organs (e.g., brain, kidney, liver). This has yet to be proven. Interestingly, PFASs
can have hepatotoxic effects, but PA could be an efficient strategy to prevent these effects [149].
Another study reported that weight loss can increase POP concentrations in human milk [150].
Thirdly, PA-related equipment is often fabricated with POPs, and human are regularly in
contact with them. For example, a review indicated that tennis rackets, bicycles, fishing
lines, climbing ropes, ski wax, and boat equipment were fabricated using PFASs [151].
Textile products are also a source of exposure [152]. Priority should be given to clothing
that presents a low risk of exposure to POPs during PA. Not only can individuals be
exposed to POPs by skin contact, but it is also very likely for these chemicals to affect the
environment [153–156], resulting in an increased risk of exposure for humans.

This review seeks to offer insights into the potential effectiveness of PA as a strategy
for mitigating the adverse effects of persistent organic pollutants within the context of
obesity. A large and prolonged increase in POPs into the bloodstream of obese individuals
may cause adverse effects. Such a specific situation can be observed following bariatric
surgery. The next part of this review will first shortly explain the current knowledge about
POPs’ blood release following bariatric surgery. Second, how PA and bariatric surgery
may interact to increase or reduce POP blood concentrations will be discussed. Third, this
review will speculatively attempt to question the optimization of PA strategies following
bariatric surgery within the context of POPs. Understanding how obese individuals could
be protected from the adverse effects of POPs’ blood release following bariatric surgery
seems crucial. In this context, the use of PA could be an interesting strategy.

4. When Physical Activity Is Highly Recommended but Potentially Harmful: The Case
of Bariatric Surgery
4.1. Bariatric Surgery Is Associated with an Important Increase in POP Blood Concentrations

In some cases of morbid obesity, bariatric surgery may be required. However, the
massive weight loss associated with this surgical procedure may promote the release of
POPs, with harmful consequences. Indeed, a recent review emphasized that an individual’s
weight loss is accompanied by an increase in POP concentrations of 2–4% per kilogram
of weight loss [11]. A recent study also evidenced that blood concentrations of POPs
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may double in the year following bariatric surgery [157]. However, the magnitude of the
concentration increase may vary depending on the molecule considered. It is nevertheless
important to note that in some cases, the increases could exceed the current recommenda-
tions [158]. Interestingly, it is also observed that certain characteristics, such as the type
of POP released, may vary among populations following bariatric surgery. This makes
each person a unique case to be treated. Furthermore, the increase in POP concentrations
following bariatric surgery has been shown to be potentially associated with hormonal
changes in humans [159]. Finally, the ability of POPs to spread to other organs (e.g., like
the brain) via the bloodstream should be considered [160].

4.2. How to Implement PA Programs to Protect against POPs’ Release

PA is highly recommended to improve patients’ health, wellbeing, and quality of life
after bariatric surgery. PA also favors weight loss, preserves muscle quality, and improves
cardiorespiratory capacities [161]. However, after bariatric surgery, it remains to be deter-
mined if PA would have beneficial or adverse effects on POPs’ release. This reasoning is
based on the rationale linking PA, lipolysis, and POPs’ release into the bloodstream. As
already mentioned, it is suggested that by promoting lipolysis, PA could increase POP
plasma concentrations beyond current sanitary regulation levels. Alternatively, one may
suggest that PA could promote POPs’ elimination. This review identified the potential
protective effects of PA against POPs’ adverse effects. It is therefore important to assess
whether PA can also counteract the adverse effects of POPs’ release following bariatric
surgery. An overview of the potential beneficial effects of PA post-bariatric surgery [162]
and of the potential adverse effects of POPs is given in Figure 3.
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More studies are needed to confirm these results and explore other previously cited
parameters in the context of bariatric surgery. Opposite effects may be modulated by the
type of PA involved in the rehabilitation process. After bariatric surgery, aerobic training
and resistance training can be combined. Resistance training can be implemented for its
beneficial effects on muscle mass and strength and aerobic training for its beneficial effects
on cardiovascular, visceral adiposity, and respiratory capacities [163–166]. Each type of PA
seems to have specific benefits to offer, but aerobic training promoting fat loss could induce
a greater release of POPs into the bloodstream (Figure 4). Alternatively, resistance training
would not expose individuals to these adverse effects.
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In this context, it could be suggested to periodize the different types of PA (i.e., aerobic
training and resistance training) during the readaptation period to protect the individual
against POPs’ release into the bloodstream. For instance, given that POP levels increase
during the first months following bariatric surgery, resistance training should be planned
during this initial period to limit POPs’ release into the blood through reduced lipolysis.
Aerobic training should be periodized after this initial phase, when POPs’ release is reduced
or after the spike. However, this is purely speculative. Studies are needed to confirm or
refute this proposal. Alternatively, programming aerobic exercise shortly after surgery may
contribute to exceeding sanitary regulation levels. It may also cause a harmful release of
obesogenic POP mixtures into the bloodstream (Figure 5).

Early periodization of resistance training could prevent overcoming POP sanitary
regulation levels. Resistance training in combination with bariatric surgery may produce
less POPs’ release into the bloodstream than aerobic training after bariatric surgery. When
POP blood concentrations start to drop, aerobic training could be implemented (Figure 6).
However, POPs’ dangerousness may not follow a linear dose–response model, in which
case, increased POP blood concentrations may not be the ideal biomarker to determine
which type of PA should be used and when. Therefore, future studies should assess
the relationship between PA modality, POPs’ mobilization rate, lipolysis-induced POPs’
blood release rate, and POPs’ concentration dangerousness. The type, intensity, and
frequency of PA may also be responsible for inter-individual variations. It is possible
to assume that an individual practicing PA regularly will have greater benefits than an
individual with an irregular practice of PA. More PA sessions could lead to greater chances
of excreting POPs from the body. It is also possible that increasing the exercise intensity
would result in greater benefits. An individual with high-intensity PA may therefore be
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better protected from the adverse effects of POPs than an individual with low-intensity PA
through increased sweat production. Inter-individual variability could also be explained by
the different ways of practicing PA. It could be questioned whether an individual practicing
interval aerobic training will have similar POPs’ mobilization as an individual practicing
continuous aerobic training. As explained above, the conditions in which PA is practiced
can influence exposure to POPs. An individual practicing in a polluted environment
could therefore benefit less than an individual practicing in an unpolluted environment.
Finally, physiological differences (e.g., altered bile system, altered sweat production, altered
inflammation system) could also explain inter-individual differences.
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5. Conclusions

POPs are increasingly known for their ability to promote the development of obesity.
Among the main reasons, there is a possible detrimental effect of POPs on adipogenesis,
lipid accumulation, insulin resistance, inflammation, and gut dysbiosis. All these factors
can be influenced by PA, and our analysis of the literature suggests that PA could potentially
be an effective intervention to counteract most of the adverse effects of identified POPs.
However, only a few studies have directly assessed the effects of PA on these adverse
effects in the context of exposure to POPs. PA also appears to be associated with the direct
mobilization of POPs, but the ins and outs of this mobilization are less known. For example,
it is unclear whether the excretion of POPs via sweat during PA is sufficiently important
to limit their accumulation into the bloodstream consecutive to lipolysis. Future studies
should address this question.

It is possible to assume that the “POPs adipose tissue profile”, including diversity and
quantity, is the key factor to understand the development of obesity in some individuals.
To give an example, it is logical to assume that a person with an “obesogenic POPs profile”
(i.e., quantity and variety favoring the development of obesity) is more at risk to develop
obesity than a person with a “non-obesogenic POPs profile” (i.e., quantity and variety less
at risk for obesity but which may present other health risks). To our knowledge, no study
has established a global profile for a person living with obesity. Although the cost may be
very expensive, future studies should aim to assess these profiles and to establish the effect
of PA on all these profiles.
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C/EBPδ CCAAT Enhancer-Binding Protein delta
CAT Chloramphenicol AcetylTransferase
CCAAT Cytosin-Cytosin-Adenosin-Adenosin-Thymidin
CCL2 Macrophage Chemoattractant Protein-1 (MCP-1)
CCL3 Macrophage Inflammatory Protein-1 alpha (MIP-1α)
CCL4 Macrophage Inflammatory Protein-1 beta (MIP-1β)
CRP C-Reactive Protein
DDT DichloroDiphenylTrichloroethane
EASO European Asylum Support Office
eNOS Endothelial Nitric Oxide Synthase
FABP Fatty Acid-Binding Protein
FAS Fatty Acid Synthase
FFAs Free Fatty Acids
GLUT4 Glucose Transporter type 4
GR Glucocorticoid Receptor
GSH-Px Glutathion Peroxydase
IFNγ Interferon-gamma
IκB Inhibitor κB
IL-12p70 Interleukin 12p70
IL-17A Interleukin 17A
IL-1Ra Interleukin-1Ra
IL-1β Interleukin 1beta
IL-2 Interleukin 2
IL-5 Interleukin 5
IL-6 Interleukin 6
IL-8 Interleukin 8
INSERM Institut National de la Santé et de la Recherche Médicale
IRS Insulin Receptor Substrate
IVM Integrated Vector Management
JNK Jun N-terminal Kinase
LPL Lipoprotein Lipase
MDA Malondialdehyde
NADPH oxidase Nicotinamide Adenine Dinucleotide Phosphate oxidase
NF-κB Nuclear Factor-Kappa B
OCPs OrganoChlorine Pesticides
PA Physical Activity
PBDEs PolyBromoDiphénylEthers
PCBs PolyChlorinated Biphenyls
PGC1α Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
PI3K Phosphoinositide 3-Kinase
POPs Persistent Organic Pollutants
PPARγ Peroxisome Proliferator-Activated Receptor gamma
PTP1B Protein Tyrosine Phosphatase 1B
PTEN Phosphatase and TENsin homolog
ROS Reactive Oxygen Species
SHBG Sex Hormone Binding Globulin
SOCS3 Supressor Of Cytokine Signaling 3
SOD SuperOxyde Dismutase
SREBP-1 Sterol Regulatory Element-Binding Protein-1
TNFα Tumor Necrosis Factor alpha
TYK-2/STAT-3 Tyrosine Kinase-2/Signal Transducer and Activator of Transcription 3
VAT Visceral Adipose Tissue
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