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Abstract: Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various
types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of
leukemic cells. Among the different subtypes, the group “AML with gene mutations” includes the
variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are
the most frequent (~30–35% of AML adult patients and less in pediatric ones) and occur predom-
inantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion
at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of
2–12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of
the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+.
Many investigations demonstrated that interfering with the cellular location and oligomerization
status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus,
and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able
to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the
neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these
conformational features, novel therapeutic strategies are proposed that rely on the induction of the
selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small
molecules able to enhance amyloid aggregation and targeting selectively AML–NPM1c+ mutations.

Keywords: nucleophosmin 1; AML–NPM1 mutations; NPM1c+ targeted therapies

1. Introduction

Acute myeloid leukemia (AML) is a prevalent form of acute leukemia in adults, with
a cure rate of 40–50% among individuals aged 18–60 years when treated with standard
chemotherapy and/or allogeneic stem cell transplantation. However, the incidence of AML
rises significantly with age, typically affecting individuals around 70 years old, and the cure
rate drops dramatically to 5–10% in older adults [1]. Despite advancements in supportive
care and relapse prediction, a high cure rate in AML remains elusive, and to address this
medical challenge, it is crucial to deepen the cellular and molecular mechanisms at the
basis of the distinct AML subtypes. Genetic heterogeneity is a critical factor in predicting
treatment response and developing therapeutic strategies [2]. To actually tailor patients’
care, concomitant genetic mutations are also delineated, pointing out the importance of
individualized assessment to optimize the efficacy of treatment protocols [3,4].

Genomic studies, focused on distinct gene sequences and mutations, unraveled the
great molecular heterogeneity in AML patients [2]: in ~30–35% of cases, the most prevalent
genetic mutations involve nucleophosmin 1 (NPM1), occurring in approximately one-third
of newly diagnosed cases across age groups [5]. This subtype of AML, known as “AML with
mutated NPM1”, was identified in 2005 through unique immunohistochemical patterns
fully predictive of NPM1 mutations [5,6]. Indeed, in AML it exhibits peculiar molecular
and clinical characteristics: an abnormal cytoplasmic displacement of its mobility to drive
clonal hematopoiesis, its exclusion with recurrent cytogenetic abnormalities, distinctive
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gene expression and micro-RNA profiles. For these features, the World Health Organization
(WHO), in 2017, recognized “AML with mutated NPM1” as a separate entity among
lymphohematopoietic malignancies [7,8].

This review will discuss NPM1-mutated forms of AML, detailing the structural and
functional consequences of these mutations.

2. Structure and Functions of NPM1

NPM1 is a multifunctional protein with nuclear chaperone functions [9]. It is mainly
present in nucleoli, where it takes part in rRNA maturation processes [10] and embryonic
development [11]. It is directly implicated in primitive hematopoiesis and hematopoietic
malignancies as myelodysplastic syndrome (MDS), since NPM1 plays a critical role in the
maintenance of hematopoietic stem cells (HSCs) in preserving the functional integrity of
these cells in the context of competitive transplantation (HSCT) [12] and the transformation
of MDS into leukemia as well as in the modulation of gene expression and signaling path-
ways that govern cell survival [13]. NPM1 is observed in different cellular compartments in
response to various types of cellular stresses [14,15], and it is found to be overexpressed or
mutated in various types of tumors, including gastric, ovarian, bladder and prostate carcino-
mas and in hematological malignancies [16,17]. NPM1 has a modular structure, constituted
by three domains, as schematically described in Figure 1 [18]. The N-terminal domain (NTD,
residues ~1–117), is highly conserved within the nucleoplasmin family and serves as an
oligomerization core region enabling self- and hetero-oligomerization with other proteins.
Based on X-ray studies, the structure of human NPM1-NTD displays a unique arrangement
of eight β-barrels, resembling a jelly roll barrel [19]: in it, NPM1 monomers assemble as
donut-shaped homo-pentamers, exhibiting an asymmetric distribution of charges, with
clustered negatively charged residues on the top surface of the oligomer. These pentamers
interact in a head-to-head fashion, forming a decamer that exhibits an adaptable structural
plasticity at the pentamer–pentamer interface [19]. When in oligomeric status, NPM1
engages in interactions with many proteins, including protamines, protamine-like proteins,
histones, nucleosomes, DNA repair proteins like XRCC1 (X-ray repair cross-complementing
protein 1), transcription factors, and APE1 (apurinic/apyrimidinic endoribonuclease 1) [20].
Post-translational modifications dynamically regulate this multimeric state; indeed, phos-
phorylation regulates the monomer–pentamer equilibrium by inducing the disassembly
of the pentamer into unstable and unfolded monomers, and this polymorphism regulates
NPM1 cellular localization and function [21]. The oligomeric form of NPM1 is associated
with its nucleolar localization and cellular proliferation; instead, the monomer is associated
with responses to DNA damage and apoptosis [22]. The NTD contains a nuclear export
signal (NES), which further confirms its regulatory role in nucleo-cytoplasmic shuttling [23].
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The central portion of NPM1 is an IDR (intrinsically disordered region) character-
ized by two acidic domains rich in aspartic and glutamic acids (regions 119–133 and
161–188) [24]. Their negative charges can mimic the DNA and RNA sequences, allowing
binding to histones H1, H3, H4, H2A and H2B [25,26]. Within this region, there is a specific
sequence serving as a nuclear localization signal (NLS) [27], which has been demonstrated
to drive the liquid–liquid phase separation (LLPS) of NPM1 within the nucleolus [22,28].
This process occurs through distinct mechanisms: two heterotypic, involving nucleolar
proteins such as NCL (nucleolin) and FBL (fibrillarin) that display R-rich motifs or nascent
ribosomal RNA (rRNA), and one homotypic, based on internal interactions mediated
by electrostatic forces within the polyampholytic IDR. These interactions maintain the
liquid-like state of the nucleolar granular component (GC) during ribosome assembly [21].
Indeed, heterotypic NPM1-mediated LLPS mechanisms initiate the early stages of ribo-
some assembly, close to the dense fibrillar component (DFC). During this phase, ribosomal
proteins and rRNAs integrate into pre-ribosomal particles and mask sites of interaction
with NPM1, reducing the affinity for it [29]. Subsequently, NPM1 homotypic mechanisms
take place, guiding the pre-ribosomal particles for the exit from the nucleolus [30].

Mutagenesis studies revealed that deletions within the NTD or central region impair
chaperone activity: NTD deletions such as DN35 and DN90 showed 84% and 66% reduced
activity and the further deletion of 30 additional amino acids (DN119) drastically reduced
this activity to approximately 10% compared to the full-length protein. Similarly, deletions
in the IDR region (NPM1.3 and NPM1.1-∆A1A2) induce alterations in the protein dynamics
and dysregulation within NPM1’s interactome, hampering its chaperone activity [24,31].

The C-terminal domain (CTD) (residues 225–294) is a globular region, in wt form,
containing a three-helix bundle [32] in which helices H1 and H3 are almost coaxial with
the opposite polarities, whereas the connecting helix, H2, is tilted by ~45◦ with respect
to the other helices [32]. The overall structure is stabilized by a small hydrophobic core
among four aromatic residues, Phe268, Phe276, Trp288 and Trp290, which are also involved
in the uncommon nucleolar localization signal (NoLS) that regulates also NPM1’s interac-
tions with ribosomal DNA within the nucleolus [33]. This domain is mainly involved in
DNA/RNA recognition and regulation [34].

3. NPM1 Is the Most Commonly Mutated Gene in Adult AML
3.1. Common NPM1 Mutations and Structural Consequences

NPM1 mutations are crucial markers of AML [35]. They occur in the context of
preleukemic clonal hematopoiesis [36] and are prognostically favorable in the absence
of FLT3-ITD mutations [37]. RT-PCR and direct sequencing studies have revealed that
the majority of mutations in the NPM1 gene predominantly occur in exon 12. Within
this exon, researchers have identified about 50 different types of mutations, specifically
14 distinct mutations [5] were identified and are reported in Table 1, including the common
A–F mutations and another eight variants, named from J to Q [38]. Type A is the most
frequent mutation (75–80% of cases) and consists of a duplication/insertion of a TCTG
tetranucleotide between nucleotide positions 960 and 961. The resulting shift in the reading
frame involves alterations in the CTD by replacing the last seven amino acids (WQWRKSL)
with eleven different residues (CLAVEEVSLRK). Type B, the second most common mutation
(10% of cases), presents an insertion of four base pairs (CATG) at the same nucleotide
position as type A, while the D mutation has a similar insertion of four base pairs of CATG
and provides identical aminoacidic mutations. In types E and F, nucleotides from 965
to 969 (GGAGG) are deleted and two different 9 bp sequences are inserted, causing a
distinct frame shift in nine amino acids [39]. As the fourth most common mutation, type I
(c.863_864insCTTG) was identified in 1.7% of 877 patients [40]. All these mutations are
heterozygous and retain a wt allele, and they cause the loss of one Trp (E-F) or, more
commonly, two Trp residues (A-D) [41] and the gain of a new NES [42].
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Table 1. Common and rare mutations in exon 12 of the NPM1 gene. In red, residues constituting new
NES, and in blue, the stop signal. In green, the two tryptophans, Trp288 and Trp290, of the NoLS.

Nucleotide Sequence Protein

wt NPM1 GATCTCTG. . .GCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLWQWRKSL294

Common
mutations

GATCTCTGTCTGGCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCLAVEEVSLRK298

GATCTCTGCATGGCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCMAVEEVSLRK298

GATCTCTGCGTGGCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCVAVEEVSLRK298

GATCTCTGCCTGGCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCLAVEEVSLRK298

GATCTCTG. . .GCAGTCTCTTGCCCAAGTCTCTTTAAGAAAATAG 286DLWQSLAQVSLRK298

GATCTCTG. . .GCAGTCCCTGGAGAAAGTCTCTTTAAGAAAATAG 286DLWQSLEKVSLRK298

GATCTCTG. . .GCAGTCTCTTTCTAAAGTCTCTTTAAGAAAATAG 286DLWQSLSKVSLRK298

GATCTCTCCCGGGCAGT. . .AAGTCTCTTTAAGAAAATAG 286DLSRAVEEVSLRK298

GATCTCTG. . .GCAGTCCCTTTCCAAAGTCTCTTTAAGAAAATAG 286DLWQSLSKVSLRK298

GATCTCTGTAGCGCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCTAVEEVSLRK298

GATCTCTGCCACGCAGT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCHAVEEVSLRK298

GATCTCTGGCAGCGTTTCCAGGAAGTCTCTTTAAGAAAATAG 286DLWQRFQEVSLRK298

GATCTCTGTACCTTCCT. . .GGAGGAAGTCTCTTTAAGAAAATAG 286DLCTFLEEVSLRK298

GATCTCTG. . .GCAGAGGATGGAGGAAGTCTCTTTAAGAAAATAG 286DLWQRMEEVSLRK298

Nucleotide Change

Rare
mutations

c.864_876delinsTCGGAGTCTCGGCGGAC 286DLCRSLGGLSLRKA299

c.864_873delinsTCAAGACTTTCTTA 286DLCQDFLKVSLRKA299

c.867_875delinsAGATTTCTTAAATC 286DLWQDFLNRLFKRIVA301

c.868_876delinsGGGATAGCGATGC 286DLWQGIAMLSLRKA299

c.868_876delinsGGGGTGGGGAATC 286DLWQGVGNLSLRKA299

c.863_871delinsCGACCCTCCTGGG 286DLSTLLGEVSLRKA299

The most frequent NES motif (L-xxx-V-xx-V-x-L) is present in 7 of the 14 leukemic
mutants, while the other mutants exhibit NES with different hydrophobic amino acids
substituting Val (Phe in O- and Met in Q-type mutations) (Table 1). Hence, the mutations
shift the balance toward nuclear export, causing cytoplasmic localization of the protein,
NPM1c+ (Figure 2) [43], which interacts with XPO1 (Exportin 1) through the NES motif,
which is responsible for the transfer of NES proteins from the nucleus to the cytoplasm [44].
All the observed exon 12 AML mutations cause the loss of the three-helix bundle in the
CTD [32].
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(arrow) greatly predominates over the nuclear export (dotted arrow). Thus, NPM1wt mainly resides
in the nucleolus. (Right) Aberrant cytoplasmic localization of both NPM1mut and NPM1wt in AML.
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3.2. Rare Mutations of Exon 5 and Fusion Transcripts of NPM1c+

While almost all the mutations involve exon 12, rarely (<1%) mutations can concern
exons 5 [45], 9 and 11 [46], leading to NPM1 cytoplasmic mislocation. In this context, a
recent study involving three patients, namely, PG patients 1, 2 and 3, was focused on exon
5 mutations (Table 2): PG 1 with an in-frame insertion of 21 nucleotides at c408–409 that
produces a mutant 7 amino acids longer than the wt protein (p.L136_137insAEDVKLL),
PG 2 with an out-of-frame insertion of 18 nucleotides at c409–410, leading to a trun-
cated protein of 137 aa (p.S137_K137fs*) and PG 3, with an in-frame insertion of 27 nu-
cleotides at c424–425, leading to a mutant protein having 9 more amino acids than the
wt (p.K141_142insLSALSISGK). Another study reported on a fourth case of exon 5 mu-
tation, patient MLL 4, in which in-frame insertions/duplications, each consisting of nine
nucleotides, occurred at c399–400 and c400–401, leading to a six amino acid protein longer
than the wt (p.K134_Q134insLLSGLQ). Immunohistochemistry and analysis of fusion
transcripts such as GFP-NPM1 mutants in NIH-3T3 cells highlighted that all the exon
5 mutations do not lead to the loss of NoLS but, nevertheless, exhibit a cytoplasmic local-
ization for the presence of an additional NES. Indeed, with the exception of PG 2, all the
other mutants retained the wt CTD [45].

Table 2. Mutations in exon 5 of the NPM1 gene. In red, residues changed in the protein sequence
with respect to the wt, and in green, the two tryptophans, Trp288 and Trp290, of the NoLS.

In-Frame Insertion/Duplications Protein

Exon 5
Mutations

c408–409 (F,5′-GCGGAGGATGTGAAACTCTTA) DVKLL136AEDVKLL. . .286DLWQWRKSL294

c409–410 (F,5′-AATGATCTGTCACTTCTG) DVKLL137K

c424–425 (F,5′-TTTCTGCCTTAAGTATATCTGGAAAGC) ISGK141LSALSISGK. . .286DLWQWRKSL294

c399–400 (F,5′-CAACTCTTA) and c400–401 (F,5′-GTGGGCTGC) EEDV134QLLSGLQ. . .286DLWQWRKSL294

c406–423 (F,5′-GCCCTGGAACTGGGGAAC) DVKL135ALELGNLSI. . .286DLWQWRKSL294

Very recently, a mutation called the NPM1_MutSong mutant (from the name of the
patient Song), in exon 5 was discovered, generating an additional NES (LALELGNLSI)
(Table 2) in the central region which caused its cytoplasmatic localization despite the
preservation of the Trp288 and Trp290 of the NoLS [47].

3.3. Consequences of Cytoplasmic Mislocation of NPM1c+

A key characteristic of NPM1c+ in AML patients is the high expressions of the
homeobox (HOX) transcription factors (TFs), including the HOXA/B cluster genes, MEIS1
(myeloid ecotropic viral integration site 1) and PBX3 (pre-B-cell leukemia homeobox 3) [48].
Activation of these TFs leads to an increase in the self-renewal of leukemic clones [44],
therefore inhibiting the expression of these TFs through Menin-inhibitors or targeting
XPO1 to prohibit NPM1c+ translocation is currently in clinical investigation (NCT04067336;
NCT02667873) [49,50].

AML with mutations in the NPM1 gene morphologically displays the features of
myeloblastic leukemia with or without differentiation (predominant blast cells, cytoplasmic
granules, irregular nuclei and heterogeneous subtypes) and those of acute leukemia with
monocytic/monoblastic differentiation (undifferentiated cells, differentiation based on
monocytic-lineage blast cells, prominent blast morphology). Blast cells often exhibit cup-
like nuclei [51]. Immunophenotypically, cells with NPM1 mutations are frequently positive
for CD33, CD117 and MPO (myeloperoxidase) in myeloblastic-like cases [52]. A majority
of AML cases have CD34-negative blasts, while approximately one-third lack HLA-DR
(human leukocyte antigen-DR isotype) expression [53].

The NPM1 locus is involved in translocations associated with hematologic malig-
nancies, including (i) acute promyelocytic leukemia t(5;17)(q35;q12) leading to NPM1-
RARα (retinoic acid receptor alpha fusion protein), (ii) anaplastic large cell lymphoma
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t(2;5)(p23;q35) leading to NPM1-ALK (anaplastic lymphoma kinase fusion protein), and
(iii) myeloid neoplasms t(3;5)(q25;q35) leading to NPM1-MLF1 (myeloid leukemia factor 1
fusion protein) [54,55]. The fusion protein NPM-ALK resulted in a significant percentage of
advanced anaplastic large cell lymphoma cases and immunohistochemical assays indicated
a cytoplasmic localization [56].

In general, the cytoplasmic mislocation of AML-NPM1 dysregulates several cellular
processes, leading to uncontrolled centrosome duplication, the inhibition of tumor suppres-
sor genes, the activation of caspase 6 and 8 proteolytic activities, impairment of the DNA
repair pathways and the activation of the Myc oncogene [57]. These imbalances can drive
myeloproliferation and the development of leukemia. However, animal studies revealed
that these imbalances alone may not always lead to full-fledged disease, indicating the
requirement for NPM1 mutations and cooperating mutations in other genes, like DNA
methyltransferase 3A (DNMT3A), to allow the progression to overt leukemia [58].

Moreover, in AML, the total absence of nucleolar NPM1 is not frequent since AML
mutations are always heterozygous due to the non-viability of homozygous NPM1 mu-
tations. This effect is reflected in the formation of heterodimers among mutated and wt
forms of NPM1, locating them to the cytoplasm [59]. The molecular mechanism underlying
the induction of the leukemic state in myeloid cells remains a critical issue. One key aspect
involves the upregulation of Class I HOX genes, which are crucial for proliferation, dif-
ferentiation and self-renewal in hematopoietic stem cells, and the upregulation of HOX-A
and -B genes, linked to a stem-cell-like state, was observed in AML-NPM1c+ cases [60].
NPM1c+ might contribute to the leukemic phenotype by transporting other molecules into
the cytoplasm, altering their functions [56], as demonstrated for the transcription factor
PU.1/spi-1 (Spi-1 proto-oncogene), which resulted in impaired differentiation and the
monocytic features of AML cells [61]. Similarly the bromo-domain protein 4 (BRD4) is an
epigenetic regulator of transcription that is usually inhibited by wt NPM1, and the reduc-
tion of this inhibition due to cytoplasmatic localization led to an increase in the transcription
of several related genes such as the anti-apoptotic Bcl-2 and oncogene c-MYC [62].

4. NPM1c+ Mutations Govern the Amyloidogenicity of the CTD

Despite numerous studies of the cellular effects of the cytoplasmic localization of
NPM1, few examples of research addressing the conformational effects of AML mutations
were available up to 10 years ago. One explanation could concern the very low yields in
attempts concerning the protein expression of mutated forms of CTD-NPM1c+. For this,
we are conducting studies on the structural consequences of AML mutations using syn-
thetic polypeptides [63,64]. In these investigations, biophysical approaches demonstrated,
unequivocally, that an amyloid-aggregation propensity is a direct consequence of AML
mutations [63,65–76]. Initial studies, carried out by performing a protein dissection of the
CTD, were focused on the analysis of peptides covering the three-helices of the bundle,
H1, H2 and H3. In detail, in the H2 region, NPM1264–277, exhibited a remarkable tendency
to form amyloid-like assemblies with fibrillar morphology and β-sheet structure under
physiological conditions. These assemblies proved to be cytotoxic in SH-SY5Y neuroblas-
toma cells. A systematic alanine scanning study of the 264−277 region indicated as the
“basic amyloidogenic unit” the stretch FINYV (268−272) [65] in the initial stages of the
self-recognition process [66]. These novel findings led us to a hypothesize that the structural
destabilization of the CTD in NPM1 mutations could facilitate aggregation by exposing the
amyloidogenic H2 region. To probe this hypothesis, similar studies were carried out on
peptides spanning the third helix, H3, both in wt and AML variants [67,76]. NMR studies
revealed that the H3 wt has a prevalent α-helical structure, while the mutants, type A and E,
exhibited greater flexibility in promoting amyloid aggregation. Subsequently, all the com-
mon mutations in exon 12, were assessed to form amyloid aggregates, displaying variable
kinetics and levels of oligomerization [76]. By assuming an aggregomic perspective on the
structural consequences of AML mutations, the conformational and aggregative behavior
of the entire CTD were investigated in wt, mutA, mutF and mutC variants [70,74,77].
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These structure–activity relationship (SARs) studies introduced novel insights into
the possible molecular mechanisms associated with AML onset and progression and
prompted further exploration of the structural determinants that regulate the aggregation
process [78,79].

5. Therapeutic Strategies Targeting NPM1c+

Numerous therapeutic approaches are currently being explored to target NPM1. As
schematically described in Figure 3, they include: (1) the disruption of its oligomerization,
(2) the modulation of nucleolar assembly, (3) the inhibition of translocation, (4) the induc-
tion of nucleolar starvation and (5) the promotion of its degradation via the proteasomal
pathway [8,16,27,43].

Despite significant progress in AML treatments, ~50% of patients with NPM1 muta-
tions still do not respond to current therapies and succumb to the disease [80]. These data
highlight the urgent need for innovative approaches to improve treatment outcomes.
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In leukemic cells bearing NPM1c+, the nucleolus becomes particularly susceptible
to stress due to the partial depletion of NPM1 caused by both haploinsufficiency and
mislocalization [82], thus the induction of nucleolar stress has emerged as a potential
therapeutic strategy for NPM1 AML.

5.1. Therapeutics Targeting NPM1 Protein–Protein Interactions

In the field of small molecules as potential therapeutics, NSC348884 (Figure 4) was
initially reported to prevent the formation of NPM1 oligomers [83], but its MOA is still de-
bated. Indeed, several pieces of experimental evidence indicated that NSC348884 was able
to interfere with NPM1 oligomerization in vitro by targeting the hydrophobic NTD, leading
to the unfolding of the tertiary structure and thus altering its interactome; furthermore,
along with inhibitory effects on proliferation and pro-apoptotic effect in OCI cells [84]. On
the other hand, for other authors, NSC348884 did not affect the NPM oligomer in many
leukemia cells and the cell sensitivity to NSC348884 treatment was not potentiated by AML-
associated NPM mutation. An unknown effect of NSC48884 on the cell-surface adhesion,
could play a key role in the complex cellular response to the NSC48884 treatment [85].
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Other compounds can target the CTD of NPM1c+, for example, avrainvillamide
(Figure 4), is a prenylated indole alkaloid, highly oxidized, isolated from the marine fungus
Aspergillus sp. CNC358. It not only demonstrated in vitro the ability to form a covalent
linkage with Cys275 in certain AML NPM1 mutants (types A and E) but also inhibited the
nuclear export of the XPO1 protein, altering NPM1’s cellular localization and partially
relocating NPM1c+ to the nucleus [86]. Avrainvillamide exhibited greater efficacy in anti-
proliferative activity in OCI-AML3 than in primary AML cells, likely due to the unfolded
state of the CTD in mutated proteins. Additionally, it induced proteasomal degradation of
NPM1c+ and promoted differentiation of OCI-AML3 cells [87].

5.2. Therapeutics Targeting the Nucleolus of NPM1c+

Falini and collaborators reported on a phase 2 pilot study (2014-000693-182; 2014-
003490-412) investigating the safety and efficacy of a single-agent, dactinomycin (Figure 4),
which is a well-known antibiotic from the actinomycin group that exhibits high antibacterial
and antitumor activity. It is a natural polypeptide isolated from soil bacteria of Streptomyces
parvullus [88]. This drug can induce complete remission associated with nucleolar stress
response in relapsed/refractory NPM1c+ adult patients and is relatively well tolerated [89].
Several studies reported that NPM1c+ disrupts the formation of nuclear bodies (NBs) [90],
which are key regulators of mitochondrial fitness and senescence; thus, AML cells harboring
NPM1c+ often experience impaired mitochondrial function [91]. Actinomycin D intervenes
in this scenario by influencing mitochondria, releasing mDNA, activating cyclic GMP-AMP
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synthase signaling, generating reactive oxygen species (ROS) and restoring NB formation,
which, in turn, triggers TP53 activation and senescence [90]. Conversely, another approach
involves the combination of arsenic trioxide (ATO) with all-trans retinoic acid (ATRA)
(Figure 4). ATO is very potent old drug reintroduced into new medicine by Chinese
studies on acute promyelocytic leukemia (APL) treatment and rapidly approved by the
FDA for relapsed cases [92], while ATRA is the most active metabolite of vitamin A
with significant anticancer properties [93] (Figure 4). Their synergistic effect triggered
a proteasome-dependent degradation of NPM1c+, leading to cell death in OCI-AML3
cells and primary AML cells harboring NPM1 mutations [90,94]. Other compounds, like
deguelin (Figure 4), which is a naturally occurring flavonoid with anti-cancer activities [95],
and (−)-epigallocatechin-3-gallate (EGCG), which is the major catechin found in green
tea [96], demonstrated the ability to reduce NPM1mut expression levels and to induce
apoptosis through the upregulation of caspase 6 and caspase 8 in both OCI-AML3 and
IMS-M2 cells [97,98]. EAPB0503 (1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-
4-amine) is an imidazoquinoxaline derivative [99] able to induce proteasome degradation
mediated by SUMOylation and ubiquitylation of NPM1c+. The mechanism implies the
restoration of the NPM1wt within the nucleolus, the induction of apoptosis upon the
downregulation of HDM2 and the activation of p53, and a reduction in the leukemia
burden in NPM1c+ AML xenografts [100,101]. PROTACs (proteolysis-targeting chimeras)
are heterobifunctional molecules consisting of one ligand that binds to a protein of interest
(POI) and another that can recruit an E3 ubiquitin ligase [102] (Figure 4). They result
in attractive therapeutics since they are able to trigger ubiquitination and proteasome-
mediated degradation of proteins [103], and they have been employed in promoting the
degradation of fused oncoproteins in MLL-PTD leukemia subtypes [104], suggesting its
application could be potentially extend to NPM1c+. Specifically, its selective degradation
using a degron-tag could lead to the differentiation and growth arrest of NPM1c+ cell lines
(OCI-AML3 and IMS-M2) [44], confirming the effectiveness of this approach.

5.3. Therapeutics Targeting NPM1c+ Localization

Given the characteristic alteration in the shuttling of NPM1 between the nucleus and
the cytoplasm in AML, numerous strategies employ nuclear export inhibitors, such as
leptomycin B (Figure 4). Leptomycin B (LMB) is an antifungal antibiotic from Streptomyces
species, and it is a specific inhibitor of nuclear export protein XPO1 [105]. Unfortunately, it
is associated with severe toxicity due to its irreversible binding mechanism to XPO1 [106].
More recently, a class of reversible inhibitors known as selective inhibitors of nuclear export
(SINEs) was developed [107], and among them, KPT-330 (selinexor) [108] and KPT-8602
(eltanexor) (Figure 4) [109] showed anti-leukemic activity by inhibiting the interaction
between NPM1-mut and XPO1, improving the tolerability and also synergistic activity
with BCL-2 inhibitors by increasing apoptosis in NPM1-AML cells [110], as currently being
evaluated in early phase trials (NCT03955783).

5.4. Therapeutics as Menin Inhibitors

Menin inhibitors are emerging as promising therapeutics in NPM1c+-AML. The menin
protein is a crucial regulator of tissue-specific gene expression [111] and a co-factor for
histone-lysine-N-methyltransferase 2A (KMT2A), influencing histone methylation and
correlating with active transcription of HOX genes. The aberrant expression of HOXA
and HOXB genes and of their co-factor MEIS1 is a hallmark of NPM1-mutated AML [112].
The abnormal cytoplasmic localization of NPM1c+ directly influences HOX gene expres-
sion [44], indicating a link between cellular localization and gene regulation. In this context,
the inhibition of the KMT2A/menin complex by chemical agents, such as VTP-50469
and MI-3454, demonstrated significant anti-leukemic activity, reducing cell proliferation,
downregulating HOXA/B clusters and MEIS1 gene expression, promoting a marked dif-
ferentiation of leukemic cells, and reducing the AML engraftment and survival in mouse
patient-derived xenograft (PDX) models [113,114].
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Ongoing clinical trials concerning menin inhibitors are producing important prelimi-
nary results in terms of safety and efficacy for patients with NPM1-mutated or KMT2A-
rearranged AML [115].

KO-539 (Figure 5) induces complete remission (CR) in two out of six patients with
relapsed/refractory acute myeloid leukemia (R/R AML), including a minimal residual
disease (MRD)-negative CR in a NPM1-mutated AML patient co-mutated for DNMT3A
and KMT2D [115]. Actually, a trial enrolling NPM1-mutated and KTM2A-rearranged AML
patients at different doses (NCT04067336) is ongoing. SNDX-5613 (Figure 5) is an analog of
VTP-50469, which demonstrated significant activity in mouse models of NPM1-mutated
AML, with some animals remaining in CR one year after treatment cessation [114,116].
A related trial in adult patients with R/R NPM1-mutated or KTM2A-rearranged AML
showed a 29% overall response rate and RNA-Seq analysis indicated downregulation of
MEIS and HOXA9 genes and upregulation of differentiated antigens CD11b, CD14, and
CD13 and actually has gone into phase 2 (NCT04065399). A recent study highlighted the
efficacy of JNJ-75276617 (with a patented structure) with a significant preclinical activity
against OCI-AML3 cell lines and primary AML cells by disrupting the menin/KMT2A
protein complex and the resulting data support the first-in-human study to evaluate JNJ-
75276617 as monotherapy for patients with R/R AML with KMT2A or NPM1 alterations
(NCT04811560) [117]. BMF-219 (Figure 5) is a selective and orally bioavailable irreversible
inhibitor able to abrogate menin-dependent oncogenic signaling, with antiproliferative ef-
fects on menin-dependent AML and diffuse large B-cell lymphoma (DLBCL) cell lines [118].
The safety, tolerability and clinical activity of escalating doses of BMF-219, orally admin-
istered once daily, are currently being assessed in a phase I study (NCT05153330) [119].
DSP-5336 (Figure 5) is an effective and selective inhibitor, specifically capable of inhibiting
the growth of leukemic cell lines, such as MV-4-11, MOLM-13, KOPN-8, and OCI-AML3,
harboring MLL-r (mixed-lineage leukemia-rearranged) or NPM1 mutations but not sig-
nificantly affecting those without such mutations [120]. At a molecular level, it positively
modulated menin-regulated gene expression, leading to a reduction in MEIS1 and HOXA9.
Moreover, in both human and murine leukemia models, the compound demonstrated the in-
hibition of blast colony formation and induced CR [120]. A phase 1/2 dose escalation/dose
expansion study of DSP 5336 in patients with R/R AML is ongoing (NCT04988555).
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5.5. Therapeutics Targeting Aggregation of NPM1c+

On the basis of our studies, we are proposing an alternative and innovative thera-
peutic route by exploiting the molecular aggregation exhibited by AML’s mutated forms.
The amyloid self-recognition can likely concur with the formation of cellular aggregates;
thus, the use of external agents able to promote amyloid aggregation could be a valuable
tool for inducing cytotoxicity. In general, the promotion of the aggregation of specific
proteins allows them to disrupt their normal cellular functions or induce cytotoxicity in
target cells [121]. Recently, we followed this approach by employing two small molecules,
phenoxazine compounds derivatives of orcein: dihydroquinazoline, named smA and hex-
ahydroquinoline, smB (Figure 4), which were already demonstrated to be accelerators of
amyloid aggregation. These compounds showed a significant influence on the aggregation
mechanism of NPM1c+. In particular, smB specifically induced cytotoxicity in OCI-AML3
cell lines overexpressing NPM1c+, thereby promoting the formation of intracellular amy-
loid aggregates [122]. This discovery marks a significant milestone, as it represents the first
instance of agents targeting the molecular aggregation of NPM1 in AML mutations.

6. Conclusions

Given the plethora of cellular processes involving NPM1, many investigations unrav-
eled its role in diseases, where it appeared upregulated and/or mutated. Very recently,
NPM1-mutated MDS and chronic myelomonocytic leukemia CMML cases represent NPM1-
mutated AML diagnosed at an early stage and the NPM1 mutant defines AML irrespective
of the blast count [123]. The deep knowledge of cellular pathways allows us to pave the
way for new targeted treatments that specifically aim at the mutated genetic pathways
responsible for cancer cell growth. These advances have not only made it possible to create
more effective and targeted therapies but have also highlighted the importance of personal-
ized medicine, which provides customized treatments for the individual genetic profiles of
patients. Important issues to be evaluated during the diagnose and treatment of NPM1-
mutated AML are the NPM1 mutational status, the timing of HSCT, MRD monitoring and
ELN (Elastin) genetic-based risk stratification [124].

The combination of multiple agents is a dominant trend for NPM1-mutated AML, such
as venetoclax-based regimens and XPO1 inhibitors combinations. Interestingly, leukemic
cells in the primitive subtype are more sensitive to certain kinase inhibitors and the addition
of kinase inhibitors to the treatment might achieve benefits in this subtype of NPM1-
mutated AML. These promising discoveries mark a significant step forward in improving
the treatment prospects for AML patients. These findings indicate the complex ways
in which cytoplasmic localization of NPM1mut can impact various cellular processes,
ultimately contributing to the development of leukemia.
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