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Abstract: Capsaicin, the organic compound which attributes the spicy flavor and taste of red peppers
and chili peppers, has been extensively studied for centuries as a potential natural remedy for the
treatment of several illnesses. Indeed, this compound exerts well-known systemic pleiotropic effects
and may thus bring important benefits against various pathological conditions like neuropathic
pain, rhinitis, itching, or chronic inflammation. Yet, little is known about the possible biological
activity of capsaicin at the kidney level, as this aspect has only been addressed by sparse experimental
investigations. In this paper, we aimed to review the available evidence focusing specifically on
the effects of capsaicin on renal physiology, as well as its potential benefits for the treatment of
various kidney disorders. Capsaicin may indeed modulate various aspects of renal function and
renal nervous activity. On the other hand, the observed experimental benefits in preventing acute
kidney injury, slowing down the progression of diabetic and chronic kidney disease, ameliorating
hypertension, and even delaying renal cancer growth may set the stage for future human trials
of capsaicin administration as an adjuvant or preventive therapy for different, difficult-to-treat
renal diseases.

Keywords: capsaicin; kidney; hypertension; kidney disease; renal cancer

1. Introduction

Capsaicin is a chemical molecule abounding in the seeds and berries of red peppers
and chili peppers (genus Capsicum), being responsible for the hot, irritant flavor and taste of
these spices [1]. Red peppers and chili peppers have been used over the history as unique
flavoring agents as aphrodisiacs but also as true medicines or natural remedies. Capsaicin
was first discovered in 1816 by P.A. Bucholtz, but first extracted in 1876 by J.C. Thresh,
who finally gave it its renown name. Several beneficial properties have been attributed
to capsaicin based on its nociceptive, anti-inflammatory, immune, and anticancer effects,
thereby suggesting its possible therapeutic application in different disease settings [2].
Currently, capsaicin is widely employed as a topical, analgesic drug for treating neuropathic
as well as inflammatory pains, such as in diabetic neuropathy, post-herpetic neuralgia,
rheumatoid arthritis, and osteoarthritis [2]; non-pain indications for topical capsaicin
include the treatment of itch, psoriasis, and allergic rhinitis [3].

Interestingly, capsaicin also plays various roles in the kidneys, spanning from the
regulation of renal physiology to potential benefits, particularly regarding kidney diseases.
In this review, we aimed to summarize the key evidence regarding the putative role of
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capsaicin on kidney function and pathophysiology and its possible therapeutic applications
for treating some renal diseases.

2. Capsaicin—Biochemical Properties and Mechanism of Action

Capsaicin is an organic compound with a phenolic structure (8-methyl-N-vanillyl-6-
nonenamide). It is insoluble in water, containing a vanillyl group (the head), an amide
group (the neck), and a fatty acid chain (the tail) (Figure 1).
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Up to 94% of the administered capsaicin is well-absorbed either by an oral or topical
route [3]. Capsaicin acts as the agonist of the transient voltage-gated receptor potential
vanilloid-1 (TRPV1), also known as the capsaicin receptor, which was firstly discovered in
the rat dorsal root ganglia [4]. TRPV1 is a tetrameric channel, with N and C termini of each
subunit located intracellularly [4]. The affinity between capsaicin and the TRPV1 channel
is highly selective and potent, being well-studied on a three-dimensional level by Fan Yang
and Al. [5], who firstly observed that the bond between the molecule and the receptor
takes a ‘tail-up, head-down’ configuration, through interactions between the vanillyl group
and the S4-S5 linker. TRPV1 is a non-selective cation channel; when activated, sodium
and calcium ions flow into the cell to depolarize nociceptive neurons, promoting an action
potential which underlies the sensation of spiciness [4].

This receptor is located on the plasma membrane, mainly expressed at the endoplas-
mic reticulum level, playing a key role in intracellular calcium homeostasis [6]. TRPV1
releases calcium from intracellular stores and controls the calcium amount inside the
mitochondria [7].

TRPV1 is a polymodal receptor and can be activated by many stimuli beside capsaicin,
such as high temperature or acidosis, as well as by some toxins or compounds found, for
example, in wasabi or mustard [3]. After chronic exposure to capsaicin, the activity of
TRPV1 decreases (i.e., the desensitization phenomenon), due to an elevation of intracellular
calcium levels. This phenomenon both has a protective mechanism to avoid calcium
overload toxicity and contributes to the analgesic effects attributed to capsaicin [8]. On
these premises, TRPV1 is currently considered as a target for nociception, able to increase
the influx of calcium ions in dorsal root ganglion neurons [9,10]. Accordingly, mice lacking
the TRPV1 receptor exhibit an impaired thermo-mechanical acute pain sensation [11].

Besides its role on TRPV1 activation, capsaicin may regulate other ions’ flux, reac-
tive oxygen species production, and cellular membrane fluidity [12]. For these reasons,
this compound has also extensively been studied as a powerful antioxidant and anti-
inflammatory agent.
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TRP vanilloid channels abound in different human tissues, such as the skin [13], the
endothelium [14], and even the kidney (renal tubule) [15]. This latter observation has
prompted the interest of investigating the possible renal effects played by capsaicin under
either physiological or pathological conditions.

3. Functional and Structural Effects of Capsaicin on the Kidney

As briefly mentioned before, the TRPV1 channel is largely expressed in the tubules of
the renal cortex and medulla [15]. However, besides the TRPV1, capsaicin may target other
receptors which modulate various renal activities (Figure 2).
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As an example, the transient receptor potential cation channel member 6 (TRPC6)
is predominantly expressed in podocytes, and its functional alterations have been called
into question in the pathogenesis of various proteinuric kidney diseases [16]. TRPV4
receptors (TRP vanilloid 4 receptor channels) promote the influx of calcium into tubular
and endothelial cells [16]. Both the TRPV4 and TRPV1 receptors are crucial in maintaining
the functionality of both the endothelial barrier and the regulation of cell junctions [17,18]
and are likely involved in the functionality of the glomerular filtration barrier, as well [19].
Notoriously, podocyte injury or TRPV1-V4 derangement leads to different glomerular
diseases with consequent massive proteinuria [20]; hence, therapeutic modulation of
these receptors by capsaicin could theoretically represent a potential therapeutic target
for this kind of renal disease. Likewise, the TRP melastatin channels (TRPM2) are present
in the cytoplasm and intracellular organelles of renal tubular cells, and their inhibition
may improve the outcome of experimentally induced renal ischemia [21]. Capsaicin was
also proved to modulate the integrity of tight junctions of Canine Kidney-C7 epithelial
cells [22], enhancing their permeability to poorly adsorbable molecules. By the same token,
derivates of capsaicin with lower lipophilicity can increase the permeability of hydrophilic
compounds by opening the tight junctions for a shorter time than capsaicin, proving
that lipophilicity could interfere within tight junction activity. Notably, this mechanism
seems to be independent from TRPV1 activity and calcium ions’ flux [22]. TRP receptors
are also involved in the vaso-regulation of kidney vessels [23]. Accordingly, capsaicin
promotes renal vessel vasodilation in a concentration-dependent manner by binding these
receptors [23]. TRPV4 promotes vascular relaxation in large renal arteries, in renal conduit
arteries, and in medullary vasa recta, while TRPV1 displays a narrower distribution and
more undefined vasoactive effects [15]. Specifically, TRPV1 regulates pre-glomerular
vascular resistance, thereby explaining why acute capsaicin administration may temporarily
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increase the estimated glomerular filtration rate (eGFR). The activation of TRP vanilloid
channels produces a calcium influx into endothelial cells, triggering the relaxation of
different renal arterioles depending on the receptor localization. In fact, while TRPV1
vasodilates large renal resistance arteries with no effects on renal conduit arteries or renal
vasa recta, TRPV4 induces the relaxation of renal conduit arteries and smaller intrarenal
resistance arteries [23].

On top of these hemodynamic effects, capsaicin may also regulate diuresis and na-
triuresis [24,25]. Such an effect would rely upon a decrease in the perfusion pressure,
driven by an enhanced vaso-relaxation mediated by the calcitonin gene-related peptide
(CGRP) and the substance P, two largely acknowledged powerful vasodilators [24]. The key
role of CGRP was also confirmed by another experimental model [21]. A wire myograph
was employed to measure isometric tension changes in the renal tubules of mice while
mechanic stimuli were applied to the pelvicalyceal junction. Capsaicin administration to
those mice promoted slowed and enlarged spontaneous phasic contractions. The negative
chronotropic effects on those contractions were probably due to the release of CGRP as
induced by TRPV1 activation by sensory nerves. Interestingly, the unilateral activation of
TRPV1 sensory nerves innervating the renal pelvis of rats stimulated bilateral diuresis and
natriuresis independently from the CGRP concentration [26]. Finally, in another experiment,
the infusion of either capsaicin or CGRP prevented the increase in perfusion pressure as
induced by norepinephrine [27], while the preventive administration of TRPV1 antagonists
could blunt the hemodynamic effects induced by capsaicin [24], causing a greater vasodi-
lation in afferent arterioles than the efferent ones. This latter observation suggests that
under physiological conditions, TRPV1 may play a fundamental role in the protective, auto-
regulatory mechanisms against the increase in renal vascular resistance. No less important,
these observations further support the hypothesis that CGRP release and TRPV1 activation
are important mediators involved in the intrarenal, capsaicin-mediated vasodilation.

Although appropriate confirmations in a human setting are lacking, in a randomized
clinical trial on 21 healthy volunteers, intravesical capsaicin administration produced an
increase in both the mean urinary output and the mean estimated glomerular filtration
rate (eGFR; an estimation of total renal function) as well as the stimulation of natriuresis,
probably by activating a vesical-renal reflex arc through the stimulation of bladder efferent
activity [28]. Hence, future clinical studies are recommended for clarifying possible benefits
of this molecule on renal function, particularly in the presence of chronic renal diseases.

4. Capsaicin Modulates Renal Nerves’ Activity

Kidneys are widely innervated organs. Adrenergic neurons supply the segments of
renal vasculature and are distributed in all the segments of kidney [29]. TRPV1 channels
abound in the sensory nerves of unmyelinated C-fibers or myelinated A-δ fibers innervating
kidneys [30]. Hence, a direct involvement of TRPV-mediated mechanisms in the regulation
of renal function appears more than plausible [4].

As previously mentioned, the activation of TRPV1 by capsaicin causes the release
of neuropeptides, such as substance P and CGRP [30]. This, in turn, may activate renal
afferents, causing an excitatory reno-renal reflex and sympathetic activation [31], which also
involves the release of interleukin-1β from the hypothalamic paraventricular nucleus [32].
Accordingly, in an experimental model of Sprague–Dawley rats, intrarenal capsaicin in-
fusion elicited sympatho-excitatory responses in renal nerves, which were remarkably
increased during nighttime [33].

Notably, the activation of TRPV1 expressed in the unilateral renal pelvis increases
the ipsilateral afferent renal nerve activity, as well as the contralateral urinary excretion
of sodium and water via the reno-renal reflex [34]. In support of this hypothesis, surgical
sensory nerve fibers’ denervation or degeneration impairs sodium excretion in mice kidneys
treated with capsaicin, causing salt-sensitive hypertension [35].

Additionally, in dogs, the activation of the afferent C-nerve fibers by intra-arterial or
intra-renal injection of capsaicin results in sympathetic excitation [36,37]. Conversely, pre-
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treatment with capsaicin in neonatal rats leads to a decrease or even a depletion of CGRP
in the perivascular nerves of kidneys physiologically implied in the response to noxious
stimuli [38], but this phenomenon is absent in adults [39]. Similarly, the administration of a
capsaicin analogue, the neurotoxin resiniferatoxin, to neonatal rats reduced diuresis and
natriuresis, while this did not happen in adult mice, suggesting the development of a sort of
afferent fiber resistance to this treatment during adulthood [40]. This last hypothesis agrees
with the fact that capsaicin-sensitive sensory neurons could be involved in the regulation of
kidney function and generally supports the idea that this molecule may directly stimulate
kidney nervous fibers.

Besides the above-mentioned effects, capsaicin may also regulate renal peristaltic
contractions. The contractility of the renal pelvis muscles of the guineapig depends on the
presence of non-adrenergic non-cholinergic innervation; the administration of capsaicin
causes an initial positive inotropic response (increased contraction of the pelvis) that is not
maintained after long-term administration (desensitization phenomena) [41]. The rationale
behind this observation could rely on the synergic activity between TRPV1 and endothelin
receptors to control the excretory function of the kidney [42]. Indeed, endothelin-1 (ET-1)
is a potent vasoconstrictor and neurotransmitter found in primary afferent neurons [43],
and TRPV1 colocalizes with ET-1 receptors in sensory nerve fibers innervating the renal
pelvis [42], cooperating for the stimulation of diuresis and natriuresis.

5. Possible Beneficial Effects of Capsaicin in Kidney Diseases

The identification of novel, effective renoprotective agents for improving the treatment
of renal diseases remains a largely unmet need [44]. Nowadays, promising evidence has
been accumulated demonstrating different experimental benefits of capsaicin in some of
the most important and complicated renal diseases, such as acute kidney injury (AKI) and
diabetic kidney disease (DKD). Additionally, capsaicin may also play a protective role
against renal fibrosis and pathological arterial calcifications, two hallmarks of progressive
chronic kidney disease (CKD), and could partly antagonize the detrimental effects of
nephrovascular and salt-sensitive hypertension (Figure 3); unfortunately, this evidence
relies, again, on sparse pre-clinical models, which deserve an appropriate validation in the
human setting.
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5.1. Acute Kidney Injury

AKI is a clinical syndrome with many causes and a multifaceted pathophysiology
which is defined as an acute (within hours/days) decrease in kidney function with both
structural damage and function loss of the kidneys [45]. AKI complicates around 23%
of the total hospitalizations worldwide, but in the intensive care unit (ICU) setting, the
incidence of this condition can be as high as 78% [46]. Patient mortality due to AKI still
remains dramatically high, particularly among individuals requiring dialysis support [47].
The early identification of this condition is thus crucial to initiating adequate therapeutic
measures in a timely manner, thereby preventing worse patient outcomes, including the
severe clinical complications, or permanent kidney damage. Unfortunately, specific therapy
for AKI is lacking in the majority of cases, and preventive measures could not be as effective
as expected, particularly in critically ill subjects.

There is accruing evidence indicating that capsaicin administration may prevent
AKI onset in various models of kidney damage. In particular, in an in vitro model of
AKI [48], capsaicin ameliorated cytotoxicity induced by lipopolysaccharides, reducing the
release of specific interleukins (i.e., IL-1β and IL-18) and reactive oxygen species (ROS).
Specifically, such an effect has been attributed to the activation of the TRPV1 channel and
mitochondrial uncoupling protein-2 (TRPV1/UCP2) axis, triggering a protective effect
against inflammation, pyroptosis, apoptosis, and mitochondrial dysfunction.

In another model of contrast-associated AKI (CA-AKI), capsaicin significantly im-
proved tubular damage and renal dysfunction by reducing cell apoptosis, renal malondi-
aldehyde, and superoxide, also improving mitochondrial function and structure. Notably,
these effects were all mediated by an enhanced activation of the nuclear factor-erythroid
2-related factor 2 (Nrf2) [49]. In other AKI models, capsaicin was useful in preventing
cisplatin- and methotrexate-induced renal damage in rats, suggesting a protective effect
against toxins and lipid peroxidation as well, which represent the causative mechanisms of
renal damage in this setting [50–52].

Sparse evidence shows that capsaicin may also ameliorate ischemic AKI, one of the
most frequently observed forms of AKI in the clinical setting. The mechanism behind this
beneficial effect would likely involve TRPV1 as well as TRPV4 channels, which drive an
enhanced flow of calcium–potassium in endothelial cells causing vasodilation, thereby
ameliorating ischemic renal injury [15].

By the same token, the activation of TRPV1, TRPV4, TRPC6, and TRPM2 on rodent
models of AKI following ischemia–reperfusion promotes renoprotection through regional
vasodilation [16], an observation which might endorse these surface proteins as potential
therapeutic targets for ischemic AKI. Additionally, both in vitro and in vivo studies have re-
vealed that N-octanoyl-dopamine, an agonist of TRPV1, exerts a remarkable renoprotective
effect that can ameliorate AKI outcomes [53].

In mice with ischemia/reperfusion-induced kidney damage, the stimulation of TRPV1-
filled primary sensory nerves by capsaicin ameliorated AKI, although the inhibition of
those channels did not affect their overall outcome [54]. Conversely, other hypotheses
assume that the degeneration of sensory nerves on rodent models in vivo may aggravate
such a condition [52]. TRPV1 receptors are also involved in modulating inflammation
and oxidative stress following ischemic kidney injury, as demonstrated in an experimental
model in which rats treated with capsaicin following a salt-induced kidney ischemia and
hypertension displayed a reduction in kidney damage due to the activation of TRPV1 [55].

Salt intake increases the activity of the renal sympathetic nervous system (SNS) after
renal ischemia–reperfusion [56]. Mice fed with salt and treated with capsaicin show a
reduction in SNS activity, an effect which can likely be attributed to the selective activation
of TRPV1 channels [57].

Beyond attenuating ischemia–reperfusion-induced renal damage, preventive capsaicin
administration also reduced the expression of neutrophil infiltration, renal superoxide
production, and renal tumor necrosis factors (TNFs), which are all acknowledged as key
players in the pathogenesis of AKI and its progression towards chronic kidney damage [58].
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Evidence on the putative renoprotective effects of capsaicin in the setting of AKI is, thus,
convincing (Table 1). Yet, such findings remain confined to experimental models and would
need to be confirmed in the clinical setting by targeted interventional trials.

Table 1. Main experimental studies testing the effects of capsaicin in different models of AKI.

Authors Models Results

Han et al. [48] HK-2 cells treated with ATP
and LPS

Capsaicin preincubation ameliorated LPS-induced
cytotoxicity through TRPV1/UCP2 axis activation by
reducing IL-1β, IL-18, and ROS release.

Ran et al. [49]
Dehydrated C57BL/6J mice
treated with the contrast medium
iodixanol

Preventive capsaicin administration reduced
contrast-induced AKI through Nrf2 activation by decreasing
superoxide, renal malondialdehyde, and apoptotic tubular
cells and improving mitochondrial function.

Shimeda et al.
[51]

Male Sprague–Dawley rats
treated with cisplatin

Dietary capsaicin reduced cisplatin-induced renal damage
by reducing lipid peroxidation.

Aldossary et al.
[50]

AKI following methotrexate
intoxication in rats

Capsaicin administration reduced methotrexate-induced
renal damage by anti-inflammatory and antioxidant effects.

Tsagogiorgas et al.
[53]

Inbred male Lewis rats treated
with NOD

Treatment with the synthetic analogue of capsaicin NOD
had renoprotective effects against ischemia-induced AKI
through TRPV1 activation by inhibiting TNF-α mediated
inflammation and through production of the vasodilator
peptides CGRP and SP.

Yu et al. [55] Male Wistar rats fed with
high-salt diet

Capsaicin injection reduced renal inflammation driven by
high-salt diet, oxidative stress, and fibrosis through
activation of TRPV1.

Yu et al. [57] Rats fed with high-salt diet after
ischemia–reperfusion damage

Capsaicin inhibited renal sympathetic nerve activity by
activating TRPV1 receptors, which prevented the
appearance of salt sensitivity following renal
ischemia–reperfusion damage.

Ueda et al. [58]

Uninephrectomized male
Sprague–Dawley rats developing
AKI following renal artery and
vein occlusion

Treatment with capsaicin or its analogue resiniferatoxin
reduced ischemia–reperfusion renal damage by reducing
neutrophil infiltration, superoxide production, and TNF-α
production and by increasing IL-10 production.

Legend: AKI: acute kidney injury; ATP: adenosine triphosphate; CGRP: calcitonin gene-related peptide;
HK-2: human kidney 2; IL-1β: interleukin-1 beta; IL-10: interleukin-10; IL-18: interleukin-18; LPS: lipopolysac-
charide; NOD: N-octanoyl-dopamine; Nrf2: nuclear factor erythroid 2-related factor 2; ROS: reactive oxygen
species; SP: substance-P; TRPV1: transient receptor potential vanilloid type 1; UCP2: uncoupling protein 2;
TNF-α: tumoral necrosis factor alpha.

5.2. Diabetic Kidney Disease

Diabetes mellitus is the leading cause of end-stage kidney disease (ESKD) worldwide,
accounting for more than a half of all individuals requiring chronic dialysis treatment [59].
DKD encompasses a wide spectrum of type of renal damage due to chronic diabetes,
spanning from micro-vascular alterations to selective glomerular damage with severe pro-
teinuria and rapid progression to terminal uremia. The adoption of an optimal lifestyle,
blood glucose and weight control, and the use of renoprotective agents (such as RAS
inhibitors, SGLT-2 inhibitors, or mineralocorticoids) remain the mainstay combined ap-
proach to preserve renal function [60]. Yet, in a large percentage of diabetic patients, such
measures are ineffective in slowing down DKD’s progression towards ESKD. The search
for complementary approaches for improving renoprotection in this particular setting thus
remains a timely issue.

Capsaicin has already been extensively studied as a natural method to reduce pain
related to diabetic neuropathy [61], but its implications regarding DKD are still an object of
intense investigation.
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In particular, chronic administration of capsaicin on diabetic rats increased diuresis
and the urinary excretion of the epidermal growth factor (EGF) but reduced the urinary
levels of N-acetyl-b-D-glycosaminidase (NAG-L), a well-known biomarker of early kidney
damage in DKD [62].

Altered intracellular calcium levels and mitochondrial dysfunction are two key fea-
tures of podocyte dysfunction in DKD [63]. In diabetic mice models, oral capsaicin ad-
ministration attenuated renal damage in a TRPV1-dependent manner by improving the
intracellular calcium balance, by reducing the transport of calcium to the mitochondria, and
by decreasing mitochondria-associated membrane formation [64]. Iron overload, which
is common in diabetes, may trigger or worsen DKD [65]. In an interesting experiment,
chronic capsaicin administration was tested in male Wistar rats with iron overload (IOL)
and diabetes mellitus + IOL [66]. Capsaicin markedly reduced kidney iron deposits by
increasing the circulating levels of hepcidin, an important regulator of iron homeostasis,
but had apparently no relevant effects on biomarkers of renal damage such as albuminuria,
cystatin C, and beta-2-microglobulin.

Hence, more evidence is still needed in order to better understand the true implication
of capsaicin in DKD. Yet, these preliminary, interesting findings can also give a concrete
hope for a possible therapeutic application of this molecule in this condition.

5.3. Chronic Kidney Disease

CKD is the common final route of every chronic nephropathy. In fact, regardless of
the different etiologies, all chronic renal diseases converge on an irreversible histological
picture, represented by renal tubulointerstitial fibrosis and renal tubular atrophy, which dis-
rupts the cellular organization and leads progressively to renal function deterioration [67].
Despite being irreversible, the velocity of CKD progression over time is variable indeed,
depending on the specific nephropathy and the additional risk factors. As for DKD, lifestyle
and pharmacologic efforts to counteract CKD progression may not be fully effective in
a large percentage of patients, which justifies the ample ongoing research on alternative
therapeutic measures.

Experimental evidence indicates that capsaicin can reduce fibrosis accumulation on
different organs [68]. In two different mouse models of renal fibrosis [69], capsaicin
administration reduced fibronectin and collagen depositions in kidneys with a complex
action on intracellular signals pathways, involving the inhibition of the Transforming
Growth Factor-β1 small mother against decapentaplegic 2/3 signaling, which is the main
promoter of profibrotic mechanisms. TRPV-1 activation by capsaicin increased intracellular
calcium, upregulating various protein kinases and Silent information regulator 1, which
in turn enhanced the activity of endothelial nitric oxide synthase (eNOS) with following
endothelium vasodilation, finally inhibiting interstitial fibrosis [70]. These findings fit
well with those reported by other studies, proving that oral capsaicin may reduce renal
tubular interstitial fibrosis also by targeting the TGF-β1/epithelial–mesenchymal transition
(EMT) pathway [71–73]. Besides renal fibrosis, pathological vascular calcification also
contributes to disease progression and cardiovascular complications in CKD, representing
a strong predictor of mortality in these patients [74]. Chronic Hypoxic-Inducible Factor-1
alpha (HIF-1α) accumulation is known to cause osteogenic trans-differentiation, which
is one of the first steps leading to diffuse arterial calcification [75,76]. In a rat model
of CKD, capsaicin could inhibit the osteogenic trans-differentiation of vessels by acting
either on TRPV1 activation and HIF-1α degradation through the upregulation of Sirtuin
6 [77]; such a double, synergic mechanism to prevent vascular calcification by capsaicin
would absolutely deserve additional target investigations to ascertain whether this natural
compound could indeed represent a valid therapeutic option for ameliorating this serious
and still irreversible complication of CKD.
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5.4. Arterial and Renovascular Hypertension

The kidney plays a determinant role in regulating blood pressure homeostasis, and
deranged hormonal or vascular kidney responses have been implicated in the pathogen-
esis of either essential or secondary forms of arterial hypertension. On the other hand,
hypertension remains one of the major risk factors for the onset and progression of kidney
diseases [78]. As briefly alluded to before, CGRP is a potent vasodilator and is the principal
neurotransmitter in capsaicin-sensitive sensory nerves. Besides its vasodilatory effects,
this peptide is involved in the control of arterial pressure by interacting with the renin–
angiotensin–aldosterone (RAS) and the sympathetic nervous system and may modulate the
proliferation of the smooth muscle cells in the medium layer of arterial vessels [79]. As pre-
viously said, capsaicin is a potent inductor of CGRP release [30]. Accordingly, experimental
administration of this substance can ameliorate hypertension in rat models, an effect which
is partially mediated by an increased release of the insulin-like growth factor 1 [80]. Sodium
excess is another fundamental player in the pathogenesis of hypertension [81]. Induction of
TRPV4 channel activation causes hypotension in rats fed salt, suggesting that this receptor
channel has a protective role against salt-induced hypertension [82]. According to this
hypothesis, the preventive blockade of TRPV4 channels expressed in kidneys leads to a
significant increase in the blood pressure values of salt-sensitive mice [83]. As previously
mentioned, capsaicin also exerts a natriuretic role by activating TRPV1 channels, which
promote the expression of epithelial sodium channels in the kidneys. Thus, long-term ad-
ministration of capsaicin could be helpful for preventing the development of hypertension
secondary to dietary salt overload [84].

As is well-acknowledged, renal denervation leads to a remarkable decrease in arterial
pressure [85]; this is, at least in part, attributable to the disruption of overactive renal
nerves expressing TRPV1. In fact, deprivation of those channels in rats in the presence of
capsaicin caused a lack of sympathetic activity stimulation with a following reduction in
blood pressure values and a significant increase in the glomerular filtration rate [86]. On
the other hand, high salt intake after sensory denervation in rats increases blood pressure
values, thus indicating that salt overload induces hypertension independently of sensory
nervous activity [87]. Effectively, the blockade of TRPV1 causes an increase of blood
pressure values in salt-resistant rats fed with a high salt diet, while it has no effect on
salt-sensitive rats fed with a normal sodium diet; on the other hand, the stimulation of
TPRV1 decreases blood pressure values more in salt-resistant animals fed with a high-salt
diet than in others [88]. These results can prove that TRPV1 is activated during a chronic
dietary salt overload, implying that this channel may play a central role in the pathogenesis
of salt-sensitivity hypertension. Salt overload in salt-sensitive rats impairs the activity
of TRPV1 in their kidneys, which suppresses the release of CGRP and substance P in
the renal pelvis [89]. However, this does not happen in salt-resistant mice fed with high
salt intake. Hence, bearing in mind that CGRP and substance P may act as vasodilators,
these findings suggest that those two molecules, as well as capsaicin, which drives their
release, could be helpful for preventing renovascular hypertension. The potential benefits of
capsaicin in reno-vascular hypertension have also been highlighted in another experiment
focusing on the vasodilatory effects of this molecule and its capacity of triggering the
release of nitric oxide [90]. However, direct renal infusion of capsaicin increases the
contralateral renal sympathetic nerve activity in a dose-dependent manner, which leads to
a paradoxical increase in blood pressure through an excitatory renal reflex mediated by
the paraventricular nucleus [91]. Additionally, the degeneration of TRPV1-filled nerves
enhances salt-induced hypertension in rats after renal ischemia–reperfusion injury through
the release of inflammatory mediators [92]. Taken all together, these findings indicate
that TRPV1 channels could represent a promising target for the treatment of salt-sensitive
renal hypertension, also suggesting a potential role for capsaicin as a natural remedy for
ameliorating blood pressure control together with the use of common antihypertensive
drugs (Table 2).
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Table 2. Main studies testing the benefits of capsaicin administration in different models of reno-
vascular hypertension.

Authors Model Results

Harada et al. [80] Spontaneously hypertensive rats
and Wistar Kyoto rats

Capsaicin administration increased CGRP and IGF-1 plasma
levels in SHR as compared to those reported in WKR.

Gao et al. [82] Male Wistar rats fed with normal
sodium diet and high sodium diet

HS diet induced TRPV4 expression in mesenteric arteries
and sensory nerves with following increase in CGRP and
IGF-1 levels. HS diet induced a marked increase of blood
pressure when TRPV4 channel was blocked.

Li et al. [84] C57BL/6 wild-type mice and
TRPV1-/- mice

Dietary capsaicin induced natriuretic effect by inhibiting
WNK1/SGK1/aENaC pathway with consequent reduction
of aENaC expression at the renal level.
Dietary capsaicin reduced HS diet-induced hypertension
through TRPV1 activation.

Stocker et al. [86] 2-kidney-1-clip (2K1C) wild-type
rats and 2K1C TRPV1-/- rats

TRPV1 channels deprivation in presence of capsaicin caused
reduction in blood pressure and increase in the glomerular
filtration rate due to the lack of sympathetic activity.

Ye et al. [91] Spontaneously hypertensive rats
and Wistar Kyoto rats

Renal infusion of capsaicin increased contralateral renal
sympathetic nerve activation, causing an increase in blood
pressure through a renal nerve reflex mediated by the
paraventricular nucleus.

Segawa et al. [90] 2K1C rats and
sham-operated rats

Dietary capsaicin reduced nephrovascular hypertension by
promoting phosphorylation of Akt and eNOS, thus
enhancing NO release.

Legend: Akt: Ak strain transforming, also known as PKB protein chinase B; CGRP: calcitonin gene-related peptide;
eNOS: endothelial nitric oxide synthase; IGF-1: insulin-like growth factor 1; HS: high sodium; SHR: spontaneously
hypertensive rats; 2K1C: 2-kidney-1-clip; NO: nitric oxide; TRPV1-/-: transient receptor potential vanilloid type 1
knock-out rats; WKR: Wistar Kyoto rats.

5.5. Renal Cancer

The anti-tumoral properties of capsaicin on different types of cancer cells are well-
acknowledged, but definite data for recommending its daily use to synergize traditional
anticancer therapy are still missing [93]. By targeting multiple signaling pathways, onco-
genes, and tumor-suppressor genes, this substance may regulate the expression of different
genes involved in cell survival, growth arrest, metastasis, and angiogenesis, as demon-
strated in various models of cancer [94]. On top of that, capsaicin can promote changes
in cell morphology and migration, probably by impacting cell-to-cell interactions, cell
migration, and cell morphology; such effects would be likely driven by its interaction with
the vanilloid receptors and the following regulation of calcium flow [95]. In a milestone
experiment, capsaicin demonstrated a significant capacity of inhibiting migration and
the invasion of renal cancer cells both in vitro and in vivo, as well as promoting cellular
autophagy by activating the AMPK/mTOR pathway [96]. Such observations gave concrete
support to the potential therapeutical application of this substance as an inhibitor of renal
cancer invasion and peripheral metastasis. In addition, capsaicin promotes the inhibition
of the PD-L1/PD-1 checkpoint, limiting the proliferation of human bladder and renal
cancer cells [97]. In another model, capsaicin displayed an undisputable anticancer activity
on human renal carcinoma by inducing apoptosis through the p38 and JNKs/MAPKs
pathways, which are implied in the control of cell cycle progression [98]. Despite this
preliminary evidence, however, the true anticancer effect of capsaicin on human renal
neoplasias deserves an appropriate confirmation by focused clinical studies.

6. Conclusions

Capsaicin has been extensively studied for years for its unique physiochemical prop-
erties and the biological effects exerted on different tissues and organ systems. Nowadays,
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interesting but very sparse evidence is accumulating, pointing at this substance as a bio-
logically active factor in kidneys as well, particularly with respect to the hemodynamic,
nervous, and functional effects described in renal structures after experimental adminis-
tration. Additionally, capsaicin may serve as a protective factor against different types of
kidney injuries and diseases, including hypertension, which endorses this molecule as a
potential renoprotective agent, besides the traditional therapies, where available. Yet, to
date, clinical evidence on such benefits is lacking, particularly in the scenario of human
kidney diseases, in which the only clinically approved indication of capsaicin use is limited,
nowadays, to the topical treatment of uremic pruritus [99], a largely prevalent complication
of uremia which represents a source of stress and of a reduced quality of life [100].

Unfortunately, notwithstanding the above-mentioned benefits of capsaicin in systemic
disorders, the practical usability of this substance as a therapeutic agent remains hampered
by various limitations. As a matter of example, following chronic exposure to capsaicin, a
“desensitizing” effect attributable to a tolerance phenomenon may manifest, particularly
in habitual consumers of capsaicin-enriched foods [101]. Such an event may reduce the
magnitude of benefits over time, thereby limiting the efficacy of long-term treatments
in chronic diseases. Furthermore, due to its chemical structure, capsaicin has low hy-
drophilicity, scarce oral bioavailability, and is poorly absorbed because of an important
first-pass metabolism in the liver and its poor aqueous solubility. The use of capsaicin-
filled nanocapsules has been proposed as a suitable solution to maximize gastrointestinal
absorption; unfortunately, to this extent, larger doses of capsaicin are needed to equal
the biological effects of the pure compound [102], which may increase the risk of adverse
events. These could include irritation of the mucous gastrointestinal layer which may
cause nausea, vomiting, and burning diarrhea or even the appearance of peptic ulcers.
Furthermore, in allergic individuals, high-dose exposure to capsaicin may also induce
severe bronchoconstriction due to the greater activity of TRPV1 receptors at the pulmonary
level [103]. Hence, although capsaicin is commonly considered safe, relevant side effects in
predisposed individuals should always be taken into consideration.

Still, this natural substance remains a very promising natural approach for preventing
or treating various kidney disorders, as indicated by sparse although concordant experi-
mental findings. Future clinical interventional studies are thus eagerly advocated for to
demonstrate the potential practical usefulness of capsaicin for improving renal health and
also slowing diseases’ progression in daily clinical practice.
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