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Abstract: Drug repurposing is a strategy for discovering new applications of existing drugs for
use in various diseases. Despite the use of structured networks in drug research, it is still unclear
how drugs interact with one another or with genes. Prostate adenocarcinoma is the second leading
cause of cancer mortality in the United States, with an estimated incidence of 288,300 new cases and
34,700 deaths in 2023. In our study, we used integrative information from genes, pathways, and
drugs for machine learning methods such as clustering, feature selection, and enrichment pathway
analysis. We investigated how drugs affect drugs and how drugs affect genes in human pancreatic
cancer cell lines that were derived from bone metastases of grade IV prostate cancer. Finally, we
identified significant drug interactions within or between clusters, such as estradiol-rosiglitazone,
estradiol-diclofenac, troglitazone-rosiglitazone, celecoxib-rofecoxib, celecoxib-diclofenac, and sodium
phenylbutyrate-valproic acid.

Keywords: drug interaction; feature selection; NMF

1. Introduction

Prostate cancer (PC) is the second most common cancer in men and the fourth most
common cancer overall. As of 2020, there were more than 1.4 million new cases of prostate
cancer in the world [1]. In addition, prostate cancer, known as being complex and heteroge-
neous, is the second leading cause of death among men in the United States. Incidences of
prostate cancer decreased rapidly from 2007 to 2014 due to screening recommendations
such as prostate-specific antigen. However, the incidence rate has increased by 3% per year
since 2014. According to cancer statistics from the American Cancer Society, 288,300 new
cases and 34,700 deaths were reported for 2023.

Drug repositioning is a novel strategy for discovering new applications of existing
drugs for use in various diseases. It entails using existing medications to treat conditions
other than those for which they were originally designed. As a result, drug repositioning is
important in optimizing the preclinical process of developing novel drugs. Computational
drug repurposing can significantly reduce drug development costs and time by discovering
new applications for existing drugs. Despite recent advances in the field of computational
drug repositioning, however, developing robust models remains a complex process fraught
with difficulties.

One promising strategy for drug repositioning is a computational method based
on gene expression analysis that uses drug-induced disease datasets, chemical–chemical
networks, and protein–protein networks to identify target genes in a specific disease. Such
repositioning techniques have been successful in obtaining drug approval for conditions
other than the original target. However, most potential drugs fail the validation process.
Even if a drug target can be identified using genetic pathway data, the efficacy of the drug
in treating diseases is unknown [2].

Recently, Ma et al. [3] published a paper in which they described a method for reposi-
tioning pancreatic cancer drugs based on similarities in gene expression patterns. According
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to that study, the fundamental idea behind computational drug repositioning is that genes
with similar patterns of expression may respond to drugs with similar therapeutic effica-
cies. Previous research on the anatomical therapeutic chemical classification of drugs has
focused on drug–drug interactions and drug–target gene correlations [4,5].

Before conducting laboratory studies, it is necessary to select and prioritize candidate
genes for specific diseases because identifying disease genes from large candidate genes in
experimental settings is a very expensive and time-consuming task. There are numerous
methods for prioritizing genes based on machine learning. These methods differ in several
ways, including the feature vectors of genes used, the datasets used, which have different
structures, and the learning model [6]. Human prostate cancer PC-3 cell lines are thought
to represent late stages of prostate cancer and have been extensively used to study prostate
cancer progression and develop therapeutic agents [7]. In this paper, using datasets from
drug-induced prostate adenocarcinoma PC-3 cell lines that were derived from bone metas-
tases of grade IV prostate cancer, we explore the interactions between drugs and genes by
identifying differential gene expression with two feature selection approaches.

2. Results
2.1. Inferring Pathways by Drug Clusters Using All Features

We clustered drug-induced tumor datasets consisting of 22,283 genes and 44 PC3
samples. The results of the NMF performance from rank 2 to 5 are shown in Figure 1a–e.
In the results, rank 2 performs the best accuracy of 0.985 in Table 1, where cluster 1
contains 27 samples and cluster 2 contains 17. The robustness of the NMF performance
was confirmed by using the k-means clustering method, in which the silhouette score of
0.36 was found to be the best at rank 2, compared with 0.27 at rank 3 and rank 4 [8,9].
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(c) Rank 4, Cophenetic coefficient = 0.786; (d) Rank 5, Cophenetic coefficient = 0.838; (e) Ranks 2–5,
x-axis represents cluster, and y-axis represents Cophenetic coefficients.

In the case of rank 2 clusters, we used GSEA to investigate differences in characteristics
between two clusters. Interestingly, when compared to previous clinical studies [10],
the enriched pathways in cluster 1 are consistent with pathways associated with a poor
prognosis. In contrast, the enriched pathways in cluster 2 are consistent with pathways
associated with a good prognosis (Table 2).
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Table 1. Clustering by drugs; unique drugs are presented.

Drugs in Cluster 1 Drugs in Cluster 2

LY-294002 fulvestrant
Rosiglitazone genistein
Troglitazone alpha-estradiol

17-allylamino-geldanamycin monastrol
Valproic acid mercaptopurine

Sodium phenylbutyrate butirosin
Novobiocin estradiol

Fasudil docosahexaenoicacidethylester
Diclofenac U0125

15-deltaprostaglandin J2 resveratrol
Tretinoin splitomicin

Trichostatin A dimethyloxalylglycine
Monorden HNMPA-(AM)3

TTNPB butein
indomethacin fisetin

Tetraethylenepentamine 4,5-dianilinophthalimide
Rofecoxib deferoxamine

Copper sulfate
Celecoxib
Imatinib

Pirinixic acid

Table 2. Enrichment pathways in two clusters (A) and enrichment pathways in three clusters (B).

(A)

Cluster 1 Cluster 2

HSA00531_GLYCOSAMINOGLYCAN_DEGR-
ADATION HSA00040_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS

HSA00910_NITROGEN_METABOLISM HSA03050_PROTEASOME
HSA04950_MATURITY_ONSET_DIABE-

TES_OF_THE_YOUNG HSA03010_RIBOSOME

HSA00565_ETHER_LIPID_METABOLISM HSA03060_PROTEIN_EXPORT
HSA04080_NEUROACTIVE_LIGAND_RECE-

PTOR_INTERACTION HSA00680_METHANE_METABOLISM

HSA04742_TASTE_TRANSDUCTION HSA00062_FATTY_ACID_ELONGATION_IN_MITOCHONDRIA

(B)

Cluster 1 Cluster 2 Cluster 3

HSA00563_GLYCOSYLPHOSPHATIDYL-
INOSITOL_ANCHOR_BIOSYNTHESIS

HSA00602_GLYCOSPHINGOLIPID_BIOSYN-
THESIS_NEO_LACTOSERIES HSA03010_RIBOSOME

HSA00531_GLYCOSAMINOGLY-
CAN_DEGRADATION

HSA04060_CYTOKINE_CYTO-
KINE_RECEPTOR_INTERACTION

HSA00040_PENTOSE_AND_GLUC-
URONATE_INTERCONVERSIONS

HSA00910_NITROGEN_METABOLISM HSA00430_TAURINE_AND_HYPOTAUR-
INE_METABOLISM HSA03060_PROTEIN_EXPORT

HSA04614_RENIN_ANGIOTENSIN_SYS-
TEM HSA04740_OLFACTORY_TRANSDUCTION HSA03050_PROTEASOME

HSA00565_ETHER_LIPID_METABOLISM HSA04940_TYPE_I_DIABETES_MELLITUS HSA00720_REDUCTIVE_CARBOXY-
LATE_CYCLE

Using the DrugBank and STITCH databases, we found interacting drugs within and
between clusters, as well as common genes as drug targets. Estradiol is an estrogenic
steroid that is used to treat prostate cancer. Estradiol, which belongs to cluster 2, interacts
with rosiglitazone (common gene; RETN), valproic acid (common genes; CYP19A1, ESR1,
ESR2, and PTGS1), diclofenac (common genes; PTGS2 and CYP2A6), tretinoin (common
genes; RAPA, AR, ESR1, ESR2, and HSD17B1) in cluster 1 and with genistein (common
genes; AR, ESR1, ESR2, SHBG, and CYP19A1), fisetin (common gene; AR), resveratrol
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(common genes; ESR1, ESR2, and CYP19A1), and fulvestrant (common genes; AR, ESR1,
and ESR2) in cluster 2. Valproic acid interacts with diclofenac (common genes; ABCB1,
CYP3A4, and CYP2C19, CYP2C9), tretinoin, and rosiglitazone (common gene; LEP) within
cluster 1. Tretinoin interacts with diclofenac (common genes; PTSG1, PTGS2, and PPARG)
and rosiglitazone (common genes; PTGS2, PPARG, and RXRA) within cluster 1. Celecoxib
interacts with diclofenac (common genes; PTGS1, PTGS2, CYP2C9, and VEGFA) within
cluster 1. Troglitazone and rosiglitazone interact with the common genes PPARA, RXRA,
UCP2, RETN, LEP, and CD36. Celecoxib, rofecoxib, and indomethacin all interact with
the common genes PTGS1 and PTGS2. Indormethan, faudil, copper sulfate, TTNPB, and
trichostain A do not interact with one another.

When comparing pathways between entrances A and B, as shown in Table 2, common
pathways account for 37.5% of the total in cluster 1. As shown in Figure 1a–d, clusters 1 in
rank 2 and rank 3 are similar, but cluster 3 in rank 3 is derived from cluster 2 in rank 2. In
total, three pathways in clusters A and B overlap, as do three pathways in clusters 2 and 3
in rank 2.

In the case of rank 3, cluster 1 contains 21 distinct drugs, cluster 2 contains 5 drugs,
and cluster 3 contains 17 drugs. According to the Cophenetic coefficient, rank 3 is well
separated between clusters, and the drugs do not overlap with each other except for valproic
acid, which appears in both cluster 1 and cluster 2. The drugs in cluster 2 from rank 3
(Supplemental Table S1) are 4,5-dianilinophthalimide (DAPH, DB12362), deferoxamine
(DB00746), fisetin (DB07795), genistein (DB01645), and valproic acid (DB00313). Among
them, the DrugBank interaction showed that valproic acid and genistein interact with one
another in such a way that genistein metabolism is somewhat suppressed when combined
with valproic acid [11]. Similarly, the drugs in Cluster 3 mercaptomurine-estradiol interact
with one another [11].

The enrichment pathways were unable to identify overlapping genes (which could
indicate effected genes from the set of drugs) among the pathways. However, we used
statistical tests to identify the interesting genes. Using significance analysis of microarray
(SAM), we discovered the top three differentially expressed genes between two clusters
from rank 2, and they were FCGRT, NBR2, LHB over-expressed in cluster 2, SMA4K,
ZMAT4, and CIDEA over-expressed in cluster 1. The results indicate the most affected
genes by drugs to be within or between clusters, despite the fact that those genes did not
appear in the common genes for drug interaction used in this study.

2.2. Drug Interaction with Clustering Using Feature Selection

We classified the drugs based on genes that were significantly different in normal
and cancer samples. We first identified features that were differentially expressed for
the strategy using the fsv and Fisher features approaches, yielding 30 genes with each
method. Because the selection criteria for each feature method differ, only four overlapping
genes, RPLP0, RPL11, RPS18, and LOC642741 (also known as RPL3P7), were identified.
Interestingly, as shown in Table 3, the overlapping genes are all members of the ribosome
protein family.

For ranks 2–4, we combined the two feature selection methods fsv and Fisher with
NMF clustering methods. First, we chose to use 30 and 20 genes with each method. Then,
we calculated the Cophenetic coefficients by performing NMF, and they are shown in
Figure 2a,b. The clustering method with 30 features chosen from fsv produced a better
separation than the Fisher method with 30 features. When compared to the results obtained
using all genes, the 20 genes chosen from the fsv method within rank 2 produced the
best results.
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Table 3. A list of the selected genes with feature selection via concave (A) and Fisher feature selection
(B) methods. The genes in bold are overlapping.

(A)

TPT1 COX6A1 ACTB ACTB CCDC72 RPL7

ACTG1(ACTB) RPS2 (SNORA64) RPL38 GAPDH S100A6 EEF1A1

RPS10 HUWE1 GAPDH RPS18 ACTB FTHP1

RPLP0 HSPA1A ACTG1 ALDOA RPL3 ALDOA

RPL24 RPL11 ODC1 UBC ACTG1 RPS24

(B)

RPL11 CCNT1 EIF4H UBE2L6 SLC36A1 RPL23

MUC6 KLHL24 RPL3 TNXA RPL30 CAMLG

216138_at * DES HADHA ANKRD1 FGF16 POLG2

207756_at * TBCD RPL9 NEBL HTR5A UBB

RPS18 RPL32 217709_at * LRP2BP RPLP0 EEF1DP5

* No genetic ID.
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As shown in Table 4, NMF clustering using 20 and 30 genes selected from fsv re-
vealed six and thirty-one overlapping drugs among the drugs included in clusters 1 and 2,
respectively.

Table 4. The overlapping drugs from NMF clustering using 20 and 30 selected genes.

Overlapping Drugs in Cluster 1 Overlapping Drugs in Cluster 2

17-allylamino-geldanamycin (2) LY-294002 (2) copper sulfate mercaptopurine
15-delta prostaglandin J2 rosiglitazone deferoxamine dimethyloxalylglycine

troglitazone (2) rofecoxib splitomicin
monorden (PGSC0003) (2) valproic acid (2) pirinixic acid (2) alpha-estradiol

celecoxib sodium phenylbutyrate monastrol genistein
novobiocin 4,5-dianilinophthalimide fulvestrant

indomethacin fasudil resveratrol
Docosahexaenoic acid ethyl ester diclofenac fisetin U0125

tretinoin butein estradiol

tetraethylenepentamine HNMPA-(AM)3
TTNPB

butirosin
imatinib

We used the chemical interaction in STITCH [12] and DrugBank (https://go.drugbank.
com/ accessed on 10 October 2023) [11] to obtain the drug interaction. In cluster 2, celecoxib
is related to rofecoxib, estradiol, imatinib, rosiglitazone, valproic acid, alpha-estradiol, and
diclofenac. Except for estradiol and alpha-estradiol, the genes are also found in cluster 1

https://go.drugbank.com/
https://go.drugbank.com/
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when all features are used. Furthermore, we discovered more drug interactions in cluster
2 where drug information is available (details in Supplementary Table S2). The STITCH
database revealed that celecoxib interacts with indomethacin (common genes; PTGS1,
TPGS2, and IL6) and docosahexaenoic (common genes; PTGS1, PTGS2, and MPO) within
cluster 1.

3. Discussion

This study proposed a novel computational method for identifying drug interactions
in PC3 cell lines based on drug-induced gene expression profiles. We began by clustering
using all feature methods. Among the clusters, estradiol interacts with rosiglitazone,
diclofenac, tretinoin, and genistein. Within cluster 1, valproic acid interacts with diclofenac,
tretinoin, and rosiglitazone.

According to the STITCH database, troglitazone and rosiglitazone interact with
PPARA, RXRA, UCP2, RETN, LEP, and CD36 common genes. Valproic acid and rosiglita-
zone share only one gene, LEP. Celecoxib, rofecoxib, and indomethacin all interact with
the PTGS1 and PTGS2 common genes. Indormethan, faudil, copper sulfate, TTNPB, and
trichostain A either do not interact or do not appear in the STITCH database.

Next, we selected candidate genes from tumor and normal datasets using the fsv
method and clustered drug-induced samples using the tumor expression datasets of those
genes only. As a result, we discovered that celecoxib in cluster 1 and rofecoxib in cluster
2 share the PTGS1 and PTGS2 genes, implying a connection. DDI based on the chemical
similarity of the DrugBank is used to cross-check the candidate drug interactions we
discovered.

Our findings based on gene expression are the results of treatment, and chemical
similarities are the static datasets. Rofecoxib has been used for the treatment of many dis-
eases, such as osteoarthritis, rheumatoid arthritis, acute pain, primary dysmenorrhea, and
migraine (https://go.drugbank.com/drugs/DB00533, accessed on 10 October 2023) [13,14].
Rofecoxib also has been considered to treat human prostate cancer [15,16]. Celecoxib in
cluster 1 and diclofenac in cluster 2 share genes for PTGS1, PTGS2, CYP2C9, and VEGFA
according to the STITCH database. Celecoxib was previously used to inhibit human
prostate cancer [17]. Diclofenac was used as a non-steroidal anti-inflammatory drug to
treat osteoarthritis and rheumatoid arthritis [18,19] and to inhibit prostate cancer tumor
growth [20]. When all genes are used, however, celecoxib, rofecoxib, and diclofenac are all
included in the same cluster. Furthermore, in cluster 2, alpha-estradiol is related to estradiol
(DB00783) via the shared target genes ESR1, ESR2, CYP19A1, and PRL, whereas sodium
phenylbutyrate (4-phenylbutyra) is related to valproic acid (DB00313, Valproate) via no
common genes. Estradiol has been used to slow the growth of prostate cancer [21]. Estradiol
has repeatedly demonstrated its efficacy as an estrogen steroid, including its multifaceted
mechanism [22], local synthesis in the newborn brain [23], and use as a neuroprotective
agent [24].

4. Materials and Methods

The microarray profiles (accession number GSE5258-GPL96) were obtained from
the gene expression omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo, accessed on
10 October 2023) [25], a database repository of high throughput gene expression data
and hybridization arrays, chips, and microarrays. In brief, the datasets were updated in
December 2017 with 346 cell lines containing HL60, MCF7, PC3, SKMEL5, and ssMCF7.
With 22,283 probes, 111 distinct drugs are induced in those cell lines. From the datasets,
we extracted 56 PC3 cell lines consisting of 12 normal and 44 prostate cancer samples,
and the cancer samples were induced by 38 unique drugs. The 22,283 probe IDs were
converted to 9357 unique gene symbols using the GPL 96 platform (Affymetrix human
genome U133A array).

As a clustering method, we adopted the non-negative matrix factorization method
(NMF), which is a mathematical and computational technique used in gene expression

https://go.drugbank.com/drugs/DB00533
https://www.ncbi.nlm.nih.gov/geo
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data analysis. It is intended to factorize a given non-negative data matrix into two or more
lower-dimensional non-negative matrices. NMF has gained popularity due to its ability
to uncover latent structures, patterns, and features in data, particularly when the data is
inherently additive such as gene expression data. The NMF algorithm uses factorizing gene
expression profiles based on positive matrix decomposition [26,27].

The main concept is presented as a matrix of n (genes) x m (samples) decomposed
by W and H; A ∼ WH, where W is a n× k matrix, and H is a k×m matrix, with k as the
number of clusters. The cost function is:

D(A||WH) = ∑
ij
(Aij log

Aij

(WH)ij
− Aij + (WH)ij).

For each iteration, the updating criteria for components of matrix W and H are:

Wia ←Wia

∑
u

Hau Aiu/(WH)iu

∑
v

Hav
, Hau ← Hau

∑
i

Wia Aiu/(WH)iu

∑
k

Wka
.

To determine the optimal number of clusters, we calculated Cophenetic coefficients
according to the following equation [10,28]:

c =
∑
i<j

(Yij − γ)(Zij − z)√
∑
i<j

(Yij − γ)2 ∑
i<j

(Zij − z)2

where Yij represents the distance between i and j, and Zij represents the dendrogrammatic
distance between i and j. Higher cophenetic correlation coefficients indicate superior
clusters.

Using the clusters as groups, we performed gene set enrichment analysis (GSEA) to
identify enriched pathways [29]. There are many sources of feature selection methods
available, including significance analysis of microarray (SAM) from R (https://www.R-
project.org/, accessed on 10 October 2023) [30] and the MATLAB feature selection library
(https://www.mathworks.com, accessed on 10 October 2023) [31]. Among them, we
adopted the Fisher feature selection and the feature selection concave (fsv) methods as
a tool for identifying differentially expressed gene sets. The fsv method was chosen to
approach the global minimum because optimization methods frequently become stuck in a
local minimum [32].

The Fisher feature selection method, which is a dimension reduction technique in
datasets [32], computes a discriminate score for two groups A, B based on the formula
(µA − µB)

2/(σ2
A + σ2

B), where µ′s are means and σ′s are standard deviations [11,12].
Drug–drug interaction (DDI) information based on chemical similarity to the drug in-

volved was posited using the combination score from STITCH (http://stitch.embl.de/cgi/
input.pl, accessed on 10 October 2023) [33] and DrugBank database (https://go.drugbank.
com/, accessed on 10 October 2023) [13,34]. We employed the DrugBank’s drug interaction
checker, in which drug–drug interactions can be sorted into two broad categories: phar-
macokinetic drug interactions and pharmacodynamic drug interactions. Pharmacokinetic
drug interactions occur when one drug affects the other through the body, whereas phar-
macodynamic drug interactions occur when one drug alters the actual clinical effect of the
other. Although there is an issue about the reliability between DDI and chemical similarity,
the DrugBank’s drug interaction checker is widely used due to its ease of use and quick
results. The overall flow chart of the method is shown in Figure 3.

https://www.R-project.org/
https://www.R-project.org/
https://www.mathworks.com
http://stitch.embl.de/cgi/input.pl
http://stitch.embl.de/cgi/input.pl
https://go.drugbank.com/
https://go.drugbank.com/
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Figure 3. The overall flow chart of the methods. (1) Red lines represent inferring differentially
expressed genes with all genes; (2) black lines represent inferring drug interactions with feature
selection.

To differentiate tumor samples induced by specific drugs using NMF, we used feature
selection methods to identify the most differentially expressed genes between normal and
tumor samples. After obtaining the genes, we extracted datasets from tumor samples that
included drug information.

5. Conclusions

In this study, we proposed a computational method to investigate the efficacy of
systemic drug studies for prostate cancer. First, we grouped tumor samples using NMF
and found the enriched pathways according to clusters. With respect to the clusters 1
and 2, our findings about the enriched pathways are consistent with previous research in
terms of poor and good prognosis [10]. Second, we used feature selection techniques (fsv,
Fisher) and clustering techniques to describe drug interactions based on gene expression
profiles (NMF) for prostate cancer. Rank 2 resulted in the strongest cluster, implying that
the activities of the drugs and the target genes are located within the cluster.

We identified the following drug interactions between or within clusters: celecoxib-
diclofenac with common genes such as PTGS1, PTGS2, CYP2C9, and VEGFA; celecoxib-
rofecoxid with common genes such PTGS1 and PTGS2; alpha estradiol-estradiol with
common genes ERS1, ERS2, CYP19A1, and PRL; and sodium phenylbutyrate-valproic acid
interaction within cluster 1 using all features and between clusters using feature selection.
However, the clustering methods are sensitive to the size of the features. Even though we
combined information to determine drug interactions for drug repositioning, the related
drugs are not consistently clustered together. Consequently, clinical databases related to
drug-induced events need to be incorporated in a future study. In addition, although the
DDI methodology based on chemical similarity has been widely used, its reliability is still
unclear, and it should be resolved in future work.
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