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Abstract: This study aimed to identify microRNAs (miRNAs) whose expression levels are altered by
high-risk human papillomavirus (HR-HPV) infection in women with epithelial ovarian neoplasms.
MiRNA expression was quantified by real-time polymerase chain reaction, while HR-HPV DNA
was quantified using digital-droplet PCR. Analysis of 11 miRNAs demonstrated significantly lower
hsa-miR-25-5p expression in HPV-infected compared to uninfected ovarian tissues (p = 0.0405),
while differences in miRNA expression in corresponding serum were statistically insignificant. The
expression of hsa-miR-218-5p in ovarian tumors was significantly higher in high-grade serous ovarian
carcinoma (HGSOC) cases than in other neoplasms (p = 0.0166). In addition, hsa-miR-218-5p was
significantly upregulated, whereas hsa-miR-191-5p was significantly downregulated in tissues with
stage III/IV FIGO (p = 0.0009 and p = 0.0305, respectively). Using unsupervised clustering, we
identified three unique patient groups with significantly varied frequencies of HPV16/18-positive
samples and varied miRNA expression profiles. In multivariate analysis, high expression of hsa-miR-
16-5p was an independent prognostic factor for poor overall survival (p = 0.0068). This preliminary
analysis showed the changes in miRNA expression in ovarian neoplasms during HPV infection and
those collected from HGSOCs or patients with advanced disease. This prospective study can provide
new insights into the pathogenesis of ovarian neoplasms and host–virus interactions.

Keywords: microRNA; epithelial ovarian cancer; human papillomavirus; overall survival

1. Introduction

Epithelial cell neoplasms (EON) can be malignant, borderline, or benign. Epithelial
ovarian cancer (EOC) is one of the most common gynecological cancers and the leading
cause of death in women with cancer on a global scale. It accounts for approximately 90%
of ovarian cancers. In 2020, there were almost 314 thousand new cases of OC worldwide,
of which approximately 207,252 died [1]. In 2021 and 2022, diagnosis and treatment were
adversely affected by the COVID-19 pandemic. In 2023, approximately 19,710 new OC
cases and 13,270 deaths are projected to occur in the United States only [2]. Most of the
cases are diagnosed at an advanced stage of the disease due to a lack of specific symptoms
and screening at earlier disease stages. According to the WHO Classification of Female
Genital Tumors, five principal histotypes of EOCs, including high-grade serous ovarian
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carcinoma (HGSOC), low-grade serous ovarian carcinoma (LGSOC), mucinous ovarian
carcinoma, endometrioid ovarian carcinoma, and clear cell ovarian carcinoma, are listed.
Approximately 70% of EOC cases are HGSOCs, which are the most common and aggressive
histotypes [3]. It has been proposed that HGSOCs arise from serous tubal intraepithelial
carcinoma (STIC) in the fimbriated end of the fallopian tube, which then spread to the
ovary [4,5]. Borderline tumors are characterized by a lack of destructive stromal invasion
and may be precursors to LGSOCs.

Human papillomavirus (HPV) is a small nonenveloped virus with a double-stranded
DNA genome. Long-lasting infections with high-risk HPVs (HR-HPVs) can cause cervical
cancer (CC) and many other cancers, including oropharyngeal, penile, anal, vaginal, and
vulvar cancers. HPV type 16 (HPV16) and HPV18 are the most carcinogenic types among
the HR-HPV genotypes. HR-HPV E6 and E7 oncoproteins can promote cancer development
by targeting and inhibiting p53 and pRb tumor suppressor proteins, respectively [6]. HR-
HPVs are detected in cancerous EOC tissues [7–10] and fallopian tubes [7,11]. However,
the role of HPV in the development of EOC is still unknown.

MicroRNAs (miRNAs) are a class of endogenous noncoding single-stranded RNAs
approximately 18 to 25 nucleotides in length. Their regulatory roles in gene expression
through RNA degradation and/or translation inhibition of target mRNAs mean that miR-
NAs can be involved in various cancer-related processes [12]. It is known that miRNAs are
involved in cancer development as tumor suppressors or oncogenes through their roles in
cell proliferation, differentiation, and apoptosis [13,14]. MiRNAs are also important driving
factors for EOC progression and can potentially serve as noninvasive screening markers for
early-stage EOC prognosis [15–18]. To date, many serum miRNAs with prognostic value,
such as the miR-200 family, miR-141, miR-429, miR-181a, and miR-25 [19–21], and those with
diagnostic value, including miR-21, miR-100, and miR-200a,b,c [22–25], have been identi-
fied. It was observed that HR-HPV oncoproteins can modulate the expression of cellular
miRNAs in the tumor microenvironment [26]. Various miRNAs were found to be signif-
icantly upregulated or downregulated in HR-HPV-related cervical cancer or other cancer
types [27–30]. HR-HPV oncoproteins can regulate the methylation of miRNA-coding genes [30]
and may be involved in the alterations of miRNA expression in high-grade cervical intraepithe-
lial neoplasia (CIN) and CC cells [31]. Viral oncoproteins can deregulate miRNA expression
using transcription factors, e.g., p53, c-Myc, and E2F [32]. MiRNAs expression can be modu-
lated by HR-HPV oncoproteins via the E6-p53 and E7-pRb pathways. Moreover, miRNAs
can regulate the amplification of the HPV genome directly by targeting the 3′-UTRs of viral
mRNAs or indirectly by modulating the expression of the host factors required for viral replica-
tion [33]. However, the impact of HR-HPV on the miRNA expression profile in EOC remains
unknown. We hypothesize that HPV infects the fallopian tube and ovarian surface epithelium
and may regulate the expression of cellular miRNAs in the tumor microenvironment (TME).

In this preliminary study, we analyzed eleven miRNAs that have demonstrated upreg-
ulation or downregulation in HPV-associated cancers, including CC and head and neck
cancer. MiR-16 [34–37], miR-21/hsa-miR-21-5p [35,38–40], miR-9/hsa-miR-9-5p [34,40],
miR-200a/hsa-miR-200a-3p [35,38], and miR-25 [41] were often upregulated, while miR-
34a/hsa-miR-34a-5p [34,35,38,39], miR-191 [32], miR-218 [32,38], miR-203/hsa-miR-203a-
3p [34,35,38,39], and let-7b-5p [32,36] were downregulated in HPV-associated cancers. In
addition, the expression of hsa-miR-140-3p was additionally assessed due to its downregu-
lation in CC tissues [42]. In this prospective study, we compared the miRNA expression
profiles in the HPV-positive and HPV-negative women with ovarian neoplasms. The ex-
pression changes in ovarian tumor and in serum samples obtained from patients with
EON were determined. Subsequently, the associations between miRNA expression and
clinicopathological features, as well as survival analysis were determined.
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2. Results
2.1. HPV16/18 Copy Number Analysis

The numbers of HPV16 and HPV18 DNA copies were determined in blood and
tumor samples using the digital droplet (ddPCR) and real-time PCR (qPCR) methods.
The demographic and clinical characteristics of the patients enrolled for the study are
summarized in Table 1. The presence of HPV16 and HPV18 DNA was confirmed using
nested PCR (nPCR) and Sanger sequencing methods. HPV DNA was detected in 30/46
(65.2%) of the solid tumors (Table 2). Among HPV-positive tumors, HPV16, HPV18,
and HPV16/18 coinfections were found in 14 (46.7%), 9 (30.0%), and 7 (23.3%) tumor
samples, respectively. The median HPV16 DNA concentrations in cancerous ovarian
samples were significantly higher (median 62.16 copies per 105 cells, range 5.48–554.68
copies per 105 cells) than those for HPV18 DNA concentrations (median 11.27 copies per
105 cells, range 2.77–477.91 copies per 105 cells) (p = 0.0051, Mann–Whitney U test). Among
the HPV DNA-positive blood samples (29/46, 63.0%), there were 10 (34.5%), 9 (31.0%),
and 10 (34.5%) patients with HPV16, HPV18, and HPV16/18 coinfections, respectively
(Table 2). HPV16/18 coinfection was detected in one-third of HPV-positive blood samples,
but there were no significant differences in the distribution of coinfection between tumor
and blood specimens (p > 0.05). The viremia levels ranged from 7.82 to 851.54 copies per
105 cells (median 19.77 copies per 105 cells) for HPV16 DNA and from 6.34 to 274.44 per
105 cells (median 53.84 copies per 105 cells) for HPV18 DNA. There were no differences in
the HPV16 and HPV18 DNA concentrations in blood samples (p > 0.05).

Table 1. Characteristics of the patients with ovarian neoplasms included in the study.

Variable N %

FIGO
I 5 10.9
II 2 4.3
III 29 63
IV 9 19.6

ND 1 2.2

EON type
High-grade serous ovarian cancer 33 71.7

Borderline ovarian tumor 5 10.9
Clear-cell ovarian cancer 3 6.5
Mucinous ovarian cancer 3 6.5

Others 2 4.3
Abbreviations: N, number of cases; FIGO, International Federation of Gynecology and Obstetrics (Fédération
Internationale de Gynécologie et d’Obstétrique); ND, no data; EON, epithelial ovarian neoplasm.

Table 2. The prevalence of HPV types in tumor tissue and peripheral blood samples from patients
with ovarian neoplasms.

HPV Status
Prevalence; N (%)

Tumor Blood

HPV-infected 30/46 (65.2) 29/46 (63.0)
HPV16 14/30 (46.7) 10/29 (34.5)
HPV18 9/30 (30.0) 9/29 (31.0)
HPV16/18 coinfection 7/30 (23.3) 10/29 (34.5)

Uninfected 16/46 (34.8) 17/46 (37.0)
Abbreviation: N, number of cases.

2.2. Differential Expression Analysis of Selected miRNAs in Ovarian Tumor Tissues

MiRNA expression levels were compared between groups of patients according to
the baseline characteristics. In HPV16- and/or HPV18-positive samples, we observed
significantly lower expression of hsa-miR-25-5p (FC = 0.61, p = 0.0405) (Table 3). The
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corresponding volcano plot is shown in Figure 1a. Similarly, in the receiver operating
characteristic (ROC) analyses, only hsa-miR-25-5p was significant in predicting the pres-
ence of HPV in the tumor with an area under the curve (AUC) of 0.70 (95%CI: 0.52–0.88,
p = 0.0278) (Figure 2). No association was observed between HPV positivity and any other
miRNAs (p > 0.05).

Table 3. Differential miRNA expression analysis between tumor samples with HPV16 and/or HPV18
DNA and without viral infection.

miRNA
HPV-

Positive
Mean

HPV-
Positive

SD

HPV-
Negative

Mean

HPV-
Negative

SD
FC log2FC p-Value

hsa-miR-25-5p −7.53 0.80 −6.83 1.15 0.61 −0.70 0.0405
hsa-miR-203a-3p −0.97 1.34 −1.62 1.61 1.57 0.65 0.1761

hsa-miR-21-5p 6.23 1.08 5.82 0.88 1.32 0.41 0.1770
hsa-miR-191-5p 1.01 0.67 1.32 0.75 0.81 −0.31 0.1813

hsa-let-7b-5p 2.41 1.12 2.00 1.47 1.33 0.42 0.3320
hsa-miR-16-5p 3.70 0.88 3.95 0.82 0.84 −0.25 0.3481

hsa-miR-140-3p −0.84 1.21 −1.21 1.78 1.29 0.37 0.4624
hsa-miR-34a-5p 0.04 1.04 −0.21 1.36 1.19 0.25 0.5285
hsa-miR-218-5p −1.81 1.34 −1.64 1.73 0.89 −0.17 0.7284
hsa-miR-200a-3p −0.20 1.75 −0.36 2.34 1.12 0.16 0.8134

hsa-miR-9-5p −4.35 1.74 −4.30 1.74 0.97 −0.05 0.9260

Abbreviations: HPV, human papillomavirus, HPV16 and/or HPV18; FC, fold change; SD, standard deviation;
hsa-miR, Homo sapiens microRNA.
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We performed a hierarchical unsupervised clustering algorithm on our data using the
expression of selected miRNAs. The unsupervised hierarchical clustering analysis grouped
patients with similar miRNA expression patterns. We obtained three clusters of patient
samples—“green”, “orange”, and “red”—as illustrated on the dendrogram (Figure 3). The
frequencies of HPV16/18-positive samples were significantly increased across groups and
were 40.0%, 66.7%, and 84.2% in the “green”, “orange”, and “red” clusters, respectively
(p = 0.0268). Similarly, patients in the “red” cluster tended to have a higher viral load
measured by the number of HPV copies per 105 cells (median 23.2 vs. 0 in the “green”
cluster and 8.4 in the “orange” cluster), but the difference was not statistically significant
(Kruskal–Wallis, p = 0.0852). The identified groups had distinctive patterns of miRNA
expression. The “red” cluster with the highest frequency of HPV16/HPV18-positive
tumors showed the highest expression of hsa-miR-21-5p and hsa-miR-34a-5p and the
lowest expression of hsa-miR-9-5p and hsa-miR-218-5p. Conversely, samples in the “green”
cluster had the highest expression of hsa-miR-25-5p and hsa-miR-203a-3p and the lowest
expression of let-7b-5p and hsa-miR-140-3p across the identified groups. The detailed
miRNA expression comparisons between identified clusters are shown in Supplementary
Table S1.

2.3. Expression of miRNAs in Serum

We performed expression analysis of the selected miRNAs in serum samples isolated
from the whole blood of 32 patients with EOC. Among them, HPV16 and/or HPV18 viremia
was found in 21 cases (65.6%). The expression of five miRNAs, including hsa-miR-9-5p, hsa-
miR-25-5p, hsa-miR-200a-3p, hsa-miR-203a-3p, and hsa-miR-218-5p, was not detectable in
the studied serum samples. Samples with missing expression data were excluded from the
analysis. Hence, six miRNAs, including let-7b-5p, hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-
34a-5p, hsa-miR-140-3p, and hsa-miR-191-5p were further analyzed after imputing missing
data using predictive mean matching which is a technique of imputation that estimates
the likely values of missing data by matching to the observed values/data, conducted
using OmicSelector R package. Statistical analysis did not reveal any significant differences
in miRNA expression in serum samples between virus-positive and virus-negative cases
(p > 0.05; Supplementary Table S2).
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Figure 3. Unsupervised hierarchical clustering analysis of tumor samples according to miRNA
expression levels. The dendrogram shows three hierarchical clusters, “green”, “red”, and “orange”,
according to the miRNA expression profile. The clusters had significantly different frequencies
of HPV16/18-positive samples, with 40.0%, 66.7%, and 84.2% in the “green”, “orange”, and “red”
clusters, respectively (p = 0.0268). The detailed comparisons of miRNA expression levels between
identified clusters are shown in Supplementary Table S1.

2.4. Association between miRNA Expression Levels and Clinical Features

We found that in patients with a higher disease stage (III/IV) according to the FIGO
(Fédération Internationale de Gynécologie et d’Obstétrique; International Federation of
Gynecology and Obstetrics) classification [43], hsa-miR-218-5p was significantly upreg-
ulated (fold change [FC] = 4.77, p = 0.0009), whereas hsa-miR-191-5p was significantly
downregulated (FC = 0.65, p = 0.0305) (Figure 1b; Supplementary Table S3). Similarly,
higher expression of hsa-miR-218-5p was also observed in patients with HGSOC tumors
(FC = 2.48, p = 0.0166) compared to non-HGSOC cases (Figure 1c; Supplementary Table S4).
Statistical analysis did not reveal any significant differences in miRNA expression in serum
samples according to the FIGO classification, as well as between HGSOC and non-HGSOC
cases (p > 0.05; Supplementary Tables S3 and S4, respectively).

Two miRNAs, hsa-miR-21-5p and hsa-miR-34a-5p, were significantly associated with
the patients’ age at diagnosis. Hsa-miR-34a-5p was inversely correlated with age in both
tumor (R =−0.37, p = 0.013) and serum (R =−0.37, p = 0.040). Hsa-miR-21-5p was positively
correlated with age in serum (R = 0.49, p = 0.005); however, at the miRNA level in the tumor,
this correlation became negative (R = −0.29, p = 0.049).

2.5. Survival Analysis

Survival data were available for 44/46 patients (95.65%). The median overall sur-
vival (OS) was 33.80 months (95% CI: 20.53–49.83 months). In univariate analyses, factors
negatively influencing OS were age (HR 1.04, 95%CI: 1.00–1.08, p = 0.0401) and high
expression of hsa-miR-16-5p (HR 5.06, 95%CI: 1.67–15.37, p = 0.0042). No relationship
between the presence of virus in tumor tissue and OS was found. In multivariate analy-
sis, only high expression of hsa-miR-16-5p was an independent prognostic factor for OS
(HR 4.70, 95% CI: 1.53–14.40, p = 0.0068) (Table 4). The corresponding Kaplan–Meier plots
are presented in Figure 4.
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Table 4. Univariate and multivariate Cox regression analyses of clinical variables and miRNA
expression levels in ovarian tumor samples. MiRNA expression is presented as a nominal variable
(expression > median).

Variable

OS

Univariate Analysis Multivariate Analysis

HR
95% CI

p-Value HR
95% CI

p-Value
Lower Upper Lower Upper

Age 1.04 1.00 1.08 0.0401 1.05 1.01 1.08 0.0166
HPV16 and/or HPV18 in tumor 1.01 0.40 2.60 0.9767

Stage 4 FIGO 1.72 0.68 4.35 0.2492
HGSOC 0.80 0.31 2.09 0.6521

hsa-miR-21-5p > median 2.12 0.85 5.23 0.1051
hsa-miR-191-5p > median 0.92 0.38 2.22 0.8492

hsa-miR-9-5p > median 1.10 0.46 2.68 0.8272
hsa-miR-16-5p > median 5.06 1.67 15.37 0.0042 5.50 1.78 16.99 0.0030
hsa-miR-25-5p > median 0.47 0.18 1.19 0.1107
hsa-miR-34a-5p > median 1.03 0.43 2.50 0.9430

hsa-miR-200a-3p > median 0.69 0.28 1.67 0.4071
hsa-miR-203a-3p > median 0.60 0.24 1.48 0.2653
hsa-miR-218-5p > median 2.26 0.87 5.90 0.0953

hsa-let-7b-5p > median 1.04 0.43 2.51 0.9354
hsa-miR-140-3p > median 0.89 0.36 2.19 0.7928

Abbreviations: OS, overall survival; HR, hazard ratio; 95% CI, 95% confidence interval; HPV, human papil-
lomavirus, HPV16 and/or HPV18; FIGO, International Federation of Gynecology and Obstetrics; HGSOC,
high-grade serous ovarian carcinoma; hsa-miR, Homo sapiens microRNA.
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3. Discussion

To the best of our knowledge, this is the first published study describing miRNA
expression in patients with ovarian neoplasms complicated by HR-HPV infection. It was
observed that the expression levels of none of the miRNAs were upregulated in infected
tumor specimens. Lower expression of hsa-miR-25-5p in ovarian tumor tissues with HR-
HPV positivity in comparison to those that were virus negative was observed, while no
differences in miRNA expression in patient serum were found. Furthermore, using miRNA
expression data and unsupervised hierarchical clustering, we have identified three distinct
clusters of patients with significantly different frequencies of HPV16/18-positive samples
and unique miRNA profiles. This preliminary study provides the evidence that HR-HPV
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infection in patients with ovarian neoplasms may impact cellular miRNA expression. It
should be noted that the HR-HPV infections had low viral DNA loads, which may not
have affected the expression of other miRNAs. Interestingly, the expression of hsa-miR-
218-5p in tumor tissues in HGSOCs and in advanced FIGO stage cases was upregulated.
In contrast, downregulation of hsa-miR-191-5p expression in the advanced FIGO stages
was also detected. High expression of hsa-miR-16-5p in tumor tissues was found as an
independent prognostic factor for poor OS. Since each deregulated miRNA in our studies
is associated with a different factor, it was not possible to find common target genes.

To date, there is no study identifying host miRNAs specific for HPV infection in ovar-
ian cancer. The present study revealed that hsa-miR-25-5p expression was downregulated
in ovarian neoplasm tissues infected with HR-HPV. MiR-25 is a member of miR-106b∼25
cluster hosted in the MCM7 gene. This miRNA is known to promote the proliferation and
development of many tumor types, including cervical and ovarian cancers [21,24,44–46]. It
has been previously described that both overexpression and repression of miR-25 could
result in the development of different diseases [47]. Studies on the expression of miR-25 in
cancerous tissues and serum from EOC patients, as well as cell lines, provided controversial
findings. Two independent studies revealed that serum levels of miR-25 [48,49], including
hsa-miR-25-3p [49], were downregulated in patients with EOC compared with healthy
women. Likewise, the lack of hsa-miR-25-5p expression in serum was evidenced in the
present study. Li et al. reported that low miR-25 expression in ovarian cancer was associ-
ated with worse clinical outcomes, while higher expression levels correlated with better
progression-free survival and extended OS [50]. However, high miR-25 expression was
found in both ovarian cancer samples and cell lines [51]. The expression level of miR-25 was
found to be significantly higher in cancerous tissues than that in normal tissues [21,25]. The
increased expression of miR-25 in cancerous ovarian tissues was associated with advanced
clinical stage, metastasis, and shorter survival time [21]. Other studies showed the upregu-
lation of miR-25 in association with HPV status [34,52–54]. Wang et al. reported increased
expression of miR-25 in CIN and CC tissues infected with HR-HPVs [54]. They found
that HPV18 E7 oncoprotein was responsible for the upregulation of miR-25 expression
in raft cultures of human foreskin keratinocytes (HFKs). In another study, this miRNA
was upregulated by HPV16 E6/E7 oncoproteins in HFKs [34]. It is known that HR-HPV
E6 promotes the degradation of p53 through its interaction with E6AP, whereas E7 can
bind to unphosphorylated pRb. Hence, E7 may prematurely induce cells to enter the S
phase by disrupting pRb/E2F complexes [55]. In the absence of the E7 oncogene, HPV16
E6 induces expression of the E2F-responsive genes, MCM7 and cyclin E, and leads to a
dysregulation of the p16/pRb pathway [56]. Hsa-miR-25-5p expression is regulated by
E2F family members [34,52]. It was demonstrated that E2F1 and E2F3 induce expression
of the miR-106b∼25 cluster, while E2F7 acts as a transcriptional repressor of E2F target
genes [57,58]. In addition, tumor protein p53 decreases expression of miR-106b∼25 cluster
probably by an indirect mechanism through repression of E2F1 [32,59]. Otherwise, miR-25
may interact with the 3′UTR of the human TP53 gene and downregulate p53 protein ex-
pression [51]. MiR-25 is generated from the primary transcript of the MCM7 gene which is
a direct pRb/E2F target. Both E2F1 and E2F3 increased MCM7 mRNA and protein levels,
as well as miR-25 levels [60]. Several E2Fs were shown to be deregulated in OC compared
with those in normal tissues. A high expression level of E2F7 was found to be significantly
associated with poor prognosis [58]. It is presently unclear how viral oncoproteins decrease
hsa-miR-25-5p expression in an ovarian tumor microenvironment. We suppose that viral
E7 oncoprotein regulates cellular miR-25 expression through the pRb and E2F pathways;
although, other transcription factors could be involved in the regulation of its transcription.
Our results are limited by a small sample size and low viral loads that may disrupt miRNA
expression changes.

The study showed no correlation between miRNAs expression in serum and tumor tis-
sue. Several studies revealed discrepancies between miRNA in serum or plasma and tumor
in different cancer types [61,62], including ovarian cancer [63]. The expression of miRNA is
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tissue specific and the relationship of body fluids miRNAs with those from tissues remains
largely unclear. Moreover, miRNAs are differentially expressed in human malignancies,
and their expression varies depending on stage, progression, and metastasis [64]. The
TME can alter the miRNA profile of tumor-associated macrophages, cancer-associated
fibroblasts, and other host cells. It was reported that miRNAs play important functions in
TME by silencing gene expression through RNA interference [65]. The altered miRNAome
is propagated to various cellular compartments within the TME via exosomes secreted by
cells loaded with oncomirs. Specific miRNAs are selectively packaged into exosomes or
microvesicles and actively released into the bloodstream. Passive secretion of miRNAs from
damaged tissue may contribute to different expression levels of circulating miRNAs. These
exosomal miRNAs likely play an important role in angiogenesis, epithelial-mesenchymal
transition (EMT), and metastasis [66]. Since oncogenic HPV E6 oncoprotein induces p53
degradation and E7 mediates pRB degradation to release E2F, HPV infection may cause
aberrant expression of cellular miRNAs. HPV DNA is detected in the blood of women
with advanced CC, while in women with precursor cervical lesions, it is not detected or is
detected less frequently [67,68]. Significant correlations were found between circulating
cell-free DNA (cfDNA) level and stage, tumor score, and tumor size [68]. It was observed
that the level of cfDNA may reflect tumor cell metastasis or lysis of circulating tumor
cells [69,70]. We suggest that similar to CC cases, the release of HR-HPV DNA into the
bloodstream occurs later in the course of ovarian malignancies. All these processes may
lead to differences in miRNA levels and HPV positivity in tumors and serum.

The present results revealed that higher expression of cellular hsa-miR-218-5p was
observed in women with HGSOC than in patients with other neoplasm types. In addition,
in women with stage III/IV FIGO, hsa-miR-218-5p was significantly upregulated compared
to that in patients with stage I/II. The upregulation of miR-218 was previously reported
to be related to the recurrence of OC [71]. Overexpression of miR-218 suppressed CC cell
viability, migration, and invasion [72,73]. The expression of miR-218 was downregulated
in human ovarian carcinoma OVCAR3 cells compared to normal ovarian cells [74]. It
was observed that this miRNA inhibited cell proliferation but promoted apoptosis in
OVCAR3 cells through suppression of the Wnt/β-catenin signaling pathway. The previous
findings suggested that miR-218 may function as an important tumor suppressor that is
downregulated in various cancer types compared to normal tissues [72,75]. Contrary to our
results, a low level of miR-218 was correlated to advanced FIGO stages in CC tissues [76].

Survival analysis revealed that low expression of hsa-miR-16-5p in ovarian neoplasms
was an independent prognostic factor for longer OS. Hsa-miR-16-5p is a putative tumor
suppressor miRNA that is probably related to angiogenesis and EMT [77–79]. It is dysregu-
lated in several types of cancer, for example in cervical, breast, and bladder cancers [78].
Downregulation of this miRNA was reported in almost all examined malignant tissues
except for ovarian cancer tissues [78,80,81]. The mechanism behind the downregulation of
hsa-miR-16-5p in malignant tissues is not investigated thoroughly, although deletion in the
genomic region coding this miRNA is a putative mechanism. Several studies have reported
DNA methylation in hsa-miR-16-5p, as well as upregulation of the long non-coding RNAs
(lncRNAs) that target hsa-miR-16-5p or its specific targets [78,82]. These are regarded
as possible mechanisms for the downregulation of hsa-miR-16-5p along with genomic
variations in the locus of this miRNA. Phosphoinositide 3-kinase (PI3K)/AKT, Phosphatase
and tensin homolog (PTEN)/AKT, NF-κB, Hippo, and E1-pRb-E2F1 pathways are among
the signaling pathways being affected by the dysregulation of hsa-miR-16-5p [80]. The
upregulation or downregulation of this miRNA has been reported under pathological
endometrial conditions by the angiogenic signaling mechanism. Several genes, including
WNT, BCL2, JAG1, FGF2, BCL11B, VEGFA, EGFR2, FGFR1, and COX2 were described as
targets for hsa-miR-16-5p [83]. This miRNA targets VEGF mRNA and modulates endome-
trial angiogenesis [77]. Yan et al. identified key regulators (such as hsa-miR-16-5p) and
cancer prognosis-related network motifs (such as miR-16-5p-MYB-IGF1R) as potential
mechanistic biomarkers for tumorigenesis and OC progression [84]. An increased level
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of miR-16 in serous OC tissues compared with the corresponding normal tissues was
observed [85,86]. A significant increase in the expression levels of hsa-miR-16-5p was also
observed in malignant ovarian tumors collected from HGSOC and LGSOC cases relative to
benign serous ovarian tumors [87]. Hsa-miR-16-5p expression levels in the peripheral blood
lymphocytes were found to have higher expression levels in women with OC compared to
healthy controls [88]. Peritoneal implants and rectovaginal lesions collected from women
with endometriosis showed significantly higher expression of this miRNA than in control
and eutopic endometrium [77]. Data on the elevated levels of hsa-miR-16-5p in tumor
tissues and peripheral blood of OC patients are consistent with our results, indicating
an association between its higher expression level and poor OS. Moreover, two molecu-
lar subtypes of HGSOC, with different levels of expression of some miRNAs, including
hsa-miR-16-5p, and progesterone receptor (PR) in the tumor tissue, were reported [89].
The authors observed statistically significant differences between these two molecular
subtypes of HGSOC in terms of tumor size. A smaller tumor volume was characteristic
of PR-negative HGSOC, with increased levels of extracellular hsa-miR-16-5p, and with
more aggressive tumor behavior responsible for the failure of optimal surgical resection
in most cases. We suggest that most of the patients studied belonged to this HGSOC
subtype given the high level of expression of hsa-miR-16-5p and short survival. The study
performed among Turkish women with OC revealed no correlation between hsa-miR-16-5p
expression levels in patients’ blood lymphocytes and survival time [85,86]. It is suggested
that downregulation of hsa-miR-16-5p can lead to over-activity of cancer-related signals,
enhancing cell survival [78]. Our findings highlight that lower expression of hsa-miR-16-5p
in ovarian tumors may be considered as a prognostic marker for the survival of patients.

4. Materials and Methods
4.1. Patients

A total of 46 women with ovarian neoplasms (mean age: 62.0 ± 13.3 years, range:
30–87 years) who underwent cytoreductive surgery between 2018 and 2021 at the Medical
University of Lodz, the Polish Mother’s Health Center Research Institute, Lodz, and the
Tomaszow Health Center, Poland, were enrolled in the study. Their clinical details are
shown in Table 1. The inclusion criterion was referral for surgery to a specialized center
with suspected EOC. All included patients underwent primary cytoreductive surgery or
diagnostic laparoscopy (to estimate operability), and tissue samples were collected during
these procedures. Women were considered ineligible to participate in the study if they met
any of the following criteria: synchronous cancer other than EOC and ovarian cancer of
non-epithelial origin. Patients were excluded from this study if they received neoadjuvant
chemotherapy or had cancer recurrence. The study was approved by the Ethics Committee
of the Medical University of Lodz (RNN/346/17/KE and KE/1147/20) and was conducted
according to the principles expressed in the Declaration of Helsinki and good clinical
practice guidelines. All volunteers gave written informed consent to donate samples for
research purposes.

4.2. Sample Collection

Venous blood and ovarian tumor tissue samples were collected. Peripheral whole
blood was collected in serum-separating tubes and processed within 2 h of collection by
centrifugation at 1500× g for 10 min at 4 ◦C. Hemolysis was estimated using spectrophoto-
metric measurement at 414 nm. Cancerous ovarian explants were collected at the time of
surgery and suspended in RNAlaterTM Stabilization Solution (Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA). Both serum and tissue samples were stored at −80 ◦C for
further use.

4.3. DNA Isolation

Genomic DNA was isolated from 200 µL of blood and from up to 25 mg of cancerous
ovarian tissue samples using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany),
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according to the manufacturer’s protocol. The genomic DNA concentration was measured
using a NanoDrop 2000c Spectrophotometer (Thermo Fisher Scientific).

4.4. MiRNA Isolation

Total RNA, including miRNA, was isolated from 200 µL of serum using the miRNeasy
Serum/Plasma Advanced Kit (Qiagen) and from up to 10 mg of cancerous ovarian explants
using the miRNeasy Micro Kit (Qiagen) according to the manufacturer’s protocols. In the
case of solid tumors, the tissue fragments were suspended in 700 µL of QIAzol Lysis Reagent
(Qiagen, Germantown, MD, USA) and homogenization was performed by vortexing at
2000 rpm for 1 h. The RNA concentrations were measured using a NanoDrop 2000c
Spectrophotometer (Thermo Fisher Scientific). Each sample was spiked with UniSp6
(0.075 fmol) as a positive control for cDNA synthesis. Directly after isolation, RNA was
subjected to the reverse transcription process.

4.5. Reverse Transcription

Mature miRNAs were polyadenylated by poly(A) polymerase and reverse transcribed
into cDNA using oligo-dT primers. Polyadenylation and reverse transcription were per-
formed in parallel in the same tube. The miRCURY LNA Reverse Transcription Kit (Qiagen,
Hilden, Germany) was used to synthesize cDNA according to the guidelines provided by
the manufacturer. For serum samples, 2 µL of total RNA including miRNA eluate was used
undiluted for reverse transcription. For miRNA isolated from tumor tissue, 200 ng of total
RNA, including miRNA, was used per reaction.

4.6. Real-Time PCR to Detect microRNA Expression

The miRNA expression analysis was performed in duplicate for the following miRNAs
using miRCURY LNA miRNA PCR Assays (Qiagen): let-7b-5p, hsa-miR-140-3p, hsa-miR-
9-5p, hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-25-5p, hsa-miR-34a-5p, hsa-miR-191-5p, hsa-
miR-200a-3p, hsa-miR-203a-3p, hsa-miR-218-5p. U6 snRNA and SNORD48 were chosen
for the normalization of miRNA expression. Real-time PCR was performed using the
QuantStudio5 thermal cycler (Thermo Fisher Scientific). The reaction was performed
using miRCURY LNA SYBR Green Master Mix (Qiagen) according to the manufacturer’s
recommendations. The initial data analysis was prepared using QuantStudio Design &
Analysis Software v1.5.1 (Thermo Fisher Scientific) to obtain raw Ct values. The relative
quantification of miRNAs expression was determined.

4.7. HR-HPV Type 16/18 Detection

Qualitative and quantitative amplification methods have been used to detect and
quantify HPV16 and HPV18 DNA copies.

4.7.1. Nested PCR

Nested PCR was used to detect the presence of HPV16 and/or HPV18 E6 genes in the
analyzed materials [90]. The amplicons were separated using the QIAxcel DNA Screening
Kit (Qiagen). The results were validated by direct sequencing of selected PCR products
using the 96-capillary 3730xl DNA Analyzer (Applied Biosystems, Thermo Fisher Scientific,
Foster City, CA, USA) to confirm the detected genotypes.

4.7.2. Real-Time PCR

The detection of HR-HPV types 16 and 18 was performed using the AmpliSens®

HPV16/18-FRT PCR Kit (Central Research Institute for Epidemiology, Moscow, Russia)
according to the manufacturer’s protocol. β-globin was used as a positive DNA control
and a reference control for HPV16/18 copy number calculation. The final results were
expressed as HPV16/18 DNA copies per 105 cells.
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4.7.3. Digital Droplet PCR

Specific primers and probe sets detecting the HPV16 E6 [91] and HPV18 E7 [92] genes
were used. The human RPP30 gene was used as the reference gene [93]. Droplets were read
using the QX200™ Droplet reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The
tested sample was considered positive if there were at least three events at an amplitude
above the threshold baseline. The ddPCR data were analyzed using Quantasoft Version
1.7.4.0917 (Bio-Rad Laboratories). Copy number variant (CNV) analysis was performed to
determine the average HPV16/18 copy number per reaction. The final results are expressed
as copies per 105 cells.

4.8. Statistical Analysis

The chi-square test was used to analyze nominal variables, which are represented as
percentages. Using the Shapiro–Wilk test, the normality of the distribution of continuous
variables was determined. For continuous variables, the difference between the two groups
was determined using a two-sided independent Student’s t test if the data were normally
distributed and the Mann–Whitney U test if the assumption of normality was violated.
According to the data distribution, continuous variables are presented as means with
standard deviations (SDs) or medians with interquartile range values. ANOVA or Kruskal–
Wallis tests were used for multiple group comparisons depending on the data distribution.
Tukey’s post hoc test was used if ANOVA showed significant results (p < 0.05). Benjamini
and Hochberg multiple comparisons correction was used to adjust individual raw p values.
ROC curves and AUC were used to determine the ability of the miRNA biomarkers to
predict the presence of HPV in the tumor. Pearson’s correlation was used to assess the
relationship between the patient’s age and miRNA expression level in both serum and
tumor samples. p-values lower than 0.05 were considered statistically significant.

4.9. MiRNA Expression Analysis

The ∆∆Ct method was used to calculate fold changes in miRNA expression between
HPV-positive and HPV-negative samples. With the assumption that no single miRNA
is suitable as a reference in serum miRNA qPCR profiling experiments, together with
selected miRNAs, two additional snRNAs, U6 and SNORD48, were measured as potential
normalization factors. The performance of possible miRNA pairs for normalization was
estimated using NormiRazor software (https://norm.btm.umed.pl/login, accessed on 12
October 2022) [94]. However, the pairs with U6 snRNA and SNORD48 had insufficient
stability; therefore, the calculated average of all miRNAs in a sample was used as a normal-
izer. Normalization was conducted using the formula ∆Ct = Ct (reference) − Ct (miRNA
of interest). This approach yields a larger value for increased miRNA expression and
facilitates the usage and understanding of the miRNA as a biomarker. Differential expres-
sion analysis was performed using a t test, and volcano plots were generated to visualize
the results. Unsupervised hierarchical cluster analysis was performed using Morpheus
software (https://software.broadinstitute.org/morpheus, accessed on 12 October 2022)
with the complete linkage method and 1-minus Spearman’s rank correlation metric.

All statistical analyses were conducted using Statistica Version 13.1 (TIBCO, Palo Alto,
CA, USA) and R programming language (version 4.0.2). Most of the analyses utilized the
OmicSelector R package v1.0.0 (https://biostat.umed.pl/OmicSelector/, accessed on 30
September 2022) [95]. p values lower than 0.05 were considered statistically significant.

4.10. Survival Analysis

Univariate Cox regression analyses were performed to assess the prognostic value of
HPV infection status and miRNA expression levels. Using the median as a cutoff, miRNA
expression levels were categorized as high or low. For the construction of a multivariate Cox
regression model, only factors significant in univariate analyses were chosen. Differences
in the survival of identified groups were visualized using Kaplan–Meier plots.

https://norm.btm.umed.pl/login
https://software.broadinstitute.org/morpheus
https://biostat.umed.pl/OmicSelector/
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5. Conclusions

Our preliminary results suggest that HPV status may affect hsa-miR-25-5p expression
patterns in ovarian tumor tissues. Three different patient clusters with significantly varied
frequencies of HPV16/18-positive samples and distinct miRNA expression profiles were
observed. However, we did not observe a correlation between the HPV viral load and
the expression levels of the analyzed miRNAs. We selected potential miRNA biomarkers
for HGSOC and advanced FIGO stage. This study revealed also that high expression of
hsa-miR-16-5p was correlated with shorter OS. However, the study was performed on a
small and heterogeneous group of patients using selected miRNAs. Further studies using
miRNA profiling and validation in larger and uniform patient groups are needed.
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