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Abstract: Bees represent not only a valuable asset in agriculture, but also serve as a model organism
within contemporary microbiology. The metagenomic composition of the bee superorganism has
been substantially characterized. Nevertheless, traditional cultural methods served as the approach
to studying brood combs in the past. Indeed, the comb microbiome may contribute to determin-
ing larval caste differentiation and hive immunity. To further this understanding, we conducted a
shotgun sequencing analysis of the brood comb microbiome. While we found certain similarities
regarding species diversity, it exhibits significant differentiation from all previously described hive
metagenomes. Many microbiome members maintain a relatively constant ratio, yet taxa with the
highest abundance level tend to be ephemeral. More than 90% of classified metagenomes were
Gammaproteobacteria, Bacilli and Actinobacteria genetic signatures. Jaccard dissimilarity between
samples based on bacteria genus classifications hesitate from 0.63 to 0.77, which for shotgun sequenc-
ing indicates a high consistency in bacterial composition. Concurrently, we identified antagonistic
relationships between certain bacterial clusters. The presence of genes related to antibiotic synthesis
and antibiotic resistance suggests potential mechanisms underlying the stability of comb microbiomes.
Differences between pupal and larval combs emerge in the total metagenome, while taxa with the
highest abundance remained consistent. All this suggests that a key role in the functioning of the
comb microbiome is played by minor biodiversity, the function of which remains to be established
experimentally.

Keywords: honey bee Apis mellifera; metagenome; shotgun sequencing; hive; comb; bee larvae;
bee pupa; bacterial diversity; symbiosis

1. Introduction
1.1. Bee Hive as Microbiology Model Object

Microbiomes, as well as any other communities, are closely related to each other
within a biocenosis [1,2]. Functioning together, they form an environment. Some mi-
croorganisms may occupy more than one ecological microniche and can disrupt the
functioning of microbiomes by inherently becoming introduced species [3–5]. Therefore,
the stability of communities is determined by their complexity and complex genomic
signatures—metagenome [1,6–8]. Functional differences and host genomics influence be-
tween microbiomes with similar conditions are often determined by minor representatives
of communities [9–11]. Even these small variations in microbiota mediate big proteomics,
metabolomics and full microbiome composition changes [11,12].
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Bee colonies form an environment for a distinct microbiota [13,14]. Hive members,
their microflora and microorganisms living on different hive substrates influence each
other and function together as a superorganism [13,15,16]. The microbiota influences the
metabolism [13–15,17], development [18–20], immunity [21–24] and even behavior [25–27]
and evolution and speciation [28,29] of bees. The gut microflora of bees and its role are
well studied [13,15,30,31]. In adults, it includes only nine major groups of bacteria that
populate the gastrointestinal tract during the first days after hatching from the pupae [13].
The pupal intestine contains almost no bacteria, which makes bees a good object for setting
up model experiments to study the microbiome in adults [13,30]. The other components of
the hive microbiome, such as the comb microbiome, have received far less research atten-
tion, with traditional culture methods typically being the primary approach [15,16,31–33].
However, even this small number of articles indicates the huge role of the hive microbiome
in the life of its inhabitants [15,23,34,35]. It is the bee hologenome, which includes the
genomes of all hive organisms, that should determine its characteristics [31,32].

1.2. Bee Hologenome Parts

Hive environments contain three functional parts of microbiota. Some bacteria
can be transposed between hive members from different hive substrates [36]. Worker
bees transfer bacteria and fungi from plants and air into the hive [35,37]. The main
part, normal microflora, protects the hive environment from undesirable and pathogenic
invaders [23,24,33]. Also, it is involved in hive metabolism systems [16,37,38]. Apilactobacil-
lus kunkeei, Bombella apis and other species play a role in honey and pollen processing [16,38].

Honey contains a large number of microbes [14,35,39–41]. The composition of species
within the hive environment is influenced by two primary factors: firstly, it is contin-
gent upon the floral sources from which the bees forage for nectar [35,40]; and sec-
ondly, it undergoes a progressive alteration throughout the process of honey matura-
tion [39]. Bee bread, bee pollen and propolis also contain bacteria involved in their
formation [33,34,38,42–44]. These sugar-rich substrates, however, maintain a fairly constant
microflora [16,35,37,43,44]. This is controlled by a multitude of antimicrobials [34,45–47],
which also influence other microbiota communities of hive [44,48–50] and landscape [16,51],
and bees themselves [19,34,37,52,53]. Like in most hive niches, the majority of studies
report domination of bacteria, especially Bacillus, Lactobacillus, Apilactobacillus and Bifidobac-
terium [16,35,37]. Lipidome and shotgun metagenomics studies predict higher amounts of
fungi than expected in previous articles [41,43,53,54].

Comb microbiota community might be similar to honey, but less rich [15,54]. Previous
articles had reported low biomass and diversity of microorganisms of brood combs [15,54–57].
Cultural methods reveal that combs hives contained only 10–106 CFU/g [55]. Investigated
brood combs recovered less diversity and biomass than common hive floors, especially in
spring and winter. At least eight Bacillus species, Lactobacillus, Apilactobacillus, Brevibacillus,
Corynebacterium, Leifsonia, one Enterobacteriaceae group and several Actinobacteria were
identified in combs [55,56,58]. Amount of microorganisms on hive floors are higher [28],
while they contain notably lower concentrations of nutrients [16]. So, there might be a
mechanism of comb microbiota control.

2. Results
2.1. Taxonomy Annotation

Approximately two million Illumina shotgun reads per sample were sequenced
across a dataset comprising 17 samples—equivalent to a cumulative data corpus of about
35 million reads. More than 95% of all reads were identified as Apis mellifera, and more
than 80% of remaining reads were not classified.

Only 2.1% of all reads were classified on the HoloBee database [59] (Figure S1). Despite
results on the RefSeq database, it well identifies DNA from different metazoans, but their
numbers fluctuate considerably (Figure S2).
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Bacterial abundance and diversity (more than 260k reads, 9000 species, 1497 genus) sig-
nificantly exceed total viral (6.7k reads, 79 species, 59 genus) and fungi (8k reads, 96 species,
258 genus) (Figure 1). It is likely that some of the taxa were misclassified (Comment S1,
Figure S3). Among the dominant species, this applies primarily to Buchnera and Plantacti-
nospora. These classifications most likely refer to other representatives of Enterobacteriaceae
and Micromonosporaceae, respectively. Therefore, henceforth we regard them as putative
taxa in relation to these genera exhibiting clustered dissimilarities among metagenomes.
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Figure 1. Results of taxonomic annotations with Kraken 2 on RefSeq database. (a): mean composition
of all reads; (b): mean composition of bacterial reads.

Most numerous fungal groups were Ascomycota, Basidiomycota and Mucoromycota
(Figure S4). Of the 258 fungal genus, a minimum of 223 are classified by multiple reads
from more than two samples. No species dominates that microbiome part.

Some bee pathogens also were detected. All samples were infected by Varroa destructor
and some also by Apis mellifera filamentosus virus (AMFV) (Figure 2).
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Figure 2. Composition of bacterial sequences in the microbiome based on Kraken 2 results. The side
colors indicate the hive and sampling frame, while the column sizes correspond to the percentage of
all reads. Top chart (a) shows the composition of different phylotypes, while the bottom (b) shows
genus composition. Yellow corresponds to other species groups in all parts of the figure.

All analyses show a fairly high taxonomic diversity. Major groups by amount are
Actinobacteria (Plantactinospora, Streptomyces and unclassified taxa), Gammaproteobacteria
(mainly Gilliamella and Pseudomonas), Lactobacillales (Streptococcus, Apilactobacillus and
Lactobacillus) and Bacillales.

Of the widely represented microorganisms, only representatives of the genera Bacillus,
Apilactobacillus and Lactobacillus have been previously isolated from brood combs. Rep-
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resentatives of Corynebacterium and Brevibacillus, whose biodiversity in the hive has been
described by culture and biochemical methods, were observed in small numbers.

The greatest number fluctuations between samples are characteristic of Gilliamella,
Apilactobacillus, Serratia and Parasacharibacter (Figure S2). Other bacteria are classified in the
metagenome in almost constant amounts.

Analysis performed on HoloBee database discovers high levels of Aethina in the sample
majority (Figure S5). Classification of Gilliamella and Apilactobacillus remain similar with
analysis on the RefSeq database, whereas other Bacteria taxa are classified badly.

The level of Varroa destructor DNA in the metagenome was also constant. Eight samples
contain AMFV reads (Figure 2). This plot shows no correlation between virus infection and
metagenome member amount.

The composition of bacterial and fungal microbiomes in the combs is fairly constant
(Figure 2 and Figure S4). A large number of Gilliamella in samples 4, 7 and 17 and Apilacto-
bacillus in 2, 5 and 6 are isolated. At the same time, the ratios of other groups remain close
to constant.

In further analysis, we used bacteria, virus, and HoloBee Kraken 2 and Kaiju
fungal taxonomies.

2.2. Diversity Analysis

The alpha-diversity analysis is presented on Figure S6. The dominance analyses
show that 2–4 samples fall out of the total sample depending on the analysis. All of these
samples show large amounts of Gilliamella and Protobacteria in general, which may have
been introduced from the gut of adults. Evenness analyses isolate these same samples,
or describe all samples homogeneous. In contrast, the remaining samples do not exhibit
significant differences from each other in terms of these metrics.

Different richness measures and Kempton and Taylor’s Q coefficient differ in the other
two samples, from different hives and at different stages. The sizes of these metagenomes
do not differ from the others, similar numbers of Apis mellifera reeds were isolated in these
samples, and their metagenomic compositions are similarly typical.

Jaccard’s dissimilarity does not show any grouping of samples by overall diversity
(Figure S7). The individual difference between the bacterial composition of the samples is
greater than between any groups. The coefficient values range from 0.63 to 0.77, indicating
a high consistency in bacterial composition. The composition of viruses and fungi differs
to a greater extent. This is due, on the one hand, to the fact that fewer of these taxonomic
units are annotated in the samples. On the other hand, these groups are mostly represented
by few species with stochastic occurrence in the samples.

Bray–Curtis dissimilarity separates samples by hive and sampling stage (Figure S8).
Moreover, it is most pronounced for the coefficient calculated on virus diversity. It is worth
noting that the only detected pathogenic Apis mellifera virus, AMFV, is more prevalent
in the first hive and among larvae (Figure 2). Although individual differences in fungal
diversity between samples are greater than group differences, they cluster in a similar
manner. Bacterial and total diversity separated samples by hive and stage to a lesser extent.
The three samples falling out of the total sample by alpha diversity form a separate cluster.

2.3. Composition Analysis

To identify the relationships between microbiome members, cluster (Figure S9), corre-
lation (Figure S10) and tSNE (Figure S11) analyses of the most represented bacterial genera
were performed. The results of these analyses are summarized in Figure 3.
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Figure 3. Edge bundling diagram illustrates the correlations between 50 most abundant genera. Color
of each line represents Pearson correlation level between taxa abundances among classified samples.
Circle colors describe clusters on correlation matrix using complete distance. On 7 k-mers, 5 groups
show intergroup correlations with levels above 0.5 (Figure S10). Clusters named by the species with
the highest amount. ‘Gut’ cluster is composed mostly of the genus previously described as a part of
bee gut microbiota. ‘S+S’ is an abbreviation for Spiroplasma and Serratia. ‘ABE’ refers to the names of
groups which include most genus of this cluster: Actinobacteria, Bacilliaceae and Enterococcacce.
Members with weak correlations with other groups are indicated in yellow. Only correlations with
absolute value bigger than 0.6 are shown.

Most of the diversity forms a single cluster (Figure S9). Bacillaceae, Lactobacillaceae
and Enterobacteriaceae are most widely represented in it. Separating from this cluster are
Streptococcus and Plantactinospora, Streptomyces, Pseudomonas and Buchnera, and separately,
Gilliamella and Apilactobacillus.

A correlation analysis showed more distinct clusters. No significant correlations were
found for Apilactobacillus, AMFV and Parasacharibacter (Figure S10). For some other species,
correlation patterns seem to be random.

The most abundant taxa form five distinctive groups (Figure 3). Members of the bee
gut microbiome Gilliamella, Frishella, Snograsella [13], Bartonella [60] and Parasacharibac-
ter [61] show similar patterns of correlation with other species and their numbers in the
metagenome are highly correlated with each other. This cluster could be divided in two
subgroups—bigger “gut” include core adult gut members, and smaller “Bartonella” have
higher correlations among them and slightly lower between.

The most represented, Actinobacteria, Bacillaceae and Enteobacteriaceae, form sepa-
rate clusters we named “ABE”. Their composition is significantly negatively correlated with
the “gut” cluster, but not with the “Bartonella” group. The strongest negative correlations
in this cluster are observed for Bacillus, Streptomyces and Plantactinospora.

Another cluster includes potentially pathogenic bacteria—Pseudomonas [62,63] and
Corynebacterium [64]—also found in small numbers in guts. However, it may include
different members of Pseudomonas that differ in their ecology in the hive [65]. Its abundance
correlates weakly with the other clusters.

Spiroplasma and Serratia, previously found in bees [66,67], with some other bacteria
form two clusters (“S+S”). They do not correlate with each other very much, while the
correlation patterns with other clusters are similar. Members of this cluster also could be
potential pathogens. Bee louse is also related to them and might mediate transmission [68].

The tSNE compositions show some clustering patterns (Figure S11). The most species
amount belongs to the “ABE”, gut and “Bartonella” groups, which do not separate from
each other in the graph. tSNE shows that other heterogeneity can be observed in this group.
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The main representatives of these clusters are evenly distributed among this “super”-group
in the graph. This may be due to their high constancy in all samples.

Apilactobacillus, Lactobacillus and AMFV form clusters with a small number of species.
These signatures may be random, the results of species misclassification, or have some
relationship with these species. Numerous species are not found among them.

A separate cluster is formed by Pseudomonas while “S+S” genomic signatures are
scattered among all diversity. Also, tSNE reveals two mostly Acetobacteraceae groups, and
three other clusters with small amount and diversity.

2.4. Composition Associations

While metagenome compositions provide valuable insights, it is imperative to also
consider their functional significance within the community. To figure this out, we con-
structed a heatmap of samples across the most represented taxa (Figure 4). The clustering
of combs with bees at the same stages and predominantly from the same hive is observed.
Microorganisms may be grouped into small clusters according to environmental tolerance.
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Figure 4. Heatmap on composition analysis. Dataset has been assembled from fungi genus,
and bacteria and virus species amounts. The dendrogram was constructed using the ward.d2 method
for samples and species both. Colors on the side indicate the hive and sampling frame. Colors on top
indicate taxonomic affiliation. The map is colored according to z-score. b. pupa is an abbreviation for
late = black pupa, and w. pupa is for early one.

The heatmap does not form any discernible patterns in sample composition. Classified
viruses and other taxa with slight abundances are usually detected in only one sample
each, which makes them almost unaffected by clustering. Numbers of fungi and bacteria
fluctuate between samples, but not significantly. But in general, samples form clusters by
brood stage.

We compared taxa abundances between hive combs with different stages (Figure S12).
In both hives studied, higher numbers of Apilactobacillus are found in cells with larvae.
Gilliamella is more abundant in pupal cells, but only in one of the hives. Between brood
combs with different stages vary the z-scale of Klebsiella, Snoegrasella, Buchnera and Strep-
tomyces amount, while most other numerous members’ z-scaled amount differs between
samples (Figure S10). Combs metagenome mappings differ both by stage and by the hive
from which they were sampled (Figure 5). Dissimilarity between combs with different
stages must be bigger than dissimilarity between combs from different hives. Differ-
ences are observed for projections on the second to fourth rather than first component.
This possibly indicates an important role of minor diversity.



Int. J. Mol. Sci. 2024, 25, 741 7 of 16

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. Heatmap on composition analysis. Dataset has been assembled from fungi genus, and 
bacteria and virus species amounts. The dendrogram was constructed using the ward.d2 method 
for samples and species both. Colors on the side indicate the hive and sampling frame. Colors on 
top indicate taxonomic affiliation. The map is colored according to z-score. b. pupa is an 
abbreviation for late = black pupa, and w. pupa is for early one. 

The heatmap does not form any discernible patterns in sample composition. 
Classified viruses and other taxa with slight abundances are usually detected in only one 
sample each, which makes them almost unaffected by clustering. Numbers of fungi and 
bacteria fluctuate between samples, but not significantly. But in general, samples form 
clusters by brood stage. 

We compared taxa abundances between hive combs with different stages (Figure 
S12). In both hives studied, higher numbers of Apilactobacillus are found in cells with 
larvae. Gilliamella is more abundant in pupal cells, but only in one of the hives. Between 
brood combs with different stages vary the z-scale of Klebsiella, Snoegrasella, Buchnera and 
Streptomyces amount, while most other numerous members’ z-scaled amount differs 
between samples (Figure S10). Combs metagenome mappings differ both by stage and 
by the hive from which they were sampled (Figure 5). Dissimilarity between combs with 
different stages must be bigger than dissimilarity between combs from different hives. 
Differences are observed for projections on the second to fourth rather than first 
component. This possibly indicates an important role of minor diversity. 

 
Figure 5. PCA of the metagenome compositions. (a): based on developmental stage; (b): based on 
hive. Dots and circles represent samples, while lines indicate vector projections of selected clades. 
Full dataset has been assembled from fungi and bacteria genus and virus species amounts. 

Figure 5. PCA of the metagenome compositions. (a): based on developmental stage; (b): based on
hive. Dots and circles represent samples, while lines indicate vector projections of selected clades.
Full dataset has been assembled from fungi and bacteria genus and virus species amounts.

2.5. Genome Annotations

We analyzed gene annotations in the metagenome. Among the known genes, Gilliamella,
Bacillus and Streptococcus genes are the most widely represented. The best InterPro an-
notations were obtained on large scaffolds with an ORF length greater than 100 on the
PANTHER database (Figure S13). Most of the predicted genes have a Pollen A allergen
signature, and a significant fraction of proteins were simply recognized as hypotheti-
cal allergens (Figure S14). Antifreeze, ferredoxin and IGF-like proteins were the most
widely annotated.

There were also a lot of genes identified related to energy, cell wall, shikimate and
b12 metabolism. Surprisingly, a lot of genes were related to tagatose, petrobactin and
molybdopterin metabolism. Also, we find several genes related to antibiotic production
and resistance: macB, ycaO, cvaA, bcr and bceA.

3. Discussion

Brood combs provide a medium for a diverse microbiome. All major representatives
of the gut microbiome of adult and larvae bees [29,69–71] and honey [35,40] were observed
in the samples. Bacteria abundance is much higher than eukaryotic. The most abundant
bacterial species coincide in most microbiomes. Similar situations are observed in other
hive metagenomes [14,32,44,72–74]. Metagenomes vary due to environmental factors and
control systems. The bee gut microbiome contains only a few species that determine
almost all of its functionality and stability [13,17,75]. At the same time, honey [14,39,40],
propolis [43,48], royal jelly [24,61,76] and brood cells contain a diverse microbiota without
sharply distinguished dominants. Unlike the gut, representatives of these microbiomes
can be found outside the hive [15,23,31]. Their specialization and transmission between
hives remains an open question [15,72,77]. In fact, some strains and species appear to be
specialized only to specific hive microniches [78–80], so they must be transduced between
hives. Environmental species also adapt to specific ecological factors of the hive and form
community parts depending on that and pollination landscape [16,35,37].

More than 18% of taxa in shotgun honey research was identified using a custom
database, while HoloBee reveals only 8% of species listed [35]. We investigated hives remote
from the usual study sites, and among other reasons, the results of taxonomic annotation
are different from those known on bees (Figure S1). The brood comb metagenome shows
significant numbers of bacilli, as in the honey metagenome [35], and gamma-proteobacteria,
as in larvae at some stages [69–71]. Unlike other hive metagenomes, combs are dominated
by Actinobacteria (Figure 2).

The number of taxa detected is very much higher than predicted by culture meth-
ods [55]. This may be due to the fact that nutrient agar was used in this work. Gilliamella
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and some other representatives of the adult gut are not cultured on aerobic media, although
they can be found in the hive under aerobic conditions. Plantactinospora grows poorly on
nutrient agar, as do other bacteria, especially compared to Bacilli. Actinobacteria genus
Actinomadura, Nocardiopsis, Nonomuraea [58] and Leifsonia [55], previously identified in hive
combs, were not found. Other taxa found in previous studies were also found by us. Strep-
tomyces, Bacillus, Lactobacillus, Corynebacterium and Apilactobacillus species are represented
by a large number of closely related reads in the pooled microbiome. We cannot verify the
presence of Enterobacteriaceae enteric group 60 from previous research [55]. It was firstly
described as Morganella [81] and might be related to hypothetical Erwiniaceae and Buchnera
or other Enterobacteriales members of comb microbiome.

Bacteria form three groups by their abundance correlations (Figure 3). Most likely,
an admixture of adult gut core species representatives is a contamination. Gilliamella,
Frishella and Bartonella are rare in hive environments [15,37], obligate anaerobic [13] and do
not determine the clustering of samples. Parasacharibacter apium that cluster with them are
found in the larval midgut and food stores [82]. So, this contamination might be mediated
by foragers. Mycoplasma, Lysobacter, Vibrio, Helicobacter and some other bacteria were not
previously found in hives. But reads of these hypothetical taxa also cluster with core gut
species, so all this group (“gut” and “Bartonella”) could be a contamination.

Other big group include the majority of saccharolytic Bacillaceae and Enterococcaceae,
Actinobacteria and also gut Burkholderia [83] (“ABE” group). Klebsiella, Shigella, Esherichia
and other Enterobacteriaceae might have main metabolic functions [84]. Small hive beetle
amount correlates positively with members of this group. Some “ABE” Enterobacteriaceae
species previously were found as associated with Aethina microbiota [59]. All taxa that
we also found were not unique for that beetle, so it could play the role of transferring
part of brood comb microbiota [59,85]. Majority Bacillaceae and any Actinobacteria from
“ABE” were not previously found in association with Aethina, so understanding of their
transmission and function validation is a future work.

“ABE” group composition is negatively correlated with the abundance of the “gut”
group. The introduction of gut microbiota from the hive can be random but should be
an ongoing process. Bacilli species should increase stability of microbiome [57]. Acti-
nobacteria and some Bacillus and Streptomyces species can produce antimicrobials against
invaders [46,86,87]. So, in addition to contamination, the “gut” group may include organ-
isms that are in an antagonistic relationship with “ABE” species. They may have lost some
of their resistance genes to secreted antimicrobials. Their consistency and function in brood
combs should be investigated in future.

Gene annotation analysis identified several known genes including five genes asso-
ciated with antibiotic synthesis or resistance. MinPath predicts multiple genes for basic
metabolism and cell wall synthesis which are common in bacterial metagenomes. A lot of
Gilliamella genes with well-annotated functions also were detected [88].

Surprisingly a lot of annotated genes were related to tagatose metabolism and possibly
to D-tagatose pathway. This sugar may be found in nectar and honey [89], and apparently
some members are specialized to metabolize it. This niche may be occupied by some
Staphylococcus or Bacillus strains in which a relevant metabolism has been previously
discovered [90].

Three genes (folB, moaB and moaC) are related to the metabolism of molybdenum
cofactor. Genes containing this prosthetic group are formate dehydrogenase, nitrate re-
ductase and some others [91]. Molybdopterin biosynthesis genes, including those in our
metagenome (moaB and moeB), have been identified in the Gilliamella genome [92]. Members
with these pathways have yet to be identified.

Petrobactin biosynthesis genes have been identified in presumably Bacillus reads (yclN,
yclB and yclP). This siderophore is responsible for iron uptake in pathogenic bacteria [93].
In small hive beetles, the presence of Bacillus licheniformis was previously noted [59], some
strains of which are capable of producing it.
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Microcin biosynthesis genes ycaO and colicin biosynthesis genes cvaA are found in the
metagenome. These antibiotics are produced by a variety of Bacilli.

Macrolide resistance gene macB, bicyclomycin bcr and bacitracin bceA have been
found. Streptomyces from Apis dorsata bees and hive environments are known to produce
antimicrobials [86]. Bacitracin is a well-known Bacillus antimicrobial. It is suggested to be
found in honey [87].

All antimicrobial-related genes could be theoretically found in the “ABE” group
species, first of all in Actinobacteria and Bacillus. It is these species that show the highest
negative correlations with other groups, including the potentially pathogenic “S+S” and
“Pseudomonas”. The “ABE” group is just as negatively correlated with “gut”, but much less
so with “Bartonella”. This may be both an artifact of the analysis and an indication that
“Bartonella” representatives have a separate function in this microbiome. Unlike other bac-
teria associated with the bee gut, members of this subgroup are facultative aerobes [60,82]
and their development is probably less suppressed in combs.

Apilactobacillus kunkeei is a member of adult and larvae gut microbiota [13,80], but also
was found in honey [35,78]. No significant correlations were found for it as well as for
Bifidobacterium, Clostridium and some other species. These groups may include random
microorganisms, for example—it should include closely related organisms and organisms
with low abundance in samples, because they may appear and disappear randomly in the
metagenome and its classifications. On the other hand, it will also include microorganisms
with special functions that define some meaningful differences between different combs.

The composition of the microbiome varied little between individuals (Figures 2,
S3 and S4). All “ABE” group and fungi species represent 30–70% of the total classified
signatures, and correlations between their amounts seems to be stable. Cluster analysis
and PCA show differences between combs with larvae and pupae (Figures 4 and 5).

Bee larvae guts contain many bacteria [15]. The composition of these communities
is less constant than that of the adults [70], but it differs considerably from that found in
their food [69,94]. Theoretically, the main sources of microbiota in larval combs should
be communities from their gut or food. But it looks like brood combs carry an indepen-
dent community, which may influence its own larvae communities. While some groups
have similar amounts, the dominant group of larvae gut microbiome—Acetobacteraceae,
Parasacharibacter apium—was detected in trace amounts.

How important is this microbiome in larval nutrition? A culture study predicts a
significant shifting of the larval microbiome during adulthood [70]. No Actinobacteria were
detected, and the overwhelming number of identified representatives belong to Lactobacillus
and Apilactobacillus. On the other hand, gut examination by RT-PCR of prepupal larvae
detects Actinobacteria in the gut of some larvae and pupae, but in much lower numbers
than other bacteria [95]. DGGE analysis predicts much more consistency for larvae gut
microbiome than pupal [71] and bigger amounts of proteobacteria (maybe Gilliamella) in
pupal guts. In this study, the number of Actinobacteria and Gammaproteobacteria 16S in
larval guts seems to be constant, while the Firmicutes amount grows to the sixth-instar
larvae and then significantly decreases. The difference in Apilactobacillus amount and minor
species composition between pupae and larvae combs in the present study must be an
indicator of these processes.

It is known that the gut microbiota of pupae in bumblebees can influence changes
in their phenotypes [96]. In bees themselves, an antagonistic effect of this microbiome on
Paenibacillus alvi has been shown [97]. This may be due to the secondary metabolites it
secretes and less likely to its composition because of its inconsistency. Microbes themselves
increase antimicrobial response by the host bee [98].

The larval microbiome was previously thought to be populated by ingestion of con-
taminated food [69,94]. It appears that the comb microbiome may play a probiotic role in
initiating the development of normal microflora. It is likely that the microbiome of larvae,
and most likely from combs as well, does not directly affect the pupation process [98].
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Major bacteria from the larval gut are not inhibited by royal jelly [70]. The influence of
larval nutrition on the brood comb microbiome remains to be elucidated.

Any analysis except PCA does not reveal differences between combs with larvae and
pupae (Figure 5). Perhaps this is an indicator of the permanence of the microbiome, which
remains stable across most taxonomic units regardless of environmental factors. On the
other hand, the complex differences detected by PCA may indicate some difference in their
functioning. Major differences in the number of Apilactobacillus and Gilliamella unreliably
distinguish combs with pupae and larvae (Figure 4), and these are the ones that define
the first major components. Differences between brood combs are observed only from the
second component onwards, indicating the role of the remaining diversity.

Before pupation, bees plug the comb [13,57]. Pupae do not feed and their gut is almost
completely devoid of microbes, especially in the later stages [13,71]. Their comb community
may be less rich due to fewer nutrients. On the other hand, larval combs contain fewer
CFUs than hive surfaces [15,55]. Perhaps some species responsible for the constancy of their
microbiome may disappear from the microflora, leading to an increase in diversity. Finally,
a change in conditions may lead to the development of a new community altogether. Thus,
the study of this community and its role in hive life is just beginning.

4. Materials and Methods
4.1. Sample Collection

Organisms for the description of surface microorganisms were collected from two
different hives on 7 July 2022. Samples were collected from different frames. We used only
5th instar larvae and mostly white pupae. Every sampled comb was washed using Qiagen
lysis buffer for DNA extraction (Qiagen, Hilden, Germany). Every comb was flushed
twice, per 200 µL. For better cell destruction, samples were frozen and unfrozen for 3 times.
Next day DNA from all samples were extracted using Blood & Cell Culture DNA Mini Kit
(Qiagen, Hilden, Germany). All obtained samples were stored in individual Eppendorf
Tubes at −20 ◦C.

4.2. Sequencing

Library preparation for shotgun metagenomics DNA was quantified and quality-
assured with a capillary electrophoresis TapeStation 4200 (Agilent, Santa Clara, CA, USA),
and sequenced using the Illumina HiSeq (San Diego, CA, USA). Expected read length was
100 bp. In total, we sequenced 17 comb materials from 2 different hives. Both hives are
engaged in Russia, Leningrad oblast.

4.3. Data Processing

Reads were trimmed using Trimmomatic [99]. Then, contamination was removed by
bowtie2 [100]. For decontamination of human DNA and removing host DNA we used
the recent GRCh38 human genome and Apis mellifera genome GCA_003254395.2 from
NCBI RefSeq.

4.4. Taxonomic Analysis

Taxonomic analysis was performed using Kraken 2 [101] and Kaiju [102] on RefSeq and
HoloBee databases. All charts were plotted using a customized script using R programming
language [103], RStudio [104] and necessary libraries [105–113]. Various metrics available
in the R abdiv package [114] were used to analyze alpha diversity. Beta diversity was
assessed using the Bray–Curtis and Jaccard dissimilarity coefficients.

IDBA-UD [115] assembly from pooled reads with k-mers 34–104, and a step size
of 10 was used to analyze gene functions. Secondary metabolites and pathways were
analyzed using Interproscan [116], antiSMASH [117], Prokka [118] with Artemis [119] and
MinPath [120]. All results were summarized.
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5. Conclusions

The brood combs microbiome exhibits distinct characteristics compared to other hive
microbiomes, including honey. Most of the dominant species are aerobic saccharolytic bacte-
ria. Although certain species may experience occasional outbreaks of diversity, the overall
diversity remains remarkably stable and shows minimal variation between combs.

The differences observed between larval and pupal combs are primarily determined
by the whole present community. It is possible that there are quantitative variations in
metagenome abundance between these two types of combs, leading to the disappearance
of some species with lower diversity from the annotations. This phenomenon could
be attributed to the changing conditions between larval and pupal combs, such as the
depletion of a constant source of new sugars and alterations in other environmental factors.
Surprisingly, these changes do not significantly impact the underlying biodiversity of the
combs. Therefore, it is likely that the minor diversity plays a crucial role in the functioning
of this microbiome.

The contribution of the comb microbiome to the developmental trajectory of bees
remains an enigma that requires further exploration. While the mechanisms involved in
the metamorphosis of typical larvae into prospective hive queens are well understood
and associated with nutritional factors, the precise mechanisms that regulate the decision-
making process, determining which larvae will receive an adequate diet, remain obscure.
It is possible that a selection protocol exists for larvae allocated to receive the royal jelly
intended for emerging queens, which may be intertwined with the biochemistry of the
comb microbiomes.
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