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Abstract: Diagnosing urothelial cancer (UCa) via invasive cystoscopy is painful, specifically in men,
and can cause infection and bleeding. Because the UCa risk is higher for male patients, urinary non-
invasive UCa biomarkers are highly desired to stratify men for invasive cystoscopy. We previously
identified multiple DNA methylation sites in urine samples that detect UCa with a high sensitivity
and specificity in men. Here, we identified the most relevant markers by employing multiple
statistical approaches and machine learning (random forest, boosted trees, LASSO) using a dataset of
251 male UCa patients and 111 controls. Three CpG sites located in ALOX5, TRPS1 and an intergenic
region on chromosome 16 have been concordantly selected by all approaches, and their combination
in a single decision matrix for clinical use was tested based on their respective thresholds of the
individual CpGs. The combination of ALOX5 and TRPS1 yielded the best overall sensitivity (61%)
at a pre-set specificity of 95%. This combination exceeded both the diagnostic performance of the
most sensitive bioinformatic approach and that of the best single CpG. In summary, we showed that
overlap analysis of multiple statistical approaches identifies the most reliable biomarkers for UCa in
a male collective. The results may assist in stratifying men for cystoscopy.

Keywords: urothelial cancer; DNA methylation biomarker; random forest; boosted trees; LASSO

1. Introduction

Urothelial carcinoma (UCa) is among the most frequent cancers of the world and
more likely to occur in men [1]. The standard for diagnosing primary and recurrent UCa is
urinary cystoscopy, which is an invasive and uncomfortable procedure [2]. The cytological
evaluation of the urinary sediment has been widely used as a non-invasive method to
precede cystoscopy and is highly specific [3]. However, it has a limited sensitivity for low-
grade tumors [3,4]. Though invasive cystoscopy has no alternative in patients presenting
with macrohematuria in a doctor’s office, the decision as to whether perform cystoscopy
in the case of microhematuria is much more challenging. In such cases, a biomarker-
based approach might aid decision making rather than only relying on common urothelial
cancer-associated risk factors such as smoking status, age and male gender. Therefore,
non-invasive biomarkers for UCa in urine are obviously needed, specifically in men.

Due to the direct contact of urine and urothelium, urothelial cancer cells or cancer cell
components are released into the urine. Numerous approaches have been carried out to
identify UCa by the use of urinary molecular biomarkers [5–11]. However, none of the
used approaches or identified biomarkers have been included in a clinical routine or even
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in guidelines, possibly due to the complex nature of molecular signatures that, in part,
require a specialized readout software [10,11].

We have previously identified a set of urinary DNA methylation biomarkers that
detect UCa with a high sensitivity and specificity specifically in male patients and inde-
pendent of grade, stage and hematuria. Upon the initial screening in urinary sediment,
DNA methylation was verified by using an independent method and it was confirmed in
matched tissue specimens [12]. The analyses included multiple candidate CpG sites within
10 amplicons and, based on ROC analyses, we suggested the use of the most relevant single
CpGs to diagnose UCa.

In recent years, machine learning has become increasingly commonly employed for ana-
lyzing DNA methylation data to diagnose diseases [13–18] and disease subtypes [16,19–21] or
to discriminate tissue and tumor origins [22–26]. Herein, random forest has been primarily
used. However, boosted tree approaches have also gained attention [23]. In addition, com-
binations of machine learning strategies were discussed to improve data outcomes [17,22].

Here, we applied different modeling and machine learning approaches including
random forest (RF), boosted trees (BT) and LASSO to our previously identified targets to
further improve parameter selection strategies. In addition, we evaluated the performance
of each single CpG via ROC analyses. Assuming that CpG sites selected by several different
statistical and machine learning approaches are exceptionally meaningful, our aim was
to combine these concordantly selected sites in a simple diagnostic decision matrix based
on their respective individual ROC cutoffs. The latter should be easily employable for
clinicians without the use of bioinformatics.

2. Results and Discussion

Genome-wide screening technologies enable the detection of disease-specific signa-
tures. However, they often yield numerous potential biomarkers and subsequently require
a careful selection of the diagnostically most meaningful sites. In our previous study, we
suggested the use of single CpGs for UCa detection [12]. Meanwhile, machine learning algo-
rithms have been used successfully to create disease classifiers. The most widely described
machine learning process with respect to DNA methylation data has been random forest
(RF), favoring either accuracy or specificity [14–18,20,21,23]. Furthermore, boosted trees
(BT), promoting either accuracy or specificity, have also been successfully applied [16,23].
In addition, LASSO has been used for DNA methylation analyses before [17,18,20].

Most of the methods have been used as “stand-alone“ methods to identify disease
classifiers. Only a few studies have reported the use of more than just one statistical or
bioinformatical approach for methylation biomarker identification. One strategy has been
to combine several methods in a series. For example, targets are first selected via LASSO or
principal component analysis (PCA) and then subject to RF or support vector machines
(SVM) for the development of a final classifier [17,22]. Alternatively, RF and LASSO were
performed in parallel and the overlapping CpGs were combined to obtain a final classifier
via logistic regression analysis [18].

In the present study, we applied three important methods (RF, BT, LASSO) in parallel
on a large dataset of UCa patients and controls. To minimize method-inherent disadvan-
tages or biases of the respective singular approaches, we determined the overlap of those
sites that were identified by the different tests applied. Instead of combining the selected
sites in a complex classifier or model, we analyzed all possible combinations of the selected
biomarker sites in “or-matrices” based on the thresholds in the individual ROC analyses
and at a pre-set 95% specificity to minimize false positive results and then we compared
the diagnostic value of these combinations to the sensitivity and specificity of the singular
markers picked. According to this comparison, we developed a simple decision matrix for
easy application in clinical practice to select individuals for invasive cystoscopy. Similar
“simple“ matrices have been used for DNA methylation analyses in earlier biomarker
studies [27–29].
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When comparing the results of the various parameter selection methods, the RF
approach selected about a four-fold higher number of sites (49 and 43 CpGs in RF when
optimized for either accuracy or specificity) compared to the BT approach (10 and 13 CpGs,
respectively) (Table 1, Tables S4–S7, and Figures S2–S5). LASSO was the most restrictive
and only selected four sites (Table 1). This finding is in accordance with a study that
compared RF and LASSO for identifying classifiers of gastric cancer and where the number
of parameters selected by RF was much higher than of those picked by LASSO [18].

A ranking of important diagnostic parameters revealed very similar AUCs for the
different methods. AUC values of single sites (e.g., approx. 86% for CpG unit 78_2.3) were
marginally higher than those of RFspec, RFacc, BTacc and LASSO (approx. 85%) and slightly
higher than those of BTspec (84%, Table 1). In contrast, the sensitivities between the various
approaches (at a pre-defined specificity of 95%) displayed more pronounced differences.
Single CpGs displayed a maximum sensitivity of approx. 58% (for CpG 2_6) and thus
outperformed BTacc (approx. 53%). The sensitivities of LASSO and RFspec (both approx.
52%) were only slightly higher than those obtained in RFacc (51%). BTspec ranked least with
a sensitivity of approx. 50% at 95% specificity (Table 1).

Among the 65 sites analyzed, the majority of CpGs (42) analyzed by RF analyses
were concomitantly selected by both RFacc (Table 1, Tables S4 and S8) and RFspec (Table 1,
Tables S5 and S8), whereas regarding BT analyses only seven CpGs were concomitantly
selected by both BTacc (Table 1, Tables S6 and S8) and BTspec (Table 1, Tables S7 and S8).
All seven potential classifiers identified by the BT approach were also selected by the RF
approach (Table 1 and Table S8). Among the four sites identified by LASSO (Table 1),
three sites (02_CpG_6, 35_CpG_7 and 78_CpG_2.3) were also picked by all RF and BT
approaches (Table S8). Therefore, these three sites (ALOX5, TRPS1 and the intergenic
region on chromosome 16) were judged the most relevant biomarkers to be used for UCa
diagnosis and, consequently, were considered for the development of the decision matrix
introduced in the present study (Table 2 and Table S8). For these three candidates—alone
or in any combination—the sensitivities and specificities were determined based on the
thresholds of the respective single sites at 95% specificity (Table 2 and Table S3). Both
diagnostic parameters were calculated for the overall collective, including patients with
primary tumors and those that had suffered from UCa before (Table 2). In addition, we
analyzed the sensitivities and specificities stratified for a history of UCa (Table 2).

For a good diagnostic tool, a high specificity is required to prevent unnecessary
cystoscopies. Therefore, we only selected sites or panels with a specificity of at least
95% for further evaluation in the overall collective. Among the resulting options, ALOX5
(coding for arachidonate 5-lipoxygenase) had the best specificity (96%) and a reasonable
sensitivity (58%). Stratified by history of UCa, the specificity was even better with 98% at a
good sensitivity of 70% in patients with primary UCa. However, both specificity (94%) and
sensitivity (40%) were considerably reduced in patients with UCa history (Table 2). A simple
“or” matrix applying a combination of ALOX5 and TRPS1 (coding for the transcriptional
repressor GATA binding 1) increased the sensitivity in the overall collective by 3% at only
a 1% drop in specificity when compared to ALOX5 alone and was therefore considered
the best option for UCa detection according to our selection criteria described below (see
Section 3). In patients with no former UCa, the sensitivity was also increased by 2% at
an identically high specificity (98%, Table 2). However, in patients with UCa history, the
discussed combination yielded only 43% sensitivity. For individuals with previous UCa,
this was the best value among the selected sites and their combinations and was increased
by 3% when compared to the best single CpG; however, the specificity was reduced by 4%
when compared to ALOX5 alone (Table 2).



Int. J. Mol. Sci. 2024, 25, 738 4 of 13

Table 1. Overview over the results of the applied parameter selection and machine learning approaches in terms of the diagnostic parameters obtained for the
individual approaches. Area under the receiver operator curves (AUC) and the respective accuracy and sensitivity are shown. In addition, the sensitivity at a fixed
95% specificity is given. For the statistical and bioinformatical approaches, the number of selected targets and the target names are given. For the machine learning
approaches, the number of rounds and the depth/mtry are given.

Applied
Approach

Analysis
Optimized

for.
AUC Accuracy Sensi-tivity Speci-ficity

Sensitivity
at ≥95%

Specificity

Number
of

Selected Targets
Rounds Depth/

Mtry Selected Targets

Boosted Trees

Accuracy 85 78 75 81 53 10 10 4

35_5 and 7
2_6 and 11

78_2.3 and 12.13.14
71_5

14_7.8.9 and 14_1
64_3

Specificity 84 78 73 83 50 13 6 2

35_5 and 7
78_2.3 and 12.13.14

2_6 and 7
14_1 and 6

74_9
71_8.9.10 and 3.4 and 11 and 5

Random Forest

Accuracy 85 79 81 77 51 49 - 3

35_2.3 and 7 and 5
78_2.3 and 12.13.14 and 7.8 and 6

2_6 and 3 and 8 and 2 and 9.10 and 4 and
1 and 11 and 7

71_11 and 8.9.10 and 6.7 and 3.4 and 12 and
5 and 2

14_7.8.9 and 2.3 and 6 and 1 and 10 and
13 and 4.5 and 11.12 and 14

70_3.4 and 6 and 5 and 9.10 and 7
42_10 and 9 and 6.7.8 and 4.5 and 1 and 12

74_8 and 10.11.12 and 6 and 3.4 and 9
64_3

Specificity 85 79 81 77 52 43 - 2

78_2.3 and 12.13.14 and 6 and 7.8
35_ 5 and 2.3 and 7

2_ 8 and 6 and 3 and 2 and 1 and 7 and 11 and
4 and 9.10

71_11 and 3.4 and 8.9.10 and 6.7 and 5 and
12 and

14_1 and 6 and 2.3 and 11.12 and 10 and
14 and 13 and 7.8.9 74_8 and 6 and 3.4

70_3.4 and 7 and 6
42_2.3 and 9 and 10 and 4.5 and 1 and 12
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Table 1. Cont.

Applied
Approach

Analysis
Optimized

for.
AUC Accuracy Sensi-tivity Speci-ficity

Sensitivity
at ≥95%

Specificity

Number
of

Selected Targets
Rounds Depth/

Mtry Selected Targets

LASSO 85 79 71 86 52 4 - -

02_6
35_7
42_9

78_2.3

Singular CpGs with
>50% sensitivity at
≥95% specificity

max.
86 for
78_2.3

max. 58 for 2_6 21 - -

02_6 and 8 and 3 and 4 and 2 and 9.10 and
11 and 7

78_6 14_11.12 and 10 and 7.8.9 and 2.3 and 13
70_6
74_6

22_2 and 3
35_7

42_1 and 10
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Table 2. Sensitivities and specificities for single CpGs/CpG-units or panels consisting of up to
three candidate sites selected by RF, BT and LASSO in the overall dataset and stratified for UCa
history. Sites or, respectively, panels were ranked for the best overall specificity, and, within the latter,
sensitivity. Sites or combinations with less than 95% overall specificity were not considered further
(gray text).

Overall No UCa History UCa History

Single CpG/CpG-Unit or Panel Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

02_CpG_6 58 96 70 98 40 94

02_CpG_6; 35_CpG_7 61 95 72 98 43 90

35_CpG_7 50 95 59 100 37 90

78_CpG_2.3 43 95 54 98 28 92

02_CpG_6; 35_CpG_7; 78_CpG_2.3 61 93 73 98 43 86

35_CpG_7; 78_CpG_2.3 54 93 65 98 37 86

As already speculated by other authors, a reduced sensitivity in patients experienc-
ing recurrences probably results from the fact that patients with UCa history are under
surveillance. Thus, tumors are still small and release only a few cells into the urine that
might be detected by molecular approaches, although, admittedly, cancerous lesions may
already become visible when employing cystoscopy [30,31]. However, small non-invasive
lesions that do not cause pain or discomfort usually have a small probability to progress
and should become apparent in a later surveillance visit.

Generally, increased sensitivities (most likely accompanied by decreased specifici-
ties) are observed when using “or” combinations for biomarkers, i.e., when two or more
biomarkers must exceed a threshold for the specimen to be positive. In addition, it should
be kept in mind that, compared to other solid cancers, UCa is exceptional due to its high
recurrence rates. Therefore, the need for invasive cystoscopy is different in patients with
primary UCa compared to those under surveillance for recurrent UCa: patients with a
history of UCa became used to regular follow-up investigations and they expect inva-
sive interventions compared to patients that are under UCa suspicion for the first time.
Therefore, a lower specificity in terms of an increased number of false-positive results is
acceptable in patients with recurrent UCa, specifically in patients that previously suffered
from non-muscle invasive bladder cancer with only low and intermediate risk. In addition,
surveillance patients might experience a negative cystoscopy result (obtained upon a pre-
ceding false-positive biomarker test result) as a relief that outweighs the inconveniences
during cystoscopy. Therefore, we advocate for the more sensitive (but less specific) “or”
combination of ALOX5 and TRPS1 for guiding cystoscopies in patients under surveillance
for recurrent UCa.

In patients without a history of UCa, the marker combination “ALOX5 or TRPS1” is
both more sensitive (72% vs. 43%) and highly specific (98% vs. 90%, Table 2) when com-
pared to people with UCa history. We therefore also recommend the marker combination
of ALOX5 and TRPS1 for patients that are under suspicion of UCa for the first time. The
latter might not return for necessary future investigations after experiencing a painful
and unnecessary investigation via invasive cystoscopy; therefore, sparing patients from
unnecessary cystoscopies (enabled by a high biomarker specificity) is even more important
in primary UCa patients when compared to those under surveillance of recurrent UCa.

To our knowledge, neither TRPS1 nor ALOX5 was previously identified as a differ-
entially methylated target in UCa except from our own group [12]. However, there are
studies showing a significantly higher expression of ALOX 5 at the levels of both pro-
tein and RNA expression in UCa than in cancer-free urothelium [32–34]. Furthermore,
ALOX5 inhibitors exhibited growth suppression in UCa cell lines expressing ALOX5.
Inhibitor-mediated growth inhibition could be diminished by 5-HETE as a product of
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ALOX5-dependent metabolism, suggesting that ALOX-5-dependent metabolism of arachi-
donic acid—predominantly via 5-HETE production—is involved in the biology of UCa [35].
As far as TRPS1 is concerned, we only found articles reporting no expression at the pro-
tein level in UCa; however, expression levels in non-cancerous urothelial tissue were not
reported for comparison [36].

Our approach here is unique because, even for a single biomarker, we pre-set the
specificity to a high level (95%). In contrast, previous studies mostly balanced sensitivity
and specificity when reporting their results and the collectives were differently composed
regarding grading, staging and tumor history. Therefore, the diagnostic performances in
terms of specificity and sensitivity reported here are generally hard to compare to those
previously reported by other authors. Few reviews selecting markers and panels with
high diagnostic precision summarized sensitivities and specificities and reported studies
yielding sensitivities > 60% at 95% specificity [6,7,10,11,13,37,38]. However, none of these
studies investigated as many cases and/or controls as we investigated; thus, it is not clear
whether the same sensitivities would have been reported in larger collectives.

In our overall collective, the sensitivity of each of our single or combined markers
exceeded the overall value obtained for urine cytology in a large meta-analysis (around
30%, [3]) at a similar median specificity (approx. 80 to approx. 100% in [3] and 93 to 96%
in our collective). Of note, an analysis stratified for grading showed that the sensitivities
of our single or combined markers with up to 58% by far exceeded those reported for
urine cytology (median 12% in grade 1 and median 26% in grade 2 tumors) in our low-
grade collective (n = 195) and also in our high-grade collective (n = 53) with up to 72 vs.
median 64% in the literature (Table S9, [3]). However, the sensitivities for high-grade
detection might be less valid due to the low share of high-grade cases in our collective.
Furthermore, the higher sensitivity detected in the high-grade subcollective might be a
masked effect of tumor history: only 12 of the 53 high-grade cases had a history of UCa
and, as discussed above, people under surveillance mostly have smaller tumors with a
lower probability to be detected by molecular markers. This assumption would be in line
with our previous observation that DNA methylation levels appear to be independent of
grade but are influenced by the history of UCa [12].

3. Materials and Methods
3.1. Urine Specimens

The collective analyzed in the present study was Caucasian and displayed a large
overlap with that of our previous study [12] but, for improved analyses, we expanded
our previous dataset by newly obtained specimens of male patients. We focused on the
male gender for several reasons: the latter would benefit the most from a biomarker-
based approach due to the much higher number of men affected by UCa [1] and due to
more severe adverse effects caused by cystoscopy in men [2]. Furthermore, we previously
showed that our urinary DNA methylation markers are suitable for the identification of
UCa in male individuals while we could not presume a robust and reliable use in women.
The latter was due to two aspects: First, the incidence of UCa is about four times lower
in women than in men [1], entailing a too small number of specimens for a meaningful
analysis especially when subgroups were examined [12]. Second, we previously observed a
less eminent hypermethylation of biomarker DNA in urine, but not in tissue, from women
with UCa when compared to non-UCa specimens [12]. We ascribed that aspect to the higher
abundance of non-methylated leukocytes and further non-urothelial cells that suppress
DNA methylation in the urinary cell pellets obtained from female UCa patients. [12].

The dataset analyzed in the present study fully comprises the male modeling dataset
from the previous study [12] and it was complemented by 44 specimens (30 UCa, 9 PCt
and 5 UCt samples to a total of 251 UCa patients and 111 controls (Table S1). Histopatho-
logical evaluation (staging and grading) was carried out in specimens obtained during
transurethral resection of the bladder (TUR-B) by two pathologists based on microscopic
evaluation and according to the 2004 WHO guidelines [39]. The control collective consisted
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of 40 population controls, i.e., individuals without a history of UCa that have been selected
from the general population, and 71 urological controls, i.e., patients that underwent (TUR-
B) due to the initial suspicion of UCa but where histological examination of specimens did
not confirm UCa. Urinary specimen with >500 leukocytes/µL were excluded, as we found
that high leukocyte counts would suppress urinary DNA methylation due to a dilution with
unmethylated leukocyte DNA [12]. The composition of the analyzed collective regarding
staging, grading, localization of UCa and history of UCa and urinary leukocyte counts is
given in Table S1.

In contrast to our previous study, we combined both PCt and UCt in a single “no UCa”
group because, aside from simplifying analyses, a combined control group is also more
representative of the "real-world scenario" where practitioners must decide whether an
individual should undergo TUR-B. All urine analyses were approved by the Ethics Com-
mittee of the Ruhr-University Bochum (No. 3674-10). The study followed the Declaration
of Helsinki and all participants provided written informed consent.

3.2. Preparation of DNA from Urine

The isolation of DNA from urine has been described in detail before [12]. In brief,
the voided urine was centrifuged and the obtained sediment was washed with PBS and
resolved in PBS. DNA was prepared using the QIAmp MinElute Virus Spin Kit (Qiagen,
Hilden, Germany) where RNA was digested by incubating the samples with DNase-free
RNase (Roche, Mannheim, Germany). DNA was finally purified by the Clean and Concen-
trator TM-25 Kit (Zymo Research, Corporation, Irvine, CA, USA), eluted in TRIS/EDTA
buffer (AppliChem, Darmstadt, Germany) and stored at −20 ◦C until further analysis.

3.3. Quantitative Mass Spectrometry of DNA Methylation

Ten amplicons that were shown to be hypermethylated in UCa cases and whose
genomic coordinates and primer sequences have been described previously [12] were
analyzed by matrix-assisted laser desorption/ionization–time-of-flight (MALDI-TOF) mass
spectrometry (MassARRAY EpiTYPER system, Agena Bioscience GmbH, Hamburg, Ger-
many), enabling the quantitative measurement of CpG methylation at single dinucleotide
resolution [40,41]. For this purpose, 250 ng of DNA were bisulfite-converted using the EZ
DNA Methylation Gold Kit (Zymo Research, Orange, CA, USA) according to the manufac-
turer’s protocol. All necessary preparations preceding mass spectrometry (PCR, reverse
transcription and RNA cleavage) and the final MALDI-TOF mass spectrometry was per-
formed as previously described [12]. When neighboring CpGs were located on identical
mass fragments and could not be resolved at the individual level, a comprehensive DNA
methylation value for the whole “CpG unit” was obtained. CpGs with ambiguous mass
results, e.g., due to disturbing signals resulting from CpG-free masses, have been excluded
from the analysis.

3.4. Imputation and Exclusion of CpGs with Missing Values and ROC Curves

We excluded CpGs that contained contained >5% missing values from our analyses
and applied our workflow to the remaining 65 CpGs. In these, the few remaining missing
values at the CpG level were substituted by imputation. As CpGs from the same amplicon
are highly correlated [12], we identified the highest correlated available CpG within the
same amplicon. Based on the relationship of the missing and replacing CpG, we then
calculated a linear model and used the predicted values from this model to substitute the
missing value (Figure S1).

For each of the CpGs a receiver operating characteristic (ROC) analysis was performed
using the R package ROCR (version 1.0-11) to assess how well it can distinguish UCa
patients from controls. The threshold for each individual CpG was determined at a pre-set
specificity of ≥95% and the corresponding sensitivity and accuracy were calculated.
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All calculations and graphics were generated using R version 4.0.3 (R Core Team, 2020,
Vienna, Austria). Beyond the mentioned R packages at the different steps, the packages
openxlsx (version 4.2.3) and rlist (version 0.4.6.1) were used.

3.5. Tree-Based Classification Methods

Both random forest and boosted trees analyses have been used (Figure 1). A recursive
feature elimination (RFE) was carried out in which, step by step, the least important
features for the separation of UCa and controls were omitted. Different values for the
hyperparameters, i.e., settings of the machine learning algorithms, were tested in each
iteration to find the best settings for the particular set of CpGs (Table S2, [42,43]). For
each possible combination of the considered hyperparameter values, a random forest or
gradient-boosted trees model was calculated and evaluated using a 10-fold cross validation
with down-sampling (to account for unequal group sizes). Depending on the selection
criterion, the hyperparameter values yielding the model with the largest accuracy or
specificity were chosen. In a re-training step, the model was calculated again with the
optimal hyperparameters employed on the whole dataset. Using this model, the feature
importance was calculated for all CpGs. For functionality of hyperparameter tuning and
model evaluation, the packages caret (version 6.0-86) and ModelMetrics (version 1.2.2.2)
were used.
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Figure 1. Flow chart describing the modeling process during the applied machine learning approaches
and describing the recursive feature elimination.

For random forest (RF), the feature importance is based on the mean decrease in
accuracy (MDA). The basic idea is that the accuracy will dramatically decrease if an
important feature is randomly permuted [44].

For the boosted trees (BT), the feature importance is the total gain in accuracy and is
derived from the splits the specific feature is used for divided by the total gain of all features.
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Therefore, the feature importance is given as a proportion of the sum of all importance
values that sum up to 1 over all features.

In both RF and BT, higher feature importance values mean a higher impact on the
resulting model. After computing the feature importance, the least important feature was
excluded. In the case of multiple least important features that were not used in the BT-
derived models, all of them were excluded in that same step. This procedure was repeated
until no feature was left. The feature set which led to the highest accuracy (RFacc and BTacc)
or respective specificity (RFspec and BTspec) was selected. In case of a tie, the panel with
fewer features was selected. For RF and BT, the R packages randomForest (version 4.6-14)
and xgboost (version 1.3.2.1) were used.

3.6. Parameter Shrinkage Methods

The least absolute shrinkage and selection operator (LASSO) was applied as an addi-
tional method for feature selection as previously described [45]. In brief, the coefficients
of some features are shrunk to zero, which can be used for feature selection by selecting
features with a non-zero coefficient. The degree of the shrinkage is determined via a hyper-
parameter lambda, which was chosen as the largest value, such that the cross-validated
error is within one standard error of the minimal error of the model. The LASSO analysis
was performed using glmnet (version 4.1-1).

3.7. Data Validation

To validate the various feature sets which have been identified by the different classifi-
cation methods, the data were repeatedly split into a training and test dataset 1000 times.
Two-thirds of the controls were used for training and one-third was used for testing. To
avoid bias for the calculation of the accuracy, the sizes of the training and testing data for
the UCa group were based on the same absolute numbers (down-sampling). For each
iteration, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) were
calculated on the test set. The predicted class probabilities and the true classes for each
iteration were combined to a single ROC curve and AUC value for each validation step.

3.8. Selection of CpGs for Combinatorial Analyses

As a prerequisite for the identification of UCa patients by way of single CpGs or
a panel of CpG sites, the individual threshold at 95% specificity was calculated for all
CpGs analyzed (Table S3). In case this threshold was exceeded for the respective singular
CpG or a minimum of one CpG in a panel, the individual of interest would be classified
as UCa-positive. CpGs concordantly selected in RF, BT and LASSO approaches were
considered as candidates to be used in a simple diagnostic decision matrix alone or in
combination (Table 1 and Table S8). To select the single marker or marker combination
of the highest diagnostic relevance, the sensitivity at 95% specificity was calculated for
all CpGs or combinations of CpGs that had been concordantly selected from all statistical
approaches (Table 2). The best marker combination for a diagnostic decision matrix was
identified according to its diagnostic performance in the overall collective. In addition,
sensitivity and specificity were also evaluated in subcollectives stratified for a history of
UCa (Table 2).

4. Conclusions

Overall, our results, using UCa and DNA methylation as an example, show that
the use of multiple bioinformatic methods is highly effective for identifying the most
sensitive and specific biomarkers. By using the thresholds determined for the single sites
and combining those markers that have been concordantly selected by all bioinformatic
approaches, the overall number of potential biomarkers can be effectively reduced to the
most reliable ones regarding sensitivity and specificity. In our case, 64 potentially diagnostic
CpG sites for UCa could be reduced to two CpG sites, one of each located in ALOX5 and
TRPS1, thus allowing for the application of a much cheaper and simpler decision matrix
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for physicians (Table 3). Like previous findings on UCa-specific hypermethylated CpG
sites of other research groups, our results need to be confirmed in a prospective study in
urological patients with properly selected inclusion criteria such as, among others, age,
gender, microhematuria and/or history of UCa. Ideally, such a study should also consider
DNA methylation markers that have been previously reported by other research groups
and have been subject to a similarly rigorous selection process. There are few studies that
have observed methylation differences among bladder cancer patients of different ethnic
affiliations [46–48]. Because the collective ethnicity investigated here was Caucasian, the
clinical value of our decision matrix needs to be verified in other respective ethnicities
before applying it to non-Caucasian individuals, and ethnicity should be considered when
planning future cross-sectional and longitudinal validation studies.

Table 3. DNA methylation thresholds of the diagnostic targets ALOX 5 and TRPS1. In case the
threshold is exceeded for one of the targets, the patient should be stratified for cystoscopy.

Target
Threshold

DNA-Methylation
at 95% Specificity

02_CpG6 (ALOX5) 0.435

35_CpG7 (TRPS1) 0.465
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