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Abstract: Computational methods play a pivotal role in the pursuit of efficient drug discovery,
enabling the rapid assessment of compound properties before costly and time-consuming laboratory
experiments. With the advent of technology and large data availability, machine and deep learning
methods have proven efficient in predicting molecular solubility. High-precision in silico solubility
prediction has revolutionized drug development by enhancing formulation design, guiding lead
optimization, and predicting pharmacokinetic parameters. These benefits result in considerable cost
and time savings, resulting in a more efficient and shortened drug development process. The pro-
posed SolPredictor is designed with the aim of developing a computational model for solubility
prediction. The model is based on residual graph neural network convolution (RGNN). The RGNNs
were designed to capture long-range dependencies in graph-structured data. Residual connections
enable information to be utilized over various layers, allowing the model to capture and preserve
essential features and patterns scattered throughout the network. The two largest datasets available
to date are compiled, and the model uses a simplified molecular-input line-entry system (SMILES)
representation. SolPredictor uses the ten-fold split cross-validation Pearson correlation coefficient
R2 0.79 ± 0.02 and root mean square error (RMSE) 1.03 ± 0.04. The proposed model was evaluated
using five independent datasets. Error analysis, hyperparameter optimization analysis, and model
explainability were used to determine the molecular features that were most valuable for prediction.

Keywords: molecular solubility; drug discovery; ADMET; artificial intelligence; regression; graph
neural network; residual gated graph neural network; simplified molecular-input line-entry system

1. Introduction

Drug discovery is the process of identifying and developing new drugs for the treat-
ment and prevention of diseases. This process has a significant impact on human health
and society. Drug discovery drives innovation, meets medical needs, positively affects the
economy, and improves public health.

Solubility is an important parameter in drug discovery for several reasons. Solubil-
ity affects the bioavailability, synthesis, and manufacture of drugs as well as the different
drug design stages [1]. Chemists seek to improve the solubility of molecules through
molecular structure optimization during drug design [2]. When a drug-like compound has
adequate ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties,
the compound can be developed as a new medication [3]. Solubility is a major factor influ-
encing drug absorption [4]. The solubility of a drug in intestinal fluid [5] is a prerequisite
for achieving both concentration in the blood and therapeutic effects. Understanding the
solubility of a compound enables chemical teams to make appropriate decisions during the
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early stages of drug development. Poorly soluble compounds may be discarded in the early
stages of drug development in order to save time and cost. Solubility is a very important
physicochemical parameter and driver in drug bioavailability, and is considered during
the early-stage drug screening process [6]. Although traditional methods of determining
solubility are time consuming and costly [7], with recent technological advancements it is
now possible to develop computational methods to minimize the time and cost of tradi-
tional methods, and in certain cases replace experimental work. Computational methods
are data-driven, and are trained using physicochemical properties and molecular repre-
sentations. These computational methods are trained for physicochemical properties and
molecule representation. Over the past two decades, owing to technological advancements
in every field of life, a large amount of data has been produced. Traditional analytical
techniques are inadequate for processing this large amount of data [8]. Several machine
learning (ML) approaches have been used to predict the molecular properties of materials,
including their toxicity, solubility, lipophilicity, bandgaps, and conductivity, as well as
protein structures [9–13]. ML models use different molecular representations and designs,
including fingerprint representation with artificial neural network (ANN), a combination of
multiple linear regression (MLP), ANN, and complex deep networks [14–17], and molecular
descriptors of physicochemical properties, fingerprints, and topological indices. SMILES
representations use recurrent neural networks (RNN), long short-memory models (LSTM),
and the gated current unit (GRU) [18–20].

Graph-based representations explicitly represent a molecule’s structural characteris-
tics such as complex ring structures, branching, and other spatial connections between
atoms. A neural network that is designed specifically to handle graph-structured data,
with atoms representing nodes and edges expressing connections among them, is called a
graph neural network (GNN). GNNs can learn spatial patterns and relationships among
atoms. Different GNN architectures have been studied and utilized for solubility prediction.
Graphically represented models use graph convolutional networks (GCNs), graph atten-
tion networks (GATs), and graph transformers [21–23]. Considerable research effort has
been expended in developing computational models for solubility prediction [10,24–26].
Early solubility computational models utilized molecular, electronic, and structural prop-
erties as inputs [27,28], represented molecules as 2D/3D images [29], or used the sim-
plified molecular-input line-entry system (SMILES), SELF-referencing embedded strings
(SELFIES), or SMILES arbitrary target specifications (SMARTS) [30–32]. For solubility
determination, Gao et al. [33] proposed a deep neural network for molecular property
prediction using m-ordered descriptors and a graph convolution network using graphs.
The effectiveness of both deep neural networks (DNNs) and GCNs for solubility prediction
was then compared. Cui et al. [34] applied a deeper-net model to the 9943 training set. Bae
et al. [35] developed support vector machine (SVM), gradient boosting tree (GBT), k-nearest
neighbors (kNN), multilayer perceptron (MLP), and random forest (RF) models based
on five fingerprint variants (RDKit, Morgan, Layered, Pattern, and MACCS). Maziarka
et al. [36] developed a molecular attention transformer (MAT) architecture based on the
present state-of-the-art transformer architecture for natural language processing services.
MAT applies self-attention to the molecular graph representation of a molecule, while
a feature vector identifies each node. This feature vector is then paired with a matrix
called the adjacency matrix, which represents the molecule’s relationship, and a distance
matrix that represents the distance between each atom in the resulting 3D conformer of the
molecule. SolTranNet [37] is a machine learning network based on the MAT architecture
that estimates the solubility of a material in aqueous systems and is trained using AqSolDB.
The RMSE and R2 of SolTransNet were 1.459 and 0.6764, respectively, using cross-validation
on the AqSolDB dataset.

We combined the Cui et al. [34] and AqSolDB [38] datasets and propose a residual-
gated graph neural network (RGNN). The RGNN obtains both temporal and structural
dependencies. Five independent datasets (Cui 2020 [34], Boobier 2017 [39], Lovric 2020 [40],
Llinas 2020 set1, and set2 [41]) were evaluated, with R2 values of 0.547, 0.814, 0.805, 0.373,
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and 0.677 and RMSE values of 0.597, 0.743, 0.783, 0.991, and 1.142, respectively. Over-
all, molecular solubility is a critical parameter in drug discovery that influences bioavail-
ability, formulation development, synthesis, manufacture, structure–activity relationship
(SAR) studies, ADMET profiling, and lead optimization. By addressing solubility chal-
lenges and optimizing the solubility characteristics of drug candidates, researchers can
increase the likelihood of successful drug development and improve the therapeutic poten-
tial of new medications.

2. Results and Discussion

SolPredictor was evaluated based on two metrics: R2 and RMSE. The correlational
measures allow us to determine how effectively the models rank the compounds in terms
of solubility, whereas the error metric allows us to assess the average degree of error in the
model predictions. Table 1 shows the ten-fold RMSE and R2. The RMSE values ranged from
0.93 to 1.09, with an average of 1.03 ± 0.04. Fold 2 had the minimum RMSE, whereas fold
10 had the maximum RMSE value. The R2 values ranged from 0.73 to 0.81, with an average
R2 0.79 ± 0.02. Fold 5 had the maximum R2 value, whereas fold 1 had the minimum value
of 0.73.

Table 1. SolPredictor ten-fold cross-validation performance; fold 2 has the lowest RMSE.

Fold 1 2 3 4 5 6 7 8 9 10

RMSE 1.00 0.93 1.02 1.03 1.04 1.08 1.02 1.01 1.06 1.09

R2 0.73 0.79 0.80 0.74 0.81 0.78 0.77 0.76 0.80 0.79

The scatter plot in Figure 1 shows the relationship between the actual labels and
model prediction values. The R2 values are shown for each fold. There is a strong pattern
in which the predicted values increase as the actual data values increase, depicting a
strong relationship. Furthermore, the line with a positive slope from the bottom left to
the top right of the plot’s points shows a positive correlation. The datapoints are tightly
concentrated around the line of best fit, demonstrating the strength of the relationship.
When two variables on a scatter plot have a significant positive correlation, it means that
the relationship between them is consistent and tends to increase as one variable rises.

(a) (b)
Figure 1. (a) R2 scatter plot and (b) validation loss from ten-fold cross-validation.

2.1. Evaluation of Independent Datasets

The results for the independent dataset are summarized in Table 2. The R2 and RMSE
results for SolPredictor were compared with SolTranNet. The number of molecules used
in the present model prediction may differ from those used by other authors owing to
cleaning and duplication removal. Each row in Table 2 shows the best R2 and RMSE values
in bold.



Int. J. Mol. Sci. 2024, 25, 715 4 of 13

Table 2. Comparison of R2 and RMSE across independent datasets.

Datasets
SolTranNet SolPredictor

R2 RMSE R2 RMSE

Cui et al. [34] 0.611 0.624 0.547 0.597
Boobier et al. [39] 0.724 1.010 0.814 0.743
Lovric et al. [40] 0.783 0.720 0.805 0.783

Llinas et al. [41] set1 0.527 0.952 0.373 0.991
Llinas et al. [41] set2 0.824 1.243 0.677 1.142

2.2. Error Analysis

Scatter charts were constructed for the test set residuals and predicted values. Resid-
uals are the differences between the actual values (labels) and model predictions. Resid-
ual plots are used to visually observe the regression model errors. The plots show the model
predictions as independent variables and the residuals as the dependent variable. The
residual values are randomly distributed around the horizontal zero line. If the residuals
have a U-shaped pattern, then the model does not capture nonlinear relationships between
dependent and independent variables, whereas a funnel-shaped pattern shows that either
the use of another model or data transformation is required. Figure 2 shows that the values
are distributed randomly around the horizontal line, meaning that the model displayed a
random pattern with no evident systematic structure.

(a) (b)

(c) (d)
Figure 2. Residual plots for test sets: (a) Cui et al.; (b) Lovric; (c) Boobier; (d) Llinas.

2.3. Feature Importance

GNNs have become popular for processing graph-structured data. Because of the com-
plexity of graph-based data and the nonlinear interactions between graph nodes, it might
be difficult to explain why a GNN generates a specific prediction. Hence, there are explana-
tory problems for GNNs, and it is difficult to explain how these models make predictions.
GraphFramX [42] provides explainability techniques. Traditionally there are two ways to
explain GNNs, local explanation and second global explanation. Local explanation empha-
sizes a single node or edge, whereas the global approach uses the overall GNN behavior.
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Herein, local phenomena were used for SolPredictor explanation. We used the Pyg cap-
tum explainability module to explain the feature importance. The model configurations
were regression, graph, and raw for the mode, task level, and return type, respectively.
SolPredictor uses nine types of node features. As shown in the Figure 3, the explainability
mechanism shows that the atomic number is the most important node property.

0

0.08

0.141

0

0.194

1.541

0.676

0

8.493

0 1 2 3 4 5 6 7 8 9

Is in ring

Aromaticity

Hybridization

No of radical electrons

Hydrogens

Charge

Degree

Chirality

Atomic no

FEATURE IMPORTANCE

Figure 3. Feature importance chart, showing that atomic number is the most important node feature.

2.4. Hyperparameter Tuning

The best model architecture for a specific model is not always clear. Therefore, we
investigated several choices. In a typical machine learning method, the machine is tasked
to help with this exploration and to dynamically select the optimal model architecture.
The hyperparameters determine the model architecture, and the process of obtaining the
best model architecture is known as hyperparameter tuning. The hyperparameters were
tuned for the SolPredictor using Optuna [43]. Optuna is a software (v.3.5.0) framework
that facilitates automatic hyperparameter adaptability. The hyperparameters for SolPre-
dictor are the learning rate, weight decay, optimizer, hidden features, number of layers,
number of time steps, and dropout. The hyperparameter ranges are presented in the
Supplementary Materials. As shown in Figure 4, the learning rate is the most important
hyperparameter, whereas the number of layers has the least effect on the model.

Figure 4. Importance of hyperparameters, showing that the learning rate is most important.

2.5. Web Server for Solubility

Finally, a web server was developed for researchers and pharmaceutical industry
experts. The server was based on a residual graph convolution model. The page takes
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SMILES list input, then calculates and shows predictions. The web server is demonstrated in
Figure 5. The web server tool is available at https://nsclbio.jbnu.ac.kr/tools/SolPredictor/
(accessed on: 2 January 2024).

Figure 5. Web server for SolPredictor.

3. Materials and Methods
3.1. Dataset

We learned that neural network models perform well with more datapoints; thus, we
utilized the datasets of Cui et al. [34], AqSolDB [38], and Lovric [40] for SolPredictor training.
The datasets contained 9943, 9982, and 583 datapoints, respectively. All datasets were
concatenated and duplicate SMILES were removed. The final combined dataset contained
17,826 datapoints. The dataset was divided into 90% for training and 10% for validation.
The validation dataset was used in the SolPredictor hyperparameter optimization process.
Each record had a SMILES string and logS value. logS refers to the logarithm of the water
solubility of a compound and is measured in mol/L; a higher logS indicates higher solubility
and vice versa. The logS values ranged from −17.46 to 2.13. The length max, min, mean, std,
and var for SMILES were 783, 2, 34, 25, and 662, respectively. The model was tested on five
independent datasets from: Cui et al. [34], Boobier et al. [39], Lovric et al. [40], and Llinas
et al. [41] set1 and set2, which contained 62, 95, 95, 99, and 32 datapoints, respectively. Each
test dataset was checked against a training dataset for SMILES duplicates, and datapoints
were deleted from the test dataset if any duplication was found. As shown in Figure 6, kernel
density estimation plots represent the training, Cui2020 [34], Boobier2017 [39], Lovric2020 [40],
and Llinas2020 set1 and set2 [41] test datasets. The x-axis represents the logS range, whereas
the y-axis represents the density. The higher the y-axis value at a particular point on the x-axis,
the higher the probability of that point. Figure 7 shows boxplots for the training and test
datasets. Several of the logS values from the datasets of Cui et al. [34] and Llinas et al. [41]
set2 datasets were non-overlapping with the training dataset. The Llinas et al. [41] set2
boxplot median line was lower in the interquartile range, which shows that the logS values
are positively skewed.

https://nsclbio.jbnu.ac.kr/tools/SolPredictor/
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Figure 6. Solubility histograms: training dataset values ranged from −18.21 to 1.7 and test dataset
values ranged from −6.52 to −2.36.

Figure 7. Boxplots for training, validation, and five test datasets. The training dataset had a median
at −2.8, maximum at 2.3, and minimum at −8, with outliers at −9 to −17.5.

3.1.1. Data Preprocessing

In this step, the datasets of Cui et al., AqsolDB, and Lovric were combined and
SMILES duplication was removed using Pandas [44]. SMILES entries with a length of 1
were removed as well, as a single-node graph was not valid. In implementing the model,
the SMILES were input features and the logS values were labels. The model used a graph
as the input. A graph is a data structure created using two-component nodes and edges. In
a molecular context, nodes are atoms, whereas edges are bonds. The SMILES data were
converted into molecules using the rdkit library [45] and checked for validity, then a graph
object was generated using the node features in Table 3 and saved on disk. The SMILES
data were converted to a graph using Pytorch Geometric (PyG) [46]. The SMILES data were
processed one by one, as shown in Figure 8. An unambiguous graphical representation
was obtained by assigning a number to each atom in the molecule and then traversing the
molecular graph in that order.
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Table 3. Nine features of atoms.

Atom Features Description

Atom number 1 to 119
Chirality Atom chirality
Degree 0 to 11
Charge −5 to 7

Hydrogens Connected hydrogens
No of radical electrons 0 to 5

Hybridization s, sp2, sp3d2, sp, sp3, sp3d, other
Aromaticity False or True

Is in ring False or True

Figure 8. Data preprocessing flow chart showing molecule and graph generation from SMILES data.

3.1.2. Ten-Fold Data Split

Cross-validation is a resampling method, commonly known as out-of-sample estima-
tion or rotation estimation, which is used to evaluate how statistically-determined results
generalize to independent datasets by testing machine learning models on a limited set
of data. The algorithm has a single parameter k that determines the number of groups
into which a given data sample must be divided. Therefore, this technique is commonly
referred to as k-fold cross-validation. The entire training dataset was randomly divided
into ten folds of equal size and independence, with no rows repeated in any other fold.
The model was trained with nine folds and then tested with the remaining fold to obtain a
performance score. This process was repeated ten times to create ten models and scores for
each model.

3.2. Methods

Deep learning approaches have been shown to be effective in predicting the molecular
properties of compounds [47], and are becoming a growing instrument in modern computer-
aided drug design toolboxes. Because molecules can be represented as graphs, one apparent
strategy for deep learning is to utilize a graph-based architecture, which enables the use of
graph-based neural networks (GNNs).

3.2.1. Molecular Feature Extraction

The extraction of molecular features is a vital step in the preparation of molecular data
for graph neural network (GNN) models. Molecular atoms are the basic building blocks
of SolPredictor. Nine types of atomic features were extracted; these are listed in Table 3.
The feature vector encapsulates the features of each atom in a molecule. The atomic number,
degree, formal charge, number of radical electrons, hybridization, aromaticity, hydrogen
atoms, chirality, and ‘is in ring’ property are all common atomic-level characteristics.
The ranges for the atomic number, degree, and charge are 1–119, 0–11, and −5 to 7,
respectively. The aromaticity and ‘is in ring’ property have true or false values. The
SMILES string was converted to the rdkit [45] molecule and the validity of the molecule
was checked. The graph was created using the Pytorch geometric library. The atomic
features were treated as node features in the graph; for example, if a molecule has 32 atoms,
then the graph size is 32 × 9.
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3.2.2. Graph Neural Network (GNN)

A graph neural network (GNN) is a type of neural network specifically designed to
operate on graph-structured data. GNNs obtain local and global interactions between
atoms and their neighbors. The graphs consist of vertices (or nodes) and links (or edges)
that represent the relationships between the vertices. GNNs are capable of learning and
extracting meaningful representations from the nodes and edges of a graph, enabling them
to perform various tasks such as graph regression/classification, node classification, link
prediction, and graph generation.

G = (V, E) (1)

The graph consists of a set of nodes V and some edges E that connect them. Each
node V has a predefined vector associated with it that encodes its state, that is, the node’s
hidden state. Hidden state vectors are initialized with node-related features from the
input graph at the start of GNN execution. Edges may include a set of features if desired.
Following initialization of the hidden states, a message-passing algorithm is executed based
on the connections of the input graph. The message-passing process comprises three major
phases: (i) message, (ii) aggregation, and (iii) update. During the GNN message-passing
phase, each vertex is updated according to the aggregation of the neighboring vertices.
The embedding h(k)u associated with vertex u ∈ V.

h(l+1)
u = update(l)(hl

u, AGGREGATE(l)({hl
v, ∀v ∈ Nu})) (2)

= update(l)(hl
u, m(l)

N(u)) (3)

AGGREGATE and update are learnable functions and message m node u neighbors ag-
gregation.

3.2.3. Residual Gated Graph Convolution

An RNN is a neural network specifically designed for sequential or time-series data.
Each datapoint input to the RNN depends on the previous data input. RNNs maintain
hidden feature vectors or contexts from previous inputs. At each time step, the RNN takes
the input vector and hidden feature vector and produces the output along with the updated
hidden vector:

hi = fRNN(wi, {hj : j = i − 1}) (4)

where the vector hi for word i is computed from the previous feature vector hj and word wi
in the sequence. Graph RNN, introduced in 2005 [48], proposed a multilayer perceptron
with an RNN on a graph. In this case, the feature vector hi of vertex i is

hi = fGRNN(wi, {hj : j → i}) = ∑
j→i

CGRNN(wi, hj), (5)

where wi is a feature vector for the current vertex and hj is the feature vector set of the
current vector neighbor’s feature vector vertices. Here, CGRNN(wi, hj) is defined as

CGRNN(wi, hj) = Pσ(Qσ(Rxi + Shj)), (6)

where P, Q, R, and S are weighted parameters and σ is a sigmoid function. In 2016, Sukhbaatar
et al. [49] proposed the ConvNet graph, represented as follows:

hl+1
i = fGCNN(wl

i , {hl
j : j = i → 1}) = ReLU(Qlhl

i + Rl ∑
j→i

hl
j), (7)

where ReLU is the rectified linear unit and l represents the layer level. In 2017, Marcheggiani
et al. [50] proposed a function for edge gate importance:

hl+1
i = fGCNN(wl

i , {hl
j : j = i → 1}) = ReLU(∑

j→i
ηijhl

j), (8)

where ηij works as an edge gate and is represented as

ηij = σ(Chl
i + Dlhl

j). (9)
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The gated graph convolution is

hl+1
i = fGGCNN(wl

i , {hl
j : j = i → 1}) = ReLU(Rlhl

i + ∑
j→i

ηijhl
j). (10)

This equation has a source vertex, neighboring vertex information, and edge gate
capability. Subsequently Bresson and Laurent [51] formulated a residual gated graph
convolution by adding an identity operator between the layers:

hl+1
i = f l(hl

i , {hl
j : j → i}) + hl

i (11)

where hl+1
i represents the node features for the l + 1 layer, hl

i represents the node features
for the current layer l, and hl

j represents the neighboring nodes. Multiple layers of the
RGNN can be stacked iteratively using Equation (11) to capture and transfer information
across the graph structure.

3.2.4. Implementation Details

A model was developed for solubility prediction using a residual gated graph neural
network. As shown in Figure 9, SMILES data were converted to graphs using the PyG
library. The model uses nine node features as inputs. The features were normalized and
passed to the linear layer, and the RGNN convolution was applied. After global pooling,
embedding was employed as a sequence and the GRU was used to capture long-term
dependencies. Finally, a dense layer was used to calculate the solubility.

Figure 9. Flow diagram showing conversion of SMILES to graph and application of RGNN layers.

3.2.5. Evaluation Metrics

RMSE and R2 were used as metrics to evaluate the performance of the SolPredictor
regression model. RMSE is the square root of the average difference between the expected
and actual values of a target variable. It is a statistical measure of the extent to which the
predicted values of a model diverge from the actual values. The RMSE is always positive; it
measures how close the predicted and true values are, with lower values indicating better
model performance. The RMSE is calculated as follows:

RMSE =

√
∑n

i=0 (yi − ŷi)
2

n
(12)

The Pearson correlation coefficient is frequently used in statistics, data analysis, and
machine learning to assess the linear relationships between variables. R2 indicates the
correlation between two variables, namely, the model predictions and actual label values.
R2 ranges from −1 to +1, and indicates the direction and strength of the variables. The di-
rection of this relationship is represented by a coefficient; a positive sign implies a positive
connection, whereas a negative sign indicates a negative correlation.
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R2 = 1 − ∑n
i=0 (yi − ŷi)

2

∑n
i=0 (yi − ȳ)2 (13)

4. Conclusions

Aqueous solubility is crucial in physical chemistry. The in silico prediction of solubility
with a high degree of reliability may significantly reduce the cost and time required for
developing medications. In this paper, the SolPredictor model is proposed based on a
RGNN. During the graph convolution process, the gating mechanism of the RGNN allows
the model to emphasize local and global information selectively. This gating technique
regulates the flow of data, allowing the model to focus on relevant network neighbors
or to collect data from distant nodes. This feature enables SolPredictor to capture both
local and global dependencies in a graph, which improves the ability of the model to
grasp and describe complicated graph patterns and build deeper network robustness for
noisy or incomplete data. Other tasks that could benefit from the improved molecular
representation of AI models include yield prediction, synthesis planning, toxicity pre-
diction, reaction outcome prediction, bioactivity prediction, and retrosynthesis analysis.
SolPredictor demonstrated a ten-fold split cross-validation coefficient of R2 0.79 ± 0.02 and
root mean square error (RMSE) of 1.03 ± 0.04. The model was tested on five independent
datasets: Cui et al. [34], Boobier et al. [39], Lovric et al. [40], and set 1 and set2 from
Llinas et al. [41]. Additional chemical representation features (e.g., bond features) or
additional experimental solubility data may improve the solubility prediction ability of
this model. The method shown here can be extended to the development of other high
performance deep learning models for physical chemistry problems, such as toxicity and
lipophilicity prediction.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25020715/s1.
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