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Abstract: The image texture features obtained from 18F-fluorodeoxyglucose positron emission to-
mography/computed tomography (18F-FDG PET/CT) images of non-small cell lung cancer (NSCLC)
have revealed tumor heterogeneity. A combination of genomic data and radiomics may improve
the prediction of tumor prognosis. This study aimed to predict NSCLC metastasis using a graph
neural network (GNN) obtained by combining a protein–protein interaction (PPI) network based on
gene expression data and image texture features. 18F-FDG PET/CT images and RNA sequencing
data of 93 patients with NSCLC were acquired from The Cancer Imaging Archive. Image texture
features were extracted from 18F-FDG PET/CT images and area under the curve receiver operating
characteristic curve (AUC) of each image feature was calculated. Weighted gene co-expression
network analysis (WGCNA) was used to construct gene modules, followed by functional enrichment
analysis and identification of differentially expressed genes. The PPI of each gene module and genes
belonging to metastasis-related processes were converted via a graph attention network. Images
and genomic features were concatenated. The GNN model using PPI modules from WGCNA and
metastasis-related functions combined with image texture features was evaluated quantitatively.
Fifty-five image texture features were extracted from 18F-FDG PET/CT, and radiomic features were
selected based on AUC (n = 10). Eighty-six gene modules were clustered by WGCNA. Genes (n = 19)
enriched in the metastasis-related pathways were filtered using DEG analysis. The accuracy of the
PPI network, derived from WGCNA modules and metastasis-related genes, improved from 0.4795
to 0.5830 (p < 2.75 × 10−12). Integrating PPI of four metastasis-related genes with 18F-FDG PET/CT
image features in a GNN model elevated its accuracy over a without image feature model to 0.8545
(95% CI = 0.8401–0.8689, p-value < 0.02). This model demonstrated significant enhancement compared
to the model using PPI and 18F-FDG PET/CT derived from WGCNA (p-value < 0.02), underscoring
the critical role of metastasis-related genes in prediction model. The enhanced predictive capability
of the lymph node metastasis prediction GNN model for NSCLC, achieved through the integration of
comprehensive image features with genomic data, demonstrates promise for clinical implementation.

Keywords: radiogenomics; 18F-FDG PET; CT; NSCLC; protein–protein interaction; GNN

1. Introduction

Lung cancer accounts for the majority of cancer cases worldwide, and non-small
cell lung cancer (NSCLC) is the predominant type of lung cancer [1]. Metastasis is a
critical factor in disease progression and can significantly affect the treatment options and
prognosis. Approximately 40% of patients with lung cancer develop metastatic disease [2,3].
According to the statistics adapted from the American Cancer Society for regional NSCLC,
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which is characterized by the spread of cancer cells from the lungs to the surrounding
lymph nodes, the 5-year relative survival rate is approximately 37%.

Radiomics is a technique that involves the analysis of medical images to extract various
tumor characteristics [4]. The radiomics extraction process can help to quantify tumor
heterogeneity [5]. NSCLC exhibits tumor heterogeneity [6], which arises from various
factors within the tumor, such as different cell types, shapes, and metabolic activities.
Radiomics allows the quantification and visualization of this heterogeneity and reveals
differences among various parts of the tumor [7]. Information obtained through radiomic
analysis can be valuable for predicting tumor prognosis, evaluating treatment responses,
making treatment plans, and determining personalized treatment strategies [8]. Thus,
radiomics is an important tool for detecting and understanding tumor heterogeneity.

A protein–protein interaction (PPI) network is a graphical representation of the physi-
cal and functional interactions between proteins within a biological system [9]. It helps in
understanding how proteins collaborate and communicate within a cell or organism [10].
PPI networks are crucial for understanding complex cellular processes [11], signaling path-
ways [12], and molecular basis of various diseases [13]. By annotating PPI interactions,
the processes underlying tumor activities can be understood and potential therapeutic
targets for diverse medical conditions can be identified [14]. Engin et al. built a network
based on PPI and identified gene mutations associated with breast cancer metastasis to
the brain and lungs [15]. Liu et al. built a cancer-specific gene network from PPI, mined
the network structure properties, and predicted cancer-causing genes by combining bi-
ological information, such as the mutation frequency and differential gene expression,
thus showing that the network-based features included mutation frequency and genetic
differential expression [16]. In a study by Yu-Dong Cai et al., a large-scale network was
constructed using PPI, and hub genes that could mediate breast cancer metastasis to the
bone were identified through functional analysis; furthermore, permutation false discovery
rate (FDR), betweenness ratio, and maximum-minimum interaction score were used to
determine whether these genes were involved in metastasis [17]. Given the rich insights
provided by PPI networks into the roles of genes in cancer progression and metastasis, we
intended to harness this resource to develop a predictive network for NSCLC metastasis.

Graph neural network (GNN) is a type of deep learning model for processing and
analyzing graph-structured data [18]. GNN utilizes the hierarchical structure of graphs,
and comprises nodes and edges [19]. GNN involves multiple layers where node features
are updated through the aggregation of information from the node and its neighbors
using weights and activation functions [20]. This process of information propagation helps
in identifying node interaction and yields information regarding the relationships and
patterns within the graph’s structure [21]. GNN has powerful feature extraction [22] and
relationship learning capabilities, which are ideal for handling the complexity of graph
data [23]. This allows GNN to perform various tasks in different domains, leading to
significant advances in molecular biology [24–26]. This study utilized a GNN model that
integrated a PPI network describing connections between genes and cancer characteristics
with radiomics data that capture the variability within tumor images to predict metastatic
progression in NSCLC.

2. Results
2.1. Gene and Image Texture Feature Selection

The co-expressed genes were grouped into 86 modules. Except for the modules for
which no PPI network was formed, the genes in the 73 modules were used to construct
the PPI (Figure 1). The process used in this study is schematically shown in Figure S1.
In WGCNA analysis, significant correlations between lymph node metastasis and the
Sky Blue 1 and Yellow Green modules were observed. The Sky Blue 1 module, with a
p-value of 0.03, and the Yellow Green module, with a p-value of 0.047, both demonstrated
notable associations. Functional analysis was subsequently conducted on these modules,
encompassing 74 genes from the Sky Blue 1 module and 127 genes from the Yellow Green
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module. Thirty-four genes in each module were enriched in various metastatic pathways,
including “HIF-1 signaling”, “Central carbon metabolism in cancer”, “Focal adhesion
pathway”, and “Ubiquitin” (p < 0.05). Nineteen enriched DEGs were selected. After
univariate analyses, 12 genes were obtained (p < 0.05). Five genes (EGF, HKDC1, PIK3R1,
MYLK4, and COL6A5) were selected based on their GS scores.
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Figure 1. Weighted gene co-expression network analysis. A dendrogram illustrating 86 modules,
where genes are clustered based on dissimilarity, highlighted with a color band showing results
from an automatic single-block analysis (left); Associations between gene modules and lymph
node metastasis traits were assessed by examining the correlations between the eigengenes of these
modules and the traits. Each block in the heatmap represents a different module and modules were
enriched with clustered genes. The intensity of the color in each block reflects the strength of the
correlation between the module and the lymph node metastasis trait in non-small cell lung cancer
(right). The intensity of the color in each block reflects the strength of the correlation between the
module and the lymph node metastasis trait in non-small cell lung cancer Sky Blue 1 and Yellow
Green modules were selected for functional analysis due to their significant correlations, evidenced
by p-values of 0.03 and 0.047, respectively.

Image texture features with AUC of 0.68 or higher were selected from 18F-FDG PET
(TLG, SHAPE Volume [mL], SHAPE Volume [# vx], SHAPE Compacity only, GLRLM
GLNU, GLZLM LZHGE), and CT images (SHAPE Volume [mL], GLRLM GLNU, NGLDM
Busyness, GLZLM_GLNU) (Figure 2).

2.2. GNN Model

In this study, the model was assessed based on genes associated with four key
metastasis-related functions. The GNN model was constructed using the 73 gene modules
obtained using WGCNA. Only DEGs identified from this gene set were used for further
evaluation. Subsequent analysis was refined to include only 12 DEGs identified in the
univariate analysis. Additionally, based on WGCNA outcomes, genes exhibiting elevated
GS scores were employed for model assessment.

The PPI network, formulated from metastasis-related genes, achieved an accuracy of
0.5830, significantly exceeding the 0.4795 accuracy of the GNN model that incorporated a
PPI network derived from WGCNA modules (p-value < 2.75 × 10−12). The integration of
PPI from four metastasis-related genes with 18F-FDG PET/CT imaging features resulted
in a substantial accuracy boost to 0.8545 (95% confidence interval [CI] = 0.8401–0.8689)
compared to the model without image (p-value < 0.02). These findings emphasize the
crucial impact of metastasis-related genes on the predictive model, demonstrating a supe-
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rior accuracy compared to models employing PPI and 18F-FDG PET/CT image features
derived from WGCNA generated modules (p-value < 0.02). This improvement was no-
tably more pronounced than in the model combining PPI and 18F-FDG PET/CT from
WGCNA (p-value < 0.02), highlighting the pivotal impact of metastasis-related genes in
the predictive model.
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Figure 2. The receiver operating characteristic curve of six image features, comprising three attributes
each from 18F-FDG PET and CT images, which have demonstrated the highest area under the curve
receiver operating characteristic curve values. p-values were calculated based on the Hanley and
McNeil standard error formula.

The combined 18F-FDG PET/CT image features consistently yielded higher AUC
values across various methods than individual 18F-FDG PET or CT image features. This
indicates that the use of both imaging modalities improves the predictive accuracy of the
model. Without incorporating any image features, the accuracy and was recorded at 0.5830.
However, when incorporating image features, the accuracy values improved: 0.8143 (95%
CI = 0.8051–0.8234) with 18F-FDG PET scans, 0.7955 (95% CI = 0.7808–0.8101) with CT scans,
and the highest at 0.8545 (95% CI = 0.8401–0.8689) when combining 18F-FDG PET with CT
scans. The model’s performance was generally higher when using whole image features as
compared to when using selected image features with AUC ≥ 0.68. The findings suggest
that incorporating a broader range of image factors enhances the performance of the models.
This implies that the use of a comprehensive set of image features enhances the predictive
ability of the model. The model demonstrated optimal performance when the 18F-FDG
PET and CT imaging data were integrated, yielding the highest level of accuracy observed
in the study. The results reinforce the notion that a multifaceted approach, combining
diverse data types, holds promise for improving model predictions in the context of deep
learning applications. This underscores the significance of integrating genomic data with
imaging features, particularly those derived from multiple imaging modalities, to optimize
predictive accuracy.

Univariate analysis and GS score criteria seemed to reduce the model’s performance
compared to the use of all genes involved in the four metastasis functions. This suggests
that certain genes carry more weight or significance in predicting outcomes (Table 1). The
enhanced predictive capacity of the GNN model for lymph node metastasis in NSCLC,
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through the amalgamation of extensive imaging features and genomic data shows signifi-
cant potential for clinical application.

Table 1. Prediction results of lymph node metastasis in patients with non-small cell lung cancer using
the GNN model.

Metrics
Without

Image Data
Image Features with AUC ≥ 0.68 Whole Image Features

PET (6) CT (4) PET/CT (10) PET (55) CT (55) PET/CT (110)

73 modules *

Accuracy 0.4795 0.5375 0.5473 0.6420 0.7179 0.7429 0.8455
Precision 0.2679 0.4390 0.5448 0.7633 0.7039 0.7000 0.8392

Recall 0.4518 0.7750 0.6321 0.6696 0.8268 0.9018 0.9054
F1 score 0.3248 0.5496 0.5219 0.6354 0.7439 0.7820 0.8631

AUC 0.5674 0.5744 0.6532 0.7430 0.7728 0.7907 0.8718

Without gene
data

Accuracy - 0.5920 0.6857 0.7607 0.8357 0.8009 0.8286
Precision - 0.5515 0.6627 0.7662 0.7875 0.7565 0.8026

Recall - 0.7625 0.8125 0.8000 0.9339 0.9161 0.8893
F1 score - 0.6363 0.7199 0.7630 0.8522 0.8236 0.8812

AUC - 0.6549 0.7415 0.8035 0.8530 0.8372 0.8812

Genes in 4
functions (34) **

Accuracy 0.5830 0.6509 0.6018 0.7330 0.8143 0.7955 0.8545
Precision 0.4538 0.6037 0.5858 0.7004 0.7928 0.7548 0.8213

Recall 0.4036 0.6946 0.6018 0.8107 0.8768 0.9304 0.9143
F1 score 0.3692 0.6377 0.5805 0.7477 0.8267 0.8238 0.8618

AUC 0.6333 0.6776 0.7064 0.7709 0.8901 0.8849 0.9026

DEG results
(19) ***

Accuracy 0.5411 0.6321 0.6429 0.6973 0.8000 0.7768 0.8223
Precision 0.5239 0.6131 0.6146 0.6916 0.7553 0.7343 0.8006

Recall 0.5875 0.6464 0.7357 0.7250 0.9179 0.9179 0.8893
F1 score 0.4910 0.6153 0.6421 0.6963 0.8238 0.8098 0.8345

AUC 0.5231 0.6879 0.7092 0.7458 0.8585 0.8245 0.8948

Univariate
analysis (12) ****

Accuracy 0.5036 0.6045 0.7268 0.7580 0.8134 0.7580 0.8420
Precision 0.3998 0.6098 0.6861 0.7443 0.7660 0.7256 0.7893

Recall 0.5893 0.6750 0.8625 0.7982 0.9179 0.8464 0.9607
F1 score 0.4627 0.5929 0.7602 0.7668 0.8325 0.7643 0.8610

AUC 0.4784 0.7229 0.7627 0.7765 0.8606 0.8397 0.8793

* 73 modules: The construction of the GNN model in this study was based on 73 gene modules, which were
identified through WGCNA. ** Genes in 4 functions: For the development of the GNN model, genes associated
with four specific functions related to metastasis were utilized. *** DEG results: Genes identified through DEG
analysis were employed in the construction of the GNN model. **** Univariate Analysis: In the construction of
the GNN model, genes that were identified using univariate analysis were selectively employed.

3. Discussion

In this study, we employed a GNN model to investigate the interplay between genomic
and imaging features for predicting lymph node metastasis in NSCLC. To ensure the
reliability and validity of our model, we extensively analyzed its performance across
a spectrum of genomic criteria and imaging techniques. The model showed reliable
performance across different genomic criteria and imaging modalities development of a
novel GNN model capable of noninvasively predicting lymph node metastasis in NSCLC.
This advancement is particularly noteworthy in the context of personalized medical care.
Our model opens up new avenues for tailoring treatment strategies to individual patient
needs, a step that is crucial in the fight against NSCLC. By enabling earlier and more
accurate detection of lymph node metastasis, our model holds the promise of significantly
improving patient outcomes and optimizing treatment approaches.

These results underscore the significance of integrating image features extracted from
18F-FDG PET and CT. The GNN model tended to have a higher accuracy and AUC for
predicting lymph node metastasis using image features extracted from 18F-FDG PET and
CT together than when they were used separately. When the model utilized both 18F-FDG
PET and CT features concurrently, it achieved the highest accuracy (0.8545), indicating
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the synergistic value of combining these modalities for the GNN model. The GNN model
performed poorly in terms of prediction in the absence of image data, highlighting the
power of image data to predict the lymph node metastases of NSCLC.

Radiogenomics facilitates the structural delineation of lesions and offers insights
into the functional aspects of tumor, encompassing their biological characteristics [27].
Radiogenetics is a measure of how well imaging factors extracted from inside a tumor reflect
the characteristics of the tumor. Therefore, we demonstrated that image characteristics
and gene expression levels extracted from NSCLC are factors predicting metastasis. Upon
closer examination, gene-based evaluation, especially based on WGCNA with 73 modules,
highlighted the intricate genomic interactions that the GNN model can exploit. Specifically,
it yielded accuracy values ranging from 0.8143 (18F-FDG PET) to 0.7955 (CT) with genetic
imaging features mapped to four metastasis-related features, further confirming the model’s
ability to identify genomic patterns.

Furthermore, the use of DEGs and genes filtered through univariate analysis bolstered
the predictive capacity of the model. This indicates that a targeted approach focusing
on genes with heightened expression variances or significant univariate associations can
enhance model performance. Our findings also underscore the potential of GS derived
from WGCNA. The AUC value of the model with genes with high GS scores provides
compelling evidence of their predictive potency. Using a statistical approach, we were able
to evaluate models that showed high prediction rates. Kirienko et al. demonstrated that
the performance of a machine learning model that predicts the recurrence of lung cancer
was improved by using radiogenomics, which combines radiomics and genomic data [28].
Zhou et al. developed a radiogenomic map linking gene expression profiles with CT image
features, which highlighted the associations between CT characteristics and metagenes
representing canonical molecular pathways [29]. Li et al. proposed a lung adenocarcinoma
multi-classification model based on a GNN model using radiomics data extracted from the
region of interest (ROI) of CT images [30].

The AUC is an effective measure for assessing how well a variable, such as an image
feature, can differentiate between distinct classes. This metric is particularly crucial in
classification scenarios aimed at distinguishing between different outcomes accurately.
AUC values range from 0.5, indicating no predictive power, to 1, which represents perfect
prediction. A higher AUC value suggests a greater capability of the variable in accurately
classifying the outcomes. The choice of 0.68 as the threshold, though somewhat subjective,
is strategic. Set slightly below the more rigorous standard of 0.7, this threshold aims to
balance the model’s precision with the inclusion of variables that could be advantageous.
This decision helps in reducing the likelihood of overfitting and bias, which might arise from
using variables with excessively high AUC values. Further analysis revealed that thresholds
set significantly higher than 0.68 led to challenges in model construction. Specifically, higher
thresholds resulted in too few variables, diminishing the model’s predictive power. Thus,
the threshold of 0.68 was meticulously chosen to optimize the number of variables. This
approach ensures the model has enough predictive strength maintaining a balance crucial
for a robust and effective predictive model.

The integration of radiogenomic data, combining both imaging and genomic infor-
mation, represents a significant advancement in the field. By correlating imaging features
with genomic data, the study bridges the gap between macroscopic imaging findings and
the underlying microscopic molecular changes. This holistic approach enables a more
comprehensive understanding of the disease process, potentially leading to more accurate
predictions of metastasis and patient outcomes. In the present study, we confirmed that
four metastasis-related pathways were significantly annotated in several modules. The
PPI network, which consisted of genes mapped to pathways known to be significantly
related to metastasis through genetic analysis, showed good performance in predicting
lymph node metastasis in NSCLC. Hypoxia is a major factor that promotes metastatic
progression [31]. Hypoxia causes tumor invasion and metastasis via multiple mechanisms,
including epithelial-mesenchymal transition [32]. Univariate analysis reveals that elevated
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levels of hypoxia-inducible factor 1α (HIF-1α) expression are significantly linked to lower
disease-free survival rates in patients with NSCLC [33]. Additionally, this expression is
correlated with survival rates, influencing the suppression of apoptosis [34]. Central carbon
metabolism in cancer metastasis involves distinct metabolic adaptations and strategies
employed by cancer cells to invade, survive, and grow at secondary sites [35]. Focal adhe-
sions are specialized structures in the cell membrane where clusters of integrins mediate
attachment between cells and the extracellular matrix. The focal adhesion pathway is
crucial for various cellular processes, including cell migration, proliferation, differentiation,
and survival [36–38]. The ubiquitin-proteasome system (UPS) is a critical regulator of
many cellular processes, and its dysregulation has profound implications in cancer biology,
including metastasis [39]. The UPS regulates the degradation of HIF-1 α, a critical factor
in angiogenesis [40]. Tumor characteristics can be extracted through these genetic expres-
sion phenomena and image features, and these results increase the predictive power of
the model.

While our study made significant strides in predicting lymph node metastasis in
NSCLC using a GNN model, it is essential to note that our findings are based on a relatively
modest sample size. This limitation inherently restricts the generalizability and robustness
of our conclusions, underscoring the need for further validation of our model in larger
and more diverse patient cohorts. The pursuit of larger datasets in future studies is
not merely a matter of increasing numbers but also of enhancing the model’s ability to
capture a broader spectrum of patient demographics, disease stages, and genetic variations.
Such expansion would not only solidify the reliability of the model but also potentially
reveal more nuanced insights into the complex interplay between genomic features and
imaging data in the context of NSCLC. Future research should focus on addressing the
current limitations through larger, more diverse datasets, exploring a variety of advanced
deep learning techniques, and broadening the scope of validation to include various
patient populations and potentially other cancer types. Such efforts will be instrumental in
refining the predictive power of our model and maximizing its contribution to personalized
medicine in oncology.

The integration of advanced imaging techniques with an intricate gene network anal-
ysis using a GNN model holds considerable promise for predictive oncology. Our study
underscores the potential of this approach and sets the foundation for more comprehen-
sive research. It demonstrates the power of combining deep learning techniques with
comprehensive radiogenomic data, opening new avenues for diagnostic and therapeu-
tic advancements in oncology. As the field continues to evolve, studies like this will be
instrumental in guiding the development of more effective, personalized cancer care.

4. Materials and Methods
4.1. Data Sources

The 18F-fluorodeoxyglucose positron emission tomography/computed tomography
(18F-FDG PET/CT) images of NSCLC patients were obtained from The Cancer Imaging
Archive (http://doi.org/10.7937/K9/TCIA.2017.7hs46erv, accessed on 16 November 2023).
The 18FDG-PET/CT images were obtained from 211 NSCLC patients recruited between
7 April 2008 and 15 September 2012 at the Stanford University Medical Center and Palo Alto
Veterans Affairs Healthcare System. A GE Discovery 18FDG-PET/CT scanner was used
to construct images before surgical treatment. The 18FDG-PET images were generated at
both institutions using a similar protocol. Patients exhibiting distant metastasis or without
accessible RNA expression data were omitted from the study. For the construction of the
model data, 93 patients were incorporated contingent upon the following criteria: (a) a
pathological diagnosis confirming the absence of regional node metastasis (n = 73), or
(b) a pathological diagnosis identifying metastasis to the ipsilateral axillary, mediastinal,
pulmonary, hilar, or infra-sub carinal nodes (n = 20).The basic and clinical characteristics of
the patients in the internal and external cohorts are shown in Table 2.

http://doi.org/10.7937/K9/TCIA.2017.7hs46erv
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Table 2. Clinical data of patients with non-small cell lung cancer.

Characteristics Non Metastasis
(n = 73)

Lymph Node Metastasis
(n = 20)

Age (%)
<65 22 (30) 3 (15)
≥65 51 (70) 17 (85)

Mean age (y) 68.82 69.1
Sex, n (%)

Male 56 (77) 15 (75)
Female 17 (23) 5 (25)

Pathological stage, n (%)
T1a 15 (21) 1 (5)
T1b 15 (21) 7 (35)
T2a 26 (36) 5 (25)
T2b 6 (8) 3 (15)
T3 7 (10) 2 (10)
T4 4 (5) 2 (10)

Pathological stage (%)
N0 73
N1 7 (35)
N2 13 (65)

Pathological stage (%)
I 56 (77)
II 13 (18) 7 (35)
III 4 (5.48) 12 (60)
IV 1 (5)

4.2. Gene Analysis

Hub gene analysis was performed to identify metastasis-related genes and construct a
PPI network. To identify the genes in the modules of highly correlated genes, weighted
gene co-expression network analysis (WGCNA) was performed with 22,126 genes using
the R (version 4.2.2) software (R Foundation for Statistical Computing, Vienna, Austria).
Genes with differences below a certain threshold were removed using the WGCNA filtering
function, and those showing significant changes across samples were analyzed. Outlier
samples were removed using the sample clustering function, and a soft threshold power of
5 was selected to determine strong correlations between genes. Genes strongly associated
with lymph node metastasis were identified by calculating the high gene significance.
Because the modules correspond to biological pathways that are involved in biological
processes, the functions of the genes within the modules were determined. Gene ontology
(GO) term analysis was performed using the DAVID online application (https://david.
ncifcrf.gov/summary.jsp, accessed on 16 November 2023). Metastasis-related pathways
with a p-value < 0.05 were identified. Differentially expressed genes (DEGs) between
lymph node metastasis and non-metastasis groups were determined using PathfindR in R
(version 4.2.2) software (R Foundation for Statistical Computing, Vienna, Austria), with
significance marked at a p-value < 0.05. Univariate analysis of genes was performed
using the MedCalc (version 20.106) software (MedCalc Software, Mariakerke, Belgium) to
describe the distribution and patterns of metastasis as a single variable. The PPI network
was constructed using STRING (https://string-db.org, accessed on 16 November 2023) of
the genes in each module and the selected hub genes.

4.3. Image Feature Extraction and Selection

Image features were extracted from the 18FDG-PET/CT images by using Local Image
Features Extraction (version 4.90) software (http://www.lifexsoft.org). The tumor region
of interest was drawn using a semi-automated segmentation method with a threshold
standardized uptake value (SUV) of 2.0. Lesions were detected in the regions with elevated

https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp
https://string-db.org
http://www.lifexsoft.org
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18F-FDG uptake, as determined by the pathological contrast observed in the CT images.
Subsequently, area under the curve receiver operating characteristic curve (AUC) values
were calculated through the MedCalc (version 20.106) software (MedCalc Software, Mari-
akerke, Belgium). The statistical significance of the AUC values was ascertained using the
Hanley and McNeil method, implemented. This involved calculating the standard error of
each AUC, taking into account the number of positive and negative cases. Utilizing the
Hanley and McNeil formula, which integrates the AUC values with case distribution, we
computed the standard error. Z-statistics were then derived by comparing the AUCs to a
null hypothesis value of 0.5 and dividing by the standard error. The resulting p-values, ob-
tained from the z-statistics through the standard normal distribution, provided a measure
of statistical significance. To reduce the risk of overfitting and bias stemming from variables
with excessively high AUC values, we established a threshold of 0.68. Image features with
AUC values above this threshold were chosen, as further analysis indicated that setting
thresholds substantially lower or higher than 0.68 posed difficulties in model construction.

4.4. Prediction Model

This study employed a GNN integrated with the synthetic minority over-sampling
technique (SMOTE) to effectively manage sample imbalance, thereby enhancing the sample
size to 146 individuals for more robust data analysis. SMOTE algorithm of the Scikit-learn
library employs the k-nearest neighbors algorithm to generate new data points based on
the characteristics of those that were underrepresented. Figure 3. shows a schematic of the
deep learning prediction model used in this study. For effective extraction of groupwise
transcriptomic features, a graph attention network (GAT) was used as the GNN layer. The
GAT is a graph convolutional network-based layer in which a trainable masked attention
mechanism is applied for better information propagation. In this study, we used three-head
attention, and the output of the layer was calculated as the average. There were three GNN
blocks, consisting of a GAT layer, rectified linear unit (ReLU), batch normalization, and
dropout. The outcome, which was node embedding for each PPI, was transformed into
graph-wise embedding by max pooling. The image features were also transformed by a
fully connected (FC) layer module, which was composed of an FC layer, ReLU, and batch
normalization, before being used as input for the classifier. The input of the classifier was
obtained by concatenating several graph-wise PPI embeddings and transformed image
features. The classifier was composed of two FC layers and a softmax layer to calculate
the probability of metastasis (Figure 4). In this study, k-fold cross-validation were utilized,
where the dataset was randomly divided into K subsets. During this process, each subset
was used once as a test dataset while the rest formed the training dataset, repeated k-times
to ensure robustness. The model was trained on Intel Xeon silver 4214R CPU (Intel, Santa
Clara, CA, USA) and NVIDIA Titan V GPU (NVIDIA, Santa Clara, CA, USA).
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5. Conclusions

The combination of 18F-FDG PET and CT image data improved the performance of the
GNN model in various gene-related analyses. The predictive capability of the model was
enhanced when a broader set of image texture features was considered. The GNN model
developed in this study has potential clinical applications. Imaging features correlated
with hub genes can be obtained in a noninvasive manner to enable early prediction of
lymph node metastasis, which can help in the early establishment of treatment strategies in
NSCLC. The development and validation of this innovative GNN model marks a pivotal
step forward in our ability to offer more personalized, effective, and noninvasive care to
patients suffering from this challenging disease.
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