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Abstract: The development of new nanocontainers for hydrophobic drugs is one of the most important
tasks of drug delivery. Dendrimers with hydrophobic interiors and soluble terminal groups have
already been used as drug carriers. However, the most convenient candidates for this purpose are
peptide dendrimers since their interiors could be modified by hydrophobic amino acid residues
with a greater affinity for the transported molecules. The goal of this work is to perform the first
molecular dynamics study of the complex formation of fullerenes C60 and C70 with Lys-2Gly, Lys G2,
and Lys G3 peptide dendrimers in water. We carried out such simulations for six different systems
and demonstrated that both fullerenes penetrate all these dendrimers and form stable complexes
with them. The density and hydrophobicity inside the complex are greater than in dendrimers
without fullerene, especially for complexes with Lys-2Gly dendrimers. It makes the internal regions
of complexes less accessible to water and counterions and increases electrostatic and zeta potential
compared to single dendrimers. The results for complexes based on Lys G2 and Lys G3 dendrimers
are similar but less pronounced. Thus, all considered peptide dendrimers and especially the Lys-2Gly
dendrimer could be used as nanocontainers for the delivery of fullerenes.

Keywords: peptide dendrimers; fullerenes C60 and C70; complexes; drug delivery

1. Introduction

Classical dendrimers are regular star-like (starburst) macromolecules that originate
from a single core and branch in each generation. They have a well-defined molecular
weight, nanoscale size, low polydispersity, and multivalency. Dendrimers can be used in
many industrial, biomedical, and pharmaceutical applications due to their unique proper-
ties [1]. They are considered nanocontainers for drug and gene delivery since they can form
complexes with different bioactive molecules [2]. The diversity of chemical structures of
dendrimers and the possibility of their modification facilitates the development of delivery
systems with desired properties for various drug molecules [3]. The formation of such com-
plexes depends on the nature of the interaction between the dendrimer and guest molecules.
This may be simple physical entrapment or encapsulation due to hydrophobic, electrostatic
interactions, or hydrogen bonding [4]. The use of a dendrimer-based system can also help
achieve controlled and targeted delivery to specific tissues and organs [5]. Dendrimer
scaffolds protect the transported molecules from premature enzymatic degradation and
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early release and helps cross the biological membranes, improving their pharmacokinetics
and bioavailability [6–10].

To achieve successful delivery and reduce adverse side effects, a reliable and safe
delivery system should be non-cytotoxic, non-inflammatory, bioavailable, and biodegrad-
able [11]. Polyamidoamine (PAMAM) and polypropyleneimine (PPI) dendrimers are well
studied and well characterized as dendrimer-based delivery systems [12]. However, an
important obstacle to the clinical use of these synthetic dendrimers is their toxicity. Various
strategies have been developed to address the limitations due to the toxicity of dendrimer
carriers [13,14]. For example, terminal groups of the dendrimers can be modified by
PEGylation [15], acetylation [16], amino acids, or short peptides [17,18]. In this aspect,
peptide dendrimers have some advantages because they consist of natural amino acid
residues [19,20]. Poly-L-lysine (PLL) dendrimers are well-known representatives of peptide
dendrimers. In recent years, drug formulations based on lysine dendrimers have been
widely studied [21–25], and their safety and biodegradability have been demonstrated.
It has been shown that peptide dendrimers themselves have antibacterial [26–30], antivi-
ral [31,32], and antiangiogenic properties [33–36]. Moreover, the use of peptide dendrimers
together with transported drug molecules can provide a synergistic effect of their action
on cancer cells [37]. In addition, a peptide dendrimer can be synthesized with almost
any desired set of amino acid residues [38–42] to improve the encapsulation of entrapped
bioactive molecules.

The encapsulation ability of dendrimers helps overcome the difficulties associated
with poor solubility and aggregation of guest molecules [25], allowing the use of smaller
drug doses [43]. The possibility of delivering bioactive molecules using dendrimers was
demonstrated, for example, for enoxaparin [44], berberine [45], quercetin [46], resvera-
trol [47], curcumin [48], anticancer drugs such as doxorubicin [49,50], and paclitaxel [51,52].
There were also many MD simulation works on the interaction of dendrimers with other
bioactive molecules. See, for example, the experimental and simulation study of drug-
loading into dendrimer [53], the MD study of acetyl-terminated PAMAM dendrimers
for the pH-sensitive delivery of irinotecan and fluorouracil [54], MD simulations of car-
bon quantum dots PAMAM dendrimer nanocomposites [55], PAMAM dendrimers with
G-actin [56], dendrimers with si-RNA [57], and cationic pyridylphenylene dendrimers with
multicomponent anionic liposomes [58].

One of the bioactive molecules, whose biomedical applications are limited by its
low water solubility, is fullerene [59]. Fullerene molecules are very attractive from a
biological point of view due to their sizes of about 1 nm. However, they tend to form
aggregates in water solutions. Aggregation leads to a fundamentally different interaction
with biological structures due to the different sizes and properties of aggregates [60]. Since
the discovery of fullerenes [61], opportunities for their use in biomedicine have been
investigated [62,63]. Fullerenes have even been considered a promising drug delivery
system; however, clinical trials have barely been started yet [63,64]. Fullerenes have
antioxidative [65–67], antibacterial [68], antiviral [69], and antitumor [70–72] activities.

To improve the solubility of fullerene, the most commonly used method is to ob-
tain its water-soluble derivatives via the attachment to many hydroxyl, carboxyl, or hy-
drophilic amino groups [73,74]. It was shown that the conjugation of fullerenes with
cyclodextrins [75], peptides [76], and hydrophilic ethylene glycol spacers [77] significantly
increases their solubility [78,79]. However, multiple functionalization of fullerenes de-
creases their bioactivity. The encapsulation of fullerenes into carbon nanotubes [80,81] and
liposomes [82] has been proposed as a possible route for their delivery. In attempts to
combine the beneficial properties of dendrimers and fullerenes, one resorted to the develop-
ment of conjugates of fullerenes with dendrimers [83–97], as well as to the functionalization
of dendrimers by fullerenes. Besides experimental work in this direction, there are several
computer simulation works on dendrimer–fullerene conjugates [98–100].

However, investigations of guest–host complexes of fullerenes with dendrimers are
poorly represented in the literature [101–104]. Perhaps this is due to the difficulties in
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obtaining the stable encapsulation of fullerenes into a dendrimer macromolecule. The
purpose of this work is to study the possibility of creating complexes between a peptide
dendrimer and fullerene. Since both of these nanosized molecules exhibit antitumor activ-
ity [37,105,106], we can assume that the strong synergetic effect [107] of their combination
is possible. Another advantage of using peptide dendrimers is the ability to tune the
interaction of the dendrimer with the guest molecule. This could be carried out not only by
changing terminal groups but also by adding or changing amino acid residues in inner seg-
ments of peptide dendrimers. The use of different hydrophobicity of amino acid residues
in the inner segments [108–111] could make it possible to achieve a suitable hydrophobic
environment for the fullerene inside the dendrimer.

2. Results and Discussion
2.1. Formation of a Dendrimer–Fullerene Complex

In order to trace the formation of the dendrimer–fullerene complex and its stability,
we calculated the time dependence of the distance, d(t), between the centers of mass of
the dendrimer and fullerene molecules, as well as the time dependencies of the size of
the subsystem consisting of the dendrimer and fullerene. The time dependencies of the
distance between the dendrimers and fullerenes are shown in Figure 1. As can be seen
from this figure, at the beginning of the simulation, the distances have large initial values
of ~4–6 nm since the fullerene molecule was initially placed quite far from the center of
mass of the dendrimer. At first, the d(t) curves fluctuate strongly for some time in all
systems and then begin to decrease gradually due to intermolecular interactions between
the dendrimer and the fullerene. Later, we can observe an abrupt step-like decrease in
the value of d(t). After this, in most cases, the function d(t) practically does not change
with time and fluctuates slightly near the average value close to 1 nm or less. This means
that fullerenes are adsorbed on dendrimers, forming stable complexes with them. For
some systems (Lys-2Gly + C60 (Figure 1a) and Lys G3 + C70 (Figure 1f)), the d(t) after the
abrupt decrease continues to decrease slightly, reaching a constant value of d in the region
200–250 ns of the first half of total 500ns trajectory, which is used to establish equilibrium
in the system.

Thus, we can conclude that in all the systems considered, a stable dendrimer–fullerene
complex is formed after 250 ns of simulation.

A similar characteristic that makes it possible to study the process of formation of the
dendrimer–fullerene complex is the radius of gyration, Rg [112]

Rg(t) =

√√√√∑Ntot
i mi(ri(t))

2

∑Ntot
i mi

(1)

where mi and ri are the mass index and radius vector of the i-th atom of the dendrimer–
fullerene subsystem, and Ntot is the total number of atoms in a dendrimer–fullerene complex.

The time dependence of the radius of gyration, Rg(t), describes the process of equilibra-
tion of the size of the dendrimer–fullerene subsystem and the formation of their complex.
Unlike d(t), the change in the value of Rg(t) of this subsystem occurs not only due to a
change in distance between dendrimer and fullerene but also due to fluctuations of the Rg
of the dendrimer, which, unlike fullerene, is not a rigid molecule.

As can be seen in Figure 2, the subsystems have large initial radii of gyration Rg(t = 0)
since, at the beginning of the simulation, the fullerene is placed quite far from the center of
mass of the dendrimer. The behavior of the Rg(t) curves is similar to that of d(t) in Figure 1.
The sizes of the resulting Rg of the complexes are about 1 nm. After the jump, the value of
Rg decreases significantly and then remains practically unchanged with time. Thus, we
can conclude that in all the systems under consideration the dendrimer forms a complex
with fullerene.
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Figure 1. Distance between the centers of mass of the dendrimer and fullerene molecules in the 
system: (a) Lys-2Gly + C60, (b) Lys G2 + C60, (c) Lys G3 + C60, (d) Lys-2Gly + C70, (e) Lys G2 + C70, (f) 
Lys G3 + C70 at the first 250 ns of a trajectory (before and after the formation of complex). For each 
system, the three different initial conformations (positions of fullerene) were used and marked by 
different colors. The abrupt decrease in the distance reflects the formation of dendrimer–fullerene 
complexes. 
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Figure 1. Distance between the centers of mass of the dendrimer and fullerene molecules in the
system: (a) Lys-2Gly + C60, (b) Lys G2 + C60, (c) Lys G3 + C60, (d) Lys-2Gly + C70, (e) Lys G2 + C70,
(f) Lys G3 + C70 at the first 250 ns of a trajectory (before and after the formation of complex).
For each system, the three different initial conformations (positions of fullerene) were used
and marked by different colors. The abrupt decrease in the distance reflects the formation of
dendrimer–fullerene complexes.
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in Figure 3. It can be clearly seen that in all cases, the fullerene is located inside the den-
drimer or, at least, between its branches. The additional visual analysis of snapshots con-
firms that after the first approach to the dendrimer, the fullerene molecule stays in contact 
with it all the time. This is in good agreement with the results presented in Figures 1 and 
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Based on the obtained trajectories, it is possible to calculate the equilibrium charac-
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Table 1. The asphericity α, the radius of gyration Rg of the dendrimer, and the dendrimer–fullerene 
complex, as well as mean square distance d between the centers of mass of the fullerene and den-
drimer. 

Dendrimer/Fullertene α Rg d 
Lys-2Gly 0.013 1.24 - 

Lys-2Gly + C60 0.006 1.04 0.51 
Lys-2Gly + С70 0.006 1.08 0.57 

Lys G2 0.021 1.12 - 
Lys G2 + C60 0.009 0.91 0.72 
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Lys G3 0.015 1.45 - 
Lys G3 + C60 0.018 1.46 0.81 
Lys G3 + C70 0.012 1.27 0.78 

Figure 2. Radius of gyration (Rg) of dendrimer and fullerene in the system: (a) Lys-2Gly + C60,
(b) Lys G2 + C60, (c) Lys G3 + C60, (d) Lys-2Gly + C70, (e) Lys G2 + C70, (f) Lys G3 + C70 at the first
250 ns of a trajectory (before and after the formation of complex). For each system, the three different
initial conformations (positions of fullerene) were used and marked by different colors. The abrupt
decrease in the radius of gyration reflects the formation of dendrimer–fullerene complexes.
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2.2. Analysis of the Structure and Properties of Dendrimer–Fullerene Complexes Snapshots,
Shapes, Sizes, and Distances between Dendrimer and Fullerene in Complexes

To demonstrate the relative position of the dendrimer and fullerene molecules in the
complex, we present snapshots of these systems at the end of the simulation (after 500 ns) in
Figure 3. It can be clearly seen that in all cases, the fullerene is located inside the dendrimer
or, at least, between its branches. The additional visual analysis of snapshots confirms that
after the first approach to the dendrimer, the fullerene molecule stays in contact with it all
the time. This is in good agreement with the results presented in Figures 1 and 2.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Snapshots of the dendrimer–fullerene system after 500 ns of simulation: (a) Lys-2Gly + C60, 
(b) Lys-2Gly + C70, (c) Lys G2 + C60, (d) Lys G2 + C70, (e) Lys G3 + C60, (f) Lys G3 + C70. 

To determine the shape of the complexes, we calculated the asphericity [113,114]: 𝛼 = 1 − 3⟨𝐼ଶ⟩⟨𝐼ଵଶ⟩  (2)

𝐼ଵ = 𝑅gx + 𝑅gy + 𝑅gz (3)

Figure 3. Snapshots of the dendrimer–fullerene system after 500 ns of simulation: (a) Lys-2Gly + C60,
(b) Lys-2Gly + C70, (c) Lys G2 + C60, (d) Lys G2 + C70, (e) Lys G3 + C60, (f) Lys G3 + C70.



Int. J. Mol. Sci. 2024, 25, 691 6 of 19

Based on the obtained trajectories, it is possible to calculate the equilibrium character-
istics of the complexes and the dendrimer and fullerene molecules included in them (see
Table 1).

Table 1. The asphericity α, the radius of gyration Rg of the dendrimer, and the dendrimer–fullerene
complex, as well as mean square distance d between the centers of mass of the fullerene and den-
drimer.

Dendrimer/Fullertene α Rg d

Lys-2Gly 0.013 1.24 -
Lys-2Gly + C60 0.006 1.04 0.51
Lys-2Gly + C70 0.006 1.08 0.57

Lys G2 0.021 1.12 -
Lys G2 + C60 0.009 0.91 0.72
Lys G2 + C70 0.018 0.98 0.77

Lys G3 0.015 1.45 -
Lys G3 + C60 0.018 1.46 0.81
Lys G3 + C70 0.012 1.27 0.78

To determine the shape of the complexes, we calculated the asphericity [113,114]:

α = 1 − 3⟨I2⟩〈
I2
1
〉 (2)

I1 = Rgx + Rgy + Rgz (3)

I2 = RgxRgy + RgyRgz + RgxRgz (4)

The values of α = 0 and α = 1 correspond to the spherical and the elongated shape of
the macromolecule, respectively. The values of asphericity are given in Table 1. Previously
we established that for the dendrimers considered in this article, the asphericity of an
individual dendrimer macromolecule is very close to zero in aqueous solution, i.e., the
dendrimers in water have a shape close to spherical.

According to Table 1, for all complexes, except for Lys G3 + C60, the values of aspheric-
ity are smaller compared to that of dendrimer. However, even for Lys G3 + C60, α increases
slightly, which means that the shape of Lys G3 + C60 complex remains close to spherical.
This confirms that the sizes of the complexes can be described by one characteristic—the
radius of gyration (Rg). Also, to describe the structure of the resulting complexes, it will be
sufficient to use the radial distribution functions described below.

For all the studied complexes in the equilibrium state, the size (Rg) of the dendrimer
complex with fullerene is close to the size of an individual dendrimer (see Table 1). More-
over, for all complexes, Rg, a decrease in the amplitude of Rg fluctuations is observed
compared to the individual dendrimer. This happens because the hydrophobic fullerene
tries to “hide” inside the dendrimer using the internal hydrophobic fragments of this
macromolecule, which leads to the fullerene “gluing” the neighboring branches of the
dendrimer and, as a result, decreases fluctuations and the average size of the complex. This
is especially clearly visible if we consider the distribution function P(Rg) over the radius
of gyration Rg (Figure 4). As can be seen from this figure, the distribution of P(Rg) for the
complexes becomes narrower. This is especially noticeable for the complexes of Lys-2Gly
with fullerenes.
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absence of fullerene) and complexes of the dendrimer with C60 or C70. For Lys-2Gly (a), Lys G2
(b) and Lys G3 (c).

To understand the degree of fullerene encapsulation, it is necessary to study the
relative position of the dendrimer and fullerene molecules in the complex. For this purpose,
the average distance from the center of mass of the dendrimer to the center of mass of the
fullerene was calculated (see Table 1). It turned out that in the case of the Lys-2Gly + C60
and Lys-2Gly + C70 complexes, the distance between the centers of mass of the dendrimer
and fullerene is the smallest (about 0.5–0.6 nm). This means very good penetration of the
fullerene deep into the dendrimer, probably due to the greater length and flexibility of the
glycine spacers between the branching points of the Lys-2Gly dendrimer. In the case of the
Lys G2 and Lys G3 complexes with fullerenes, the distance between the centers of mass is
slightly larger (about 0.7–0.8 nm) since these dendrimers have shorter and stiffer spacers.
Therefore, in the latter case, a situation may arise when the fullerene is attached to the more
external parts of the dendrimer branches. To obtain a deeper understanding of the internal
structure of the complex, the next subsection examines the radial distribution functions of
the atoms of the molecules in the complex.

2.3. Radial Distribution Functions

As shown in the previous subsection, the dendrimer–fullerene complex formed in all
the considered systems. However, the degree of fullerene encapsulation may depend on
the type of dendrimer and/or fullerene used. To obtain detailed information about the
internal structure of the complex, the radial density distribution functions were calculated:

ρ(r) =
⟨m(r)⟩
V(r)

(5)

where ρ(r) (in g/cm3) is the average density of the thin spherical layer at a distance r from
the complex (or a dendrimer) center of mass, and ⟨m(r)⟩ is the average total mass of atoms
in the same layer of volume V(r). The dependencies ρ(r) are presented in Figure 5.

It can be clearly seen that the relative positions of the dendrimer and fullerene in
different complexes differ. In the case of Lys-2Gly (Figure 5a,b), the shape of the ρ(r) curves
indicates that this dendrimer encapsulates fullerene quite well. In this case, the atoms of
the Lys-2Gly dendrimer are displaced from the center of the mass region by fullerene and
replaced by fullerene atoms. In the case of Lys G2 (Figure 5c,d, the displacement of the
dendrimer atoms from the center of mass by fullerene atoms is also observed, but it is less
pronounced. As for Lys G3 (Figure 5e,f), the maxima of ρ(r) curves for the dendrimer and
fullerene are observed near the same distances from the center (dendrimer and fullerene
atoms coexist there).
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and (f) Lys G3 + C70.

To understand whether dendrimer–fullerene interactions depend only on the radial
distance r or whether there is an additional angular dependence [115], we plotted the
two-dimensional sectoral radial mass distributions relative to the center of mass of the
dendrimer (Figure 6).



Int. J. Mol. Sci. 2024, 25, 691 9 of 19

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 19 
 

 

It can be clearly seen that the relative positions of the dendrimer and fullerene in 
different complexes differ. In the case of Lys-2Gly (Figure 5a,b), the shape of the ρ(r) 
curves indicates that this dendrimer encapsulates fullerene quite well. In this case, the 
atoms of the Lys-2Gly dendrimer are displaced from the center of the mass region by full-
erene and replaced by fullerene atoms. In the case of Lys G2 (Figure 5c,d, the displacement 
of the dendrimer atoms from the center of mass by fullerene atoms is also observed, but 
it is less pronounced. As for Lys G3 (Figure 5e,f), the maxima of ρ(r) curves for the den-
drimer and fullerene are observed near the same distances from the center (dendrimer 
and fullerene atoms coexist there). 

To understand whether dendrimer–fullerene interactions depend only on the radial 
distance r or whether there is an additional angular dependence [115], we plotted the two-
dimensional sectoral radial mass distributions relative to the center of mass of the den-
drimer (Figure 6). 

 

Figure 6. Two-dimensional sectoral radial distribution of mass of the dendrimer relative to its center 
of mass. The spherical sectors in which the functions were calculated using a vector directed from 

Figure 6. Two-dimensional sectoral radial distribution of mass of the dendrimer relative to its
center of mass. The spherical sectors in which the functions were calculated using a vector directed
from the center of mass of the dendrimer to the center of mass of the fullerene. The center of the
sphere coincides with the center of mass of the dendrimer. The partition of a sphere into a set of
spherical sectors is similar to the partition described in [115]. The difference is that we divided each
sector into the upper (left) and lower (right) parts and calculated not only the angular distribution
but also the radial distribution from the center of mass on each 2D plot. (a) Lys-2Gly + C60 and
(b) Lys-2Gly + C70, (c) Lys G2 + C60 and (d) Lys-G2 + C70, (e) Lys G3 + C60, and (f) Lys G3 + C70.

In Figure 6, the area of the reduced dendrimer density (dark blue), close to the center
of the figure, corresponds to the position of the fullerene. It can be seen that for all systems,
the dendrimer atoms are located constantly (yellow area), often (yellow-green area), and
less often (green area) around the fullerene. It is important to note that the largest number
of dendrimer atoms (yellow region) are located near the fullerene and form a region of
constant contact with it but do not form a closed shell around it. However, regions with
fewer atoms (yellow-green and green), located on average at a slightly greater distance
from it, completely surround the fullerene and protect it on all sides (at least partially)
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from contact with water. To summarize this part of the work, it should be noted that the
encapsulation of fullerene with the Lys-2Gly dendrimer is more effective compared to other
studied lysine dendrimers (Lys G2 and Lys G3). Apparently, this may be due to the longer
and more flexible glycine spacers of this dendrimer, in contrast to the shorter and more
rigid spacers of the other two lysine dendrimers.

2.4. Electrostatic Properties of the Dendrimer–Fullerene Complex and Individual Dendrimer

One of the most promising applications of dendrimers is encapsulation and delivery
of drugs. As shown above, the dimensions of the dendrimer practically do not change after
encapsulation of fullerene.

In this section, we studied how the encapsulation of fullerene affects the electrostatic
characteristics of the dendrimer–fullerene complex compared to those of an individual
dendrimer in an aqueous solution. For this purpose, the radial charge distribution of
the dendrimer and counterions, q(r), was calculated. Then, using q(r), we solved the
Poisson equation numerically and obtained the distribution of the electrostatic potential,
ψ(r) [116–118] (Figure 7). The averaged electrostatic characteristics and the number of
hydrogen bonds between the dendrimer and water are given in Table 2. In Figure 7a,c,
for the complexes of Lys-2Gly and Lys G2 with fullerenes, we can observe an increase in
the height of the positive peak of q(r) compared to that for the separate dendrimers while
the negative peak of q(r) is smaller and wider. The electrostatic potential for these two
complexes is also stronger for these complexes compared to single dendrimers, especially at
low values of r. At the same time, the formation of the complexes of Lys G3 with fullerenes
leads to less pronounced changes in the electrostatic parameters compared to those for the
separate dendrimer (Figure 7e,f), especially at higher distances r from the center of mass of
this dendrimer.

Table 2. Electrostatic properties: the maximal cumulative charge, Qmax, and the ζ potential; the
number of hydrogen bonds (NHB) of the dendrimer/dendrimer–fullerene complex with water.

System Qmax [e] ζ [mV] NHB

Lys-2Gly 9.3 21.2 101

Lys-2Gly + C60 11.3 35.1 96

Lys-2Gly + C70 11.3 35.2 100

Lys G2 10.1 30.9 56

Lys G2 + C60 11.5 52.8 55

Lys G2 + C70 11.4 45.1 56

Lys G3 15.7 37.4 107

Lys G3 + C60 15.8 40.1 105

Lys G3 + C70 15.5 42.3 104

In the case of Lys-2Gly and Lys G2, a change in the charge distribution and elec-
trostatic potential of the dendrimer–fullerene complexes leads to a slight increase in the
maximal cumulative charge, Qmax (see Table 2). At the same time, a significant increase (by
1.5–1.7 times) in the ζ potential of these complexes compared to these parameters for indi-
vidual dendrimers occurs. As for Lys G3, the ζ potential of its complexes with fullerenes
C60 and C70 increase slightly (by 1.07 and 1.13 times, correspondingly). The number of
hydrogen bonds between all dendrimer–fullerene complexes and water molecules was
different but approximately the same as between the corresponding dendrimer and water
(see Table 2).
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3. Materials and Methods

In this work, we studied the possibility of the formation of complexes of lysine-based
peptide dendrimers with fullerenes in an aqueous solution using the molecular dynamics
(MD) method. The MD simulations were carried out using the GROMACS package [119].
AMBER-99SB-ILDN was used as the force field [120]. The lysine dendrimers of the second
(Lys G2) and third (Lys G3) generations and the lysine-based dendrimer (Lys-2Gly) with
double insertions of glycine amino acid residues (2Gly) between neighboring branching
points of Lys G2 dendrimer were considered (Figure 8). We used the full atomic models
of these dendrimers. Table 3 contains some structural parameters of the dendrimers
under consideration.
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Figure 8. The chemical structure of (a) the lysine dendrimer of the second generation, Lys G2, and
(b) the lysine dendrimer of the third generation, Lys G3; (c) the second-generation lysine-based
dendrimer with double glycine (2Gly) insertions between adjacent branching points, Lys-2Gly.
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Table 3. Characteristics of dendrimers: the molecular mass of the dendrimer (Md), the charge (Qbare),
the number of positively charged terminal NH3

+ groups (Nend), the total number of amino acid
residues in the insertions (Nins), the total number of amino acid residues in the dendrimer (Nres).

Dendrimer Md, g/mol Qbare [e] Nend Nins Nres

Lys-2Gly 3675.44 16 16 28 44

Lys G2 1895.63 16 16 0 16

Lys G3 3962.5 32 32 0 32

The initial conformations of the dendrimers were taken from previous work [121]. The
topologies and partial charges of fullerenes C60 and C70 were prepared using an electronic
resource [122]. At the initial moment of time, the fullerene molecule was placed at a certain
distance from the dendrimer. For each of the six systems (three dendrimers and two types
of fullerenes), three different initial conformations of the system (positions of fullerene)
were used. For this, we shifted the center of mass of the fullerene relative to the center of
mass of the dendrimer along one of three different axes, X, Y, or Z, by the same distance
of the order of 4.5 nm so that the fullerene in all cases was outside the dendrimer surface
but not too far from it. The preparation for the simulation included the following stages:
First, the corresponding dendrimer and fullerene molecules were immersed in an aqueous
solution. According to normal pH, the terminal groups of the dendrimer were protonated.
Then, chlorine counterions were added to satisfy the electrical neutrality condition of the
simulated systems.

The final equilibration was carried out for 250 ns in an NPT ensemble using a Nose–
Hoover thermostat and a Parrinello–Rahman barostat. The simulation parameters were
exactly the same as in our previous works [121]. After equilibration, the simulation was
continued, and the length of the productive trajectory was equal to 250 ns. This trajectory
was used to calculate different average values, distribution functions, and time-dependent
properties at equilibrium using both GROMACS tools and developed computer programs
for linear polymers [123–128], dendrimers [129–133].

4. Conclusions

In this work, atomistic molecular dynamics simulations were used for the first time to
study the possibility of the complexation of fullerenes with amphiphilic peptide dendrimers.
Six systems were considered, containing one of three peptide dendrimers (Lys-2Gly, Lys
G2, and Lys G3) and one of two types of fullerenes (C60 and C70) in an aqueous solution. It
was shown that in all six considered systems, a dendrimer–fullerene complex is formed. In
addition, it turned out that fullerene can be encapsulated quite close to the center of the
dendrimer. In most of the complexes considered, the density and hydrophobicity of the
internal region of the complex are greater than that of a single dendrimer, which makes it
less accessible to water and counterions. This reduces the number of counterions inside
the complex and increases its zeta potential. At the same time, the fullerene “glues” the
branches of the dendrimer, which reduces fluctuations and the overall dimensions of the
complex. It was found that in all the complexes considered, the dendrimer surrounds the
fullerene molecule with its branches, hiding it from water. It was demonstrated that the
dendrimer Lys-2Gly exhibits the best encapsulating properties for both types of fullerenes.
It is concluded that all the considered peptide dendrimers and especially the Lys-2Gly
dendrimer can be good nanocontainers for the delivery of fullerenes.
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