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Abstract: Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-
oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another
abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA
in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies
have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical
and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this
review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity
and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA.
We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as
well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.

Keywords: 7,8-dihydro-8-oxoadenine; mutagenesis; DNA polymerases; base excision repair; DNA
glycosylases; translesion DNA synthesis

1. Introduction

A number of environmental (ultraviolet and ionizing radiation, chemical oxidants [1])
and endogenous (products of oxidative phosphorylation in mitochondria [2] and metabolic
oxidases [3]) factors induce the production of free radicals, particularly reactive oxygen
species (ROS). These derivatives of molecular oxygen are involved in redox reactions and
interact with biological macromolecules, causing their damage. DNA replication stress
initiated by oxidative lesions is considered a hallmark of carcinogenesis. Furthermore,
oxidative DNA damage contributes to aging and development of neurodegenerative,
cardiovascular, and metabolic disorders [4,5].

ROS are a well-established cause of mutagenesis. Dozens of different nucleobase
modifications resulting from oxidative stress have been found to arise in cells, whereas over
a hundred distinct oxidative DNA lesions have been identified in vitro [6,7]. Guanine is
regarded as the most vulnerable to ROS since it has the lowest redox potential among nucle-
obases [8]. The guanine C8 position is directly attacked by ROS, resulting in the production
of 7,8-dihydro-8-oxoguanine (8-oxoG), the most abundant and comprehensively studied
DNA lesion resulting from oxidative damage. This modified nucleobase can pair with both
cytosine and adenine, leading in the latter case to G → T transversions upon replication.
Adenine, which likewise has a relatively low redox potential, is also easily oxidized [8].
The data on the cellular levels of 7,8-dihydro-8-oxoadenine (8-oxoA) are inconsistent but
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generally vary from one-tenth to a half compared to that of 8-oxoG [9,10]. 8-oxoA also pos-
sesses ambiguous coding properties and is prone to oxidation itself. Nonetheless, 8-oxoA
has received significantly less attention than 8-oxoG.

In this review, we focus on the miscoding potential and characteristics of 8-oxoA. We
overview historical and recent genotoxicity studies of 8-oxoA and discuss its mutagenic
potential in bacterial and eukaryotic cells. We also summarize the main cellular mecha-
nisms of response to 8-oxoA and discuss the structural basis for 8-oxoA bypass by DNA
polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.

2. Formation of 8-oxoA and Its Derivatives

Adenine is oxidized less efficiently due to its higher redox potential compared with
guanine [8,11]. The oxidation of adenine to 8-oxoA upon γ-radiation was discovered in
aqueous solution [12,13] and then found in DNA samples [14,15], murine chromatin [7],
as well as in DNA of tumor cells [16]. This lesion is predominantly formed through the
exposure of hydroxyl radical on adenine [13], which is generated by water ionization upon
γ-radiation or as the result of peroxide degradation through the Fenton reaction [1,13],
whereas singlet oxygen does not contribute to 8-oxoA formation (Figure 1) [1]. Based on
studies of dA, dATP, and DNA oxidation using the Fe2+/EDTA system with a high Fe2+

concentration, 2-hydroxy-2′-deoxyadenosine (2-OH-dA) was previously considered as the
main lesion resulting from 2′-deoxyadenosine damage [17,18]. Thus, extensive studies
on 2-OH-dA incorporation into DNA, nucleotide incorporation opposite 2-OH-dA and
its repair pathways were performed [19–22]. However, in contrast to non-physiological
conditions with high Fe2+ concentration and, presumably, iron autoxidation [18], high
performance liquid chromatography (HPLC) separation associated with tandem mass
spectrometry (MS/MS) detection revealed 8-oxoA is a primary stable product both upon
γ-irradiation and under Fenton reaction conditions [18,23,24]. Along with 8-oxoA, the
formation of 4,6-diamino-5-formamidopyrimidine (FapyA) also occurs as a result of attack
by hydroxyl radicals (Figure 1), but it tends to isomerize and become hydrolyzed in aqueous
conditions [23].
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Figure 1. Scheme of putative pathways of adenine degradation. The parent adenine and prod-
ucts of its oxidation are highlighted in blue (adenine), green (7,8-dihydro-8-oxoadenine), and
red (2-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine). Ox and red stand for oxidation
and reduction, respectively. The ineffective processes are shown with dashed arrows.
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For physicochemical and biological studies of 8-oxoA-containing DNA fragments, the
method for chemical introduction of 8-oxoA 2′-deoxynucleotide into oligonucleotides has
been developed. The key step of the synthesis is based on the conversion of 8-bromo-2′-
deoxyadenosine (8-Br-dA) into a 8-benzyloxy-substituted derivative, followed by its cat-
alytic hydrogenation [25], or on treatment of 8-Br-dA with a mixture of 2-mercaptoethanol
and triethylamine (Figure 2) [26,27].
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Figure 2. Scheme for the synthesis of 8-oxoA phosphoramidite with a key step using sodium
benzylate or 2-mercaptoethanol.

3. Mutagenic Potential of 8-oxoA
3.1. Pro-Mutagenic Nature of 8-oxoA

Some oxidative DNA modifications are cytotoxic. For example, enantiomers of
thymine glycol significantly distort the geometry of the DNA molecule and represent
a serious obstacle for high-fidelity replicative DNA polymerases [28]. The accumulation
of distorting adducts may be accompanied by replication arrest, chromosome aberrations,
and activation of apoptosis. Nevertheless, most non-bulky oxidative DNA lesions are
miscoding rather than blocking. 8-oxoG is known to induce G → T transversions in DNA
due to its pairing with dA, when the modified base is in the syn orientation. 8-oxoG can
be ambiguously read by replicative enzymes leading to mutations after the next round of
replication. In turn, the available evidence suggests that 8-oxoA in eukaryotic cells has a
moderate mutagenic potential rather than showing blocking effects (see Section 3.3).

Mutagenic potential of 8-oxoA, like that of 8-oxoG, is determined by its ability for
ambiguous base pairing. Mutagenicity of DNA lesions is usually considered to depend on
the stability of the potential mismatches [29]. The Watson–Crick face of 8-oxoA remains
intact allowing the formation of a stable base pair with thymine (Figure 3A). According to
NMR and thermal melting studies, the 8-oxoA:T pair does not substantially disrupt the helix
geometry [30] but slightly decreases Tm (by 1.7 ◦C in a 30-bp duplex) [31]. Some moderate
distinctions in the backbone structure of the oligonucleotide containing 8-oxoA:T pair,
compare to the A:T pair, were captured with Fourier transform-infrared spectroscopy [32].
In addition, fine structure analysis of the DNA duplex with 8-oxoA:C pair, in contrast to
A:T, 8-oxoA:T, and A:C pairs, demonstrated notable structural and dynamic differences [31].
The spatial structure of the damaged region can also influence the recognition by DNA
metabolism enzymes [29]. Indeed, the presence of few mismatches with 8-oxoA impedes
the recognition of the damaged site by DNA glycosylases (see Section 4) [31]. It is likely
that the mild distortion of the conformational geometry of the sugar-phosphate backbone
caused by 8-oxoA in DNA might in some degree inhibit the activity of at least high-fidelity
DNA polymerases.
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Figure 3. Pairing of 8-oxoA with thymine (A) or guanine (B).

Of particular interest is the ability of 8-oxoA to pair with guanine. According to X-ray
studies on the 8-oxoA:G pair, the modified base also adopts the syn conformation, wherein
its position remains unchanged compared to that in the A:G pair, while G is shifted into
the minor groove. The 8-oxoA:G pair was proposed to be held together by two three-
centered hydrogen bonds (Figure 3B) [33]. Interestingly, the angles between the glycosidic
bonds and the C1′-C1′ distance in the pair are almost equal, which is characteristic of
Watson–Crick pairs, while asymmetry in these angles is typically observed in syn-anti
purine–purine pairs [33]. The formation of the 8-oxoA:G pair could explain the observed
A → C mutations. DNA duplex containing two 8-oxoA:G pairs also adopts the standard
B-form without significant geometry distortions [33]. Overall, the discriminating ability of
8-oxoA for the opposite base is lower than that of the parent adenine [31]. The modification
was shown to diminish mismatch discrimination with the highest Tm of 54.7 ◦C and 51.2 ◦C
for 8-oxoA:T and 8-oxoA:G pairs, respectively, in a 13-bp DNA duplex [27].

Both 8-oxoG and 8-oxoA exist in tautomeric equilibrium, with the O8 keto form greatly
predominating over the enolate form in an aqueous solution. Biological implication of
tautomerism is essential for understanding base pairing [34]. According to X-ray and
NMR studies, 8-oxoA paired with G and T exists predominantly in the keto form in DNA
duplex [30,33,35], while its enolate form is proposed for an 8-oxoA:G base pair in the
catalytic site of human DNA polymerases Pol β and Pol η [36]. Although the genotoxicity
of the lesion is largely determined by its ability to form non-complementary base pairs, the
configuration and stability of the base pair in oligonucleotides and in the catalytic center of
an enzyme may differ due to the involvement of the amino acid microenvironment in the
pair stabilization.

It was suggested that base pairs containing 8-oxoA appear to be more susceptible
to the microenvironment (e.g., pH and Me2+ ions affecting ionization and tautomeriza-
tion) compared to 8-oxoG [36]. In particular, 8-oxoG:dATP mismatch adopts the same
conformations both in duplex DNA and in the active sites regardless of the enzyme [37–40],
while the available conformations of 8-oxoA:dGTP mismatch are different, highlighting
the greater impact of the microenvironment on the stability of 8-oxoA base pairs [33,36]. A
comparative mutagenesis assay in mammalian cells also demonstrated the impact of DNA
sequence context on the mutagenic potential of 8-oxoA (see Sections 3.3 and 7) [37].

3.2. 8-oxoA-Induced Mutagenesis in Prokaryotes

Different studies have yielded conflicting estimates of the mutagenic potential of
8-oxoA in vivo. Based on a limited number of studies, 8-oxoA does not appear to pose
a serious threat in Escherichia coli. In contrast to 8-oxoG, mutation analysis in bacterial
cells transformed with a single-stranded DNA substrate containing 8-oxoA demonstrated
very low mutagenic potential [41] (Table 1). These results are in good agreement with
in vitro studies, which show that Klenow fragments (KF) of Pol I and Taq DNA poly-
merase bypass 8-oxoA in an error-free manner, almost independently of DNA sequence
context [30,42–44] (Table 1). A very small number of substitutions associated with the
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insertion of non-complementary dAMP and dGMP opposite 8-oxoA by KF was reported
only in one study [45]. In the presence of all four dNTPs, primer extension by KF was
moderately inhibited; however, a 10-fold excess of the enzyme overcame this suppression.
These observations suggest that the miscoding potential of 8-oxoA in bacterial cells is
highly limited.

Table 1. Accuracy of 8-oxoA bypass in prokaryotes.

In Vitro/
In Vivo

Enzyme/
Organism Sequence Assay Accuracy Ref.

in vitro

KF

3′-. . .TCGGXTGGT. . .-5′ Primer extension Effectively bypasses [30]

5′-CCTTCXCTAC. . .-3′

5′-GTTGXGTAC. . .-3′
Primer extension and
steady-state kinetics

Preferentially inserts dTMP and small amounts
of dAMP and dGMP;

Fins dTTP~500–1000x >
Fins dAMP/dGMP;

Fext oxoA:T~630–3000x > Fext 8-oxoA:A
and 8-oxoA:C

[43]

5′-. . .GGCCXAG-3′

(HRAS template) Primer extension Inserts only dTMP [42]

5′-. . .GGTCXTCGG-3′ Primer extension Preferentially inserts dTMP and small amounts
of dAMP [44]

Taq pol

3′-. . .TCGGXTGGT. . .-5′ Primer extension Inserts only dTMP [30]

5′-. . .GGCCXAG-3′

(HRAS template) Primer extension Inserts only dTMP [42]

Dpo4 5′-TCATXGAAT. . .-3′

5′-TTCATXGAAT. . .-3′ Steady-state kinetics
Fins dTMP~14x > Fins dGMP

Fins 8-oxoA:dGMP~320x > Fins A:dGMP
Fext 8-oxoA:T~5x > Fext 8-oxoA:G

[46,
47]

in vivo E. coli 5′-GCTXG-3′ Mutagenesis assay MF~0.2–0.3% [41]

X = 8-oxoA, the HRAS mutational hot spot sequence is shown in bold. Mutation frequency (MF) = [number of an-
alyzed mutant colonies/total analyzed colonies] × 100%. Frequency of insertion (Fins) and frequency of extension
(Fext) = (kcat/Km) [mismatch]/(kcat/Km) [correct pair] or (Vmax/Km) [mismatch]/(Vmax/Km) [correct pair].

3.3. 8-oxoA-Induced Mutagenesis in Mammalian Cells

Initial data from HeLa and COS-7 cell extracts revealed rather negligible mutagenic
properties of 8-oxoA (Table 2) [48]. However, the presence of 8-oxoA in mouse embryonic
fibroblasts led to A:T → C:G transversions and A:T → G:C transitions at a relatively high
frequency comparable to that caused by 8-oxoG [42,49]. In this work, Kamiya et al. used a
DNA substrate representing a fragment of the HRAS oncogene with the 8-oxoA lesion at a
mutational hotspot [42]. Another comparative mutagenesis study by Tan et al. found that
the mutagenic potential of 8-oxoA placed in the non-coding strand of the HRAS gene is
approximately four-fold lower than that of 8-oxoG (1.2% vs. 5.2%). In contrast to 8-oxoG,
the oxidized adenine placed in a different position did not show any significant mutagenic
properties [50].

As reviewed in [51], high-fidelity eukaryotic DNA polymerases α, δ, and ε preferen-
tially incorporate non-complementary dAMP opposite 8-oxoG in vitro resulting in G:C
→ T:A transversions. In contrast to guanine modification, the activity of eukaryotic DNA
polymerases opposite 8-oxoA remains poorly characterized, even for high-fidelity replica-
tive DNA polymerases, with the exception of Pol α. In the presence of each individual
dNTP, calf thymus Pol α performs accurate synthesis past 8-oxoA; however, the polymerase
activity of the enzyme is moderately inhibited [43]. Another study showed that the murine
DNA polymerase α-primase complex not only inserts the correct nucleotide opposite the
lesion but also incorporates a small amount of dGMP when 8-oxoA is placed in the HRAS
oncogene fragment as a template [42], in line with the in vivo HRAS mutagenesis studies.
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Table 2. Accuracy of 8-oxoA bypass in mammalian cells.

In Vitro/
In Vivo

Enzyme/
Cell Line Sequence Assay Accuracy Ref.

In vitro

Pol α

5′-CCTTCXCTAC. . .-3′

5′-GTTGXGTAC. . .-3′
Primer extension and
steady-state kinetics

Preferentially inserts dTMP and small
amounts of dGMP;

Fins dTTP~10x > dGTP;
Fext 8-oxoA:T and 8-oxoA:G~280–3500x

< than for KF

[43]

5′-. . .GGCCXAG-3′

(HRAS template) Primer extension dTMP > dGMP * [42]

Pol β

5′-CCTTCXCTAC. . .-3′

5′-GTTGXGTAC. . .-3′
Primer extension and
steady-state kinetics

Preferentially inserts dTMP and small
amounts of dGMP;

Fins dTTP~18x > dGTP
[43]

5′-. . .GGCCXAG-3′

(HRAS template) Primer extension dTMP > dGMP > dAMP * [42]

5′-. . .TACGXCGCA. . .-3′ Steady-state kinetics
Fins 8-oxoA:dTMP

~2.5x < Fins A:dTMP
kcat/Km 8-oxoA:T~4x > kcat/Km 8-oxoA:G

[36]

Pol η 5′-. . .TACGXCGCA. . .-3′ Steady-state kinetics
Fins dTTP~2x > dGTP;

kcat/Km 8-oxoA:T~1.1x > kcat/Km
8-oxoA:G

[36]

HeLa and COS-7
cell extracts 5′-CCTTCXCTAC. . .-3′ Primer extension Inserts only dTMP [48]

In vivo

NIH 3T3 cells 5′-. . .GGCCXAG-3′

(HRAS template) Mutagenesis assay A → C in 55% clones,
A → G in 10% clones [42]

COS-7 cells

5′-. . .TCCTXGCCT. . .-3′

(non-coding strand of
HRAS template) Mutagenesis assay

MF~1.2% [50]

5′-. . .CCTGXCCTC. . .-3′ MF~0.24%

X = 8-oxoA, the HRAS mutational hot spot sequence is shown in bold. Mutation frequency (MF) = [number
of analyzed mutant colonies/total analyzed colonies] × 100%. Frequency of insertion (Fins) and frequency of
extension (Fext) = (kcat/Km) [mismatch]/(kcat/Km) [correct pair] or (Vmax/Km) [mismatch]/(Vmax/Km) [correct
pair]. *—no quantitative data.

Therefore, the mutagenic potential of 8-oxoA is prominent in mammalian cells where
it appears to depend on the DNA sequence context, but is greatly minimized in bacteria.
This phenomenon can be driven by differences in the accuracy of high-fidelity and TLS
polymerases opposite 8-oxoA or differences in base excision repair (BER) in prokaryotic
and eukaryotic cells.

3.4. Incorporation of 8-oxodATP

Oxidation of purine nucleobases also takes place in the nucleotide pool. 8-oxodGTP
can be incorporated into the genome with relatively high efficiency [52,53]. MTH1 hy-
drolyzes 8-oxodGTP in the nucleotide pool and thereby prevents the mutagenic incorpo-
ration of oxidized dGTP into DNA [54]. It was also demonstrated that MTH1 has similar
activity towards 8-oxodATP [22]; however, the discrimination ability of DNA polymerases
regarding oxidized dATP remains poorly understood. Limited studies in vitro indicate that
8-oxodATP is probably an inferior substrate for DNA polymerases, but its mutagenic effect
in vivo cannot be completely ruled out. Pol β demonstrated the most efficient incorporation
of 8-oxodATP, especially opposite template T [55]. KF and Pol α catalyzed the reaction with
a relatively low efficiency, preferentially opposite non-complementary template G and A,
while Pol λ was unable to incorporate 8-oxodATP on any DNA substrate [55,56].

4. The Effects of 8-oxoA Persistence in Genome

Depending on the detection technique, analyzed tissue samples or body fluids, and a
number of other factors, the amount of oxidized adenine and guanine modifications in DNA
can vary significantly [57]. The cellular background level of 8-oxoG is in the range of 1000



Int. J. Mol. Sci. 2024, 25, 1342 7 of 24

to 2000 lesions, formed daily in a single human cell under physiological conditions [58–61].
In early works, the number of 8-oxoA lesions ranged from 10 to 50% of 8-oxoG, while
one later study detected 8-oxoA at 0.7 lesions per 106 nucleotides, which corresponds
to ~2200 lesions per human genome and is comparable with 8-oxoG levels [14,62]. The
amount of 8-oxoA induced by ionizing radiation or hydrogen peroxide is about 2–3 times
lower than that of 8-oxoG [14,63]. Elevated levels of both adenine and guanine oxidized
modifications have been found in many mammalian tumor tissues (stomach, larynx, ovary,
brain, and lung) [10,16] and the ratio of 8-oxoA to 8-oxoG reaches 1:1 in some of them [10].
The endogenous levels of both 8-oxoG and 8-oxoA are doubled in aged rat tissues compared
to young tissues [64]. Thus, the abundance of 8-oxoA in genome is on a par with 8-oxoG.

Oxidative stress-induced mutagenesis is a crucial component of cancer pathogene-
sis. Both 8-oxoA and 8-oxoG induce mutations in the synthetic HRAS proto-oncogene,
resulting in its activation and suggesting the role in carcinogenesis [42,50,65]. The ROS-
induced C → A mutations (or G → T in the complementary strand) corresponding to
cancer signatures SBS18 and SBS36 have been attributed to 8-oxoG and described in human
tumors (primarily in colorectal and pancreatic cancer for SBS36 and in neuroblastoma,
gastrointestinal cancer, and breast cancer for SBS18) [66,67].

8-oxoA-specific substitutions T → G and T → C most frequently observed in the
CTT context (or A → C and A → G in the AAG context similar with the HRAS CCXAG
mutagenesis hot spot) have been also detected in esophageal and stomach adenocarci-
noma, B-cell non-Hodgkin lymphoma, and pancreatic cancer, and correspond to signatures
SBS17a (T → C) and SBS17b (T → G) [https://cancer.sanger.ac.uk/signatures/sbs/sbs17b/
(accessed on 15 February 2023)] [68,69]. These signatures have strong correlation with
replication timing, lagging-strand enrichment and are linked with DNA damage [69].
The mutational process causing Signatures 17 remains unclear; some cases of SBS17b are
associated with 5-fluorouracil therapy [70] but in its absence could be connected to the
incorporation of oxidized dGTP opposite template A by TLS polymerases [69]. We suggest
that 8-oxoA-induced mutagenesis can be an alternative driver for Signature 17-associated
mutagenesis (Figure 4). Since duodeno-gastric reflux causes oxidative stress, this hypothesis
also explains the prevalence of these mutational patterns in gastric and esophageal cancers.
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Defects in OGG1, MUTYH, MTH1, NEIL1, and APE1 associated with 8-oxoG repair,
often lead to the accumulation of DNA single-strand breaks (SSB) and other intermediates
of incomplete repair [71–76]. Knockout mice with impaired OGG1, MUTYH, or MTH1
genes had increased frequency of 8-oxoG-induced G → T mutations in the adenomatous
polyposis coli (APC) tumor suppressor gene and KRAS proto-oncogene resulting in a
dramatic increase in the incidence of tumors [72,74]. However, 8-oxoA-specific T → G and
T → C mutations are yet to be reported in BER-knockout models.

It is hard to overestimate the clinical relevance of oxidative stress. 8-oxoG- and
8-oxoA-associated mutagenesis is not limited by the increased risk of mutations in cancer
driver genes. The persistence of 8-oxoG is considered to be an important element in
the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease [77] and
Parkinson’s disease [78]. The accumulation of 8-oxoG and 8-oxoA was found in patients
with Cockayne syndrome, a genetic human disease with clinical symptoms that include
neurodegeneration and premature aging (see also Section 5) [62,79].

The genotoxic effect of both 8-oxoG and 8-oxoA is not limited to its mutagenic potential.
It was demonstrated that 8-oxoA facilitates formation of other DNA lesions. Since the
redox potential of 8-oxoA is significantly lower than that of adenine, further oxidation
of the modified base could occur [80]. The highly reactive 8-oxoA iminoquinone could
react easily at the C2 position with nucleophilic reagents [80]. Indeed, during further
oxidation of 8-oxoA in DNA, interstrand cross-links (ICLs) arise with a nucleobase flanking
the nucleotide opposite to the lesion. The most efficiently formed ICLs with adenine and
guanine are shown in Figure 5 [80].
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and guanine or adenine in the opposite strand.

DNA lesions induced by oxidative stress can form oxidative clustered DNA lesions
or multiply damaged sites [81,82]. 8-oxoA, together with 8-oxoG, 5-hydroxycytosine and
apurinic/apyrimidinic (AP) sites, was shown to occur in clusters of lesions produced in
DNA by ionizing radiation [83]. Such damage clusters may significantly distort DNA
structure and present serious obstacles to both replication fork and BER enzymes, re-
sulting in double-strand break (DSB) formation and modulating mutagenic potential of
8-oxoG [31,84–86]. It was also shown that 8-oxoA could suppress the repair of neigh-
boring AP sites, 8-oxoG and oxidized pyrimidines [87–89]. On the other hand, human
thymine–DNA glycosylase (TDG) excises normal T placed opposite to 8-oxoA, providing
an opportunity for double-strand break formation (see below) and potentially mutagenic
DNA repair synthesis [90].
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Both 8-oxoG and 8-oxoA are also capable of inhibiting the exonuclease activity of
the WRN helicase required to restart replication after fork arrest in vitro [91] and stimu-
lated by Ku70/Ku80 (XRCC6/XRCC5), a double-strand break sensor, to digest oxidized
DNA strands [91,92]. In addition, this helicase may be involved in the suppression of
8-oxoG-induced mutagenesis [93]. Finally, 8-oxoA has been reported to affect the activity
of topoisomerases, although the magnitude of the effect is only severalfold and its direc-
tion seems to depend on the enzyme; while the cleavage by human topoisomerase II is
accelerated [94], the vaccinia virus enzyme (type I) is inhibited by 8-oxoA [95].

Moreover, it is possible that persistence of 8-oxoA in genomic DNA can affect tran-
scription efficiency and accuracy. The presence of 8-oxoG and its repair intermediates,
such as AP sites, in the promoter region inhibits gene transcription by the impeding of
transcription factor binding [96–99]. On the other hand, accumulation of 8-oxoG activates
the Ras-MEK-MyoD signal axis enhancing the expression of regulatory factors and the
differentiation of muscle tissue cells [100]. Oxidative DNA lesions may lead to so-called
transcriptional mutations. In particular, 8-oxoG in the coding DNA strand can be incor-
rectly transcribed by RNA polymerase II, avoiding its fidelity checkpoints and thereby
leading to C → A transversions in mRNA [101,102]. Since the presence of the DNA lesions
correlates with functional impairments in non-proliferating neurons, the phenomenon of
transcriptional mutation has been proposed as a possible mechanism for the formation
of neurotoxic proteins that may be a potential cause of alpha synuclein aggregation in
Parkinson’s disease [78]. In addition, transcriptional mutations induced by 8-oxoG greatly
affect in vivo splicing fidelity [103]. The effect of 8-oxoA on transcription is yet to be
characterized. However, 8-oxoA has been already shown to inhibit the activity of RNA
polymerase II in vitro [104].

5. Repair of 8-oxoA

To mitigate the harmful effects of oxidative stress-induced DNA lesions, cells possess
a collection of repair systems. Similar to its guanine counterpart, most of 8-oxoA must be
removed before the next round of replication. The repair of 8-oxoA seems to be an efficient
process since the half-life of H2O2-induced 8-oxoA in human cells is 4.6-fold shorter than
the half-life of 8-oxoG lesion [63].

As a close chemical analog of 8-oxoG, 8-oxoA is generally believed to be repaired
through the BER pathway. However, a DNA glycosylase that would remove 8-oxoA as its
primary, or even a major substrate, has long been elusive (Table 3). Fpg, the main bacterial
DNA glycosylase for 8-oxoG, excises 8-oxoA from 8-oxoA:T pairs in oligonucleotide sub-
strates with a ~2300-fold lower specificity constant (kcat/KM) than 8-oxoG paired with C
and 68,000-fold worse than 8-oxoG paired with T [105]. Removal of 8-oxoA paired with
C by Fpg was reported at the level of <1% of 8-oxoG:C [106]. In another assay that uses
γ-irradiated calf thymus DNA (which contains only 8-oxoA:T) and measures the release
of the free base by chromatography/mass spectrometry, 8-oxoA release was found to be
at least tenfold less efficient than the excision of 8-oxoG [107–109]. The structure of Fpg
reveals a tight network of hydrogen bonds donated to O6 of the damaged base everted
into the enzyme’s active site [110,111], which would obviously be disrupted if an exocyclic
amino group is present instead, as in 8-oxoA. Molecular dynamic modeling indicates that
8-oxoA forms notably fewer bonds than 8-oxoG in the active site of Fpg [112]. Finally, E. coli
MutY, an enzyme that processes A:8-oxoG and A:G mispairs, tightly binds 8-oxoA:8-oxoG
and 8-oxoA:G but does not excise 8-oxoA from them [113]. Together, these observations
suggest that the bacterial system of 8-oxoG repair is probably not involved in the removal
of 8-oxoA.

In mammalian cells, 8-oxoG is predominantly removed by OGG1 DNA glycosylase
whereas NEIL1, NEIL2, and NEIL3 may excise other products of oxidative damage to
purines [114,115]. When assayed on duplex oligonucleotides, human, mouse and yeast
OGG1 do not excise 8-oxoA from pairs with T or they do it with a much lower efficiency
in comparison with their natural 8-oxoG substrate [106,116,117]. The same is true for the
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irradiated DNA assay: the base is specifically missing from the products of treatment of
damaged calf thymus DNA by human, Drosophila, Arabidopsis, and yeast OGG1 [118–121].
Interestingly, however, OGG1 excises 8-oxoA even more efficiently than 8-oxoG when
8-oxoA is mispaired with C [106,117,122]. This would require a 180◦ rotation of the Gln315
side chain, which normally forms a bifurcated hydrogen bond to N1 and N2 of 8-oxoG in
the enzyme’s active site through its Oε1 atom [123]. Flipping the side chain amide would
allow Gln315 to reverse the hydrogen bond donor and acceptor and maintain the bond
with N1 (Figure 6). After the damaged base is removed, APE1, the major AP endonuclease
in human cells, stimulates OGG1 by displacing it from the enzyme–product complex
and enhancing the turnover [124–126]. Again, this stimulation is robustly observed with
8-oxoA:C substrate but not with 8-oxoA:T [127].
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NEIL1, which displays a rather mediocre activity on 8-oxoG, efficiently excises 8-oxoA
from 8-oxoA:C and channels BER into the APE1-independent, polynucleotide kinase/3′-
phosphatase dependent branch [128]. Also, an unidentified activity in human mitochondria
was reported to excise 8-oxoA paired with G [122]. Overall, it seems that at least the repair of
8-oxoA:C in eukaryotes might be protective, which would only make sense if incorporation
of 8-oxoA from the oxidized dNTP pool occurs. It remains to be seen whether this is the
case and which polymerase may be responsible. However, 8-oxodATP is an excellent
substrate for human MTH1, the dNTP pool sanitizing enzyme, which indirectly supports
the possibility of its detrimental effects through misincorporation [22].
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Recent reports highlighted a possible role of two members of the α/β-fold uracil DNA
glycosylase superfamily, human TDG and E. coli Mug, in the repair of 8-oxoA [129,130].
Despite some disagreement on the activity of Mug and the order of preference for different
mispairs, both studies detected the removal of 8-oxoA by TDG opposite from any base
with efficiency comparable with or better than that for the established substrates such as
3,N4-ethenocytosine, T:G, U:G and oxidized/deaminated 5-methylcytosine derivatives.
The biological significance of these observations is presently unclear. Since TDG can also
remove T paired with 8-oxoA and AP sites [90] the co-existence of these activities can lead
to clustered AP sites or double-strand DNA breaks. Moreover, Tdg-null mouse embryonic
fibroblasts are not hypersensitive to ionizing radiation [129]. Thus, while TDG (and possibly
Mug) can be considered as candidates for 8-oxoA repair in its natural 8-oxoA:T context,
more data are required to validate this role.

Evidence for the involvement of other DNA repair pathways in the removal of 8-oxoA
is very limited. Cockayne syndrome B (CSB, also known as ERCC6) protein is apparently
involved, since cells from Cockayne syndrome B patients are deficient in their ability to
clear 8-oxoA [62,79]. The mechanism is presently unclear although it might be related to
stimulation of OGG1, which is known to participate in a multiprotein complex involving
CSB [131,132]. Moreover, the rate of 8-oxoA removal is decreased in XPC-deficient cells,
pointing to possible involvement of global genomic nucleotide excision repair [133].

Table 3. DNA glycosylases that may be involved in BER of 8-oxoA. The excised base is bold.

Organism DNA Glycosylase Base Pair Reference

Prokaryotes
MUG

8A:T
[129]8A:G

8A:C

8A:A (low activity)
[130]8A:C (low activity)

Fpg 8A:C (low activity)
[106–109]

γ-irradiated DNA (low activity)

Eukaryotes

OGG1
8A:C

[106,117,122,127]8A:5-mC

TDG

8A:T

[90,129]
8A:G
8A:C
T:8A

8A:G (+++)

[130]
8A:C
8A:A
8A:T

NEIL1 8A:C [128]

Unidentified mitochondrial enzyme,
distinct from OGG1 8A:G [122]

+++—high activity.

6. Translesion DNA Synthesis Opposite 8-oxoA: The Second Chance to Avoid
Harmful Effects

Although BER is a highly efficient mechanism for removing oxidized modifications
from the genome, some of the damaged nucleotides are able to escape from the repair
machinery. The concept of TLS implies that specialized DNA polymerases possessing a
unique active site are able to bypass various lesions, including 8-oxoG, with high efficiency
and accuracy. However, is this true for 8-oxoA? To date, the TLS activity opposite 8-oxoA
has been characterized biochemically and structurally only for three DNA polymerases
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involved in TLS and repair: human Pol β from X family, human Pol η, and archaeal Dpo4
from Y family [5,36,46,47].

6.1. 8-oxoA Bypass by DNA Polymerase β

Pol β, belonging to the X family of DNA polymerases and playing a key role in BER, is
best characterized both biochemically and structurally due to its monomeric nature, small
size, and simplicity of purification.

Although Pol β demonstrates a moderate (more than twofold) decrease in the efficiency
of nucleotide incorporation opposite 8-oxoA on a single-nucleotide gapped substrate, the
lesion does not seem to represent a serious obstacle for the enzyme [36]. However, Pol β
inserts non-complementary dGTP opposite 8-oxoA with a higher efficiency than opposite
undamaged adenine supporting the pro-mutagenic properties of the lesion. The relative
efficiency of dGTP insertion opposite 8-oxoA (8.3 × 10−2) is more than 400-fold higher
than opposite intact nucleobase (1.9 × 10−4) (Table 2) [36]. Compared to the extension of
undamaged DNA, the elongation of DNA strand from 8-oxoA:dTTP and 8-oxoA:dGTP
pairs by Pol β is carried out with a ~40-fold decreased kcat/Km. The extension from
8-oxoA:dTTP pair is ~4-fold more efficient than from 8-oxoA:dGTP (Table 2).

The catalytic activity and fidelity of DNA polymerases may be significantly affected
by microenvironmental components such as pH, metal ions, and base modifications. Upon
the change in pH, as well as the formation of minor groove interactions induced by the
modification of the nucleobase, ionization or tautomerization can take place, leading to
the base transition from the keto form to the enolate intermediate and enol tautomer,
which differ in base pairing properties. Indeed, an elevated pH level in the reaction buffer
significantly facilitates the mutagenic incorporation of dGMP opposite both undamaged A
(10-fold) and 8-oxoA (7-fold) by Pol β [36] and possibly by other polymerases.

Pol β, like high-fidelity DNA polymerases, undergoes sequential reconfiguration of
the active site during catalysis between two states: an inactive open state and a catalytically
active closed one. Large-scale conformational shifts of the Pol β active site are dependent
on the incoming nucleotide and are triggered by its binding. The catalytically competent
state of the active site is achieved by a closing movement of the thumb subdomain and
rotation of α-N helix of the fingers subdomain.

Similar to 8-oxoG [40], 8-oxoA presents a mixture of syn and anti conformers within
the Pol β active site. When incorporating complementary dTMP, 8-oxoA adopts the anti
conformation and forms a canonical Watson–Crick pair (Figure 7) [36]. The ternary structure
revealed the closed catalytically competent conformation of the enzyme. Like in the Polβ-
(anti)8-oxoG:dCTP ternary complex (PDB ID: 3RJI), the accommodation of 8-oxoA in the
active site and the adoption of the anti conformation require minor rearrangement of the
8-oxoA sugar-phosphate backbone in order to avoid steric clash with the O8 atom. This
structural alteration may result in a slight decrease in the incorporation efficiency of dTMP
opposite 8-oxoA. The distinctive feature of the Polβ:8-oxoA:dTTP complex is the altered
orientation of Lys280 [36]. This residue appears to be crucial in stabilizing the lesion within
the active site through both stacking interactions with the templating base and a hydrogen
bond with Asn37.

The structure of the Polβ:8-oxoA:dGTP ternary complex provides insight into the pro-
mutagenic nature of this lesion (Figure 7). The formation of the 8-oxoA:dGMP mismatch in
the active site of Pol β does not interfere with a closed catalytically competent conformation
of the enzyme. This closed state is achieved mainly through the shift of the α-N helix that
recognizes the minor groove. A similar mechanism is observed during formation of the
8-oxoG:dATP and G:dATP pairs [40,134].



Int. J. Mol. Sci. 2024, 25, 1342 13 of 24

The formation of a 8-oxoA:dGTP mispair is accompanied by the adoption of the
syn conformation by 8-oxoA. As in the case of 8-oxoA:dTTP, the reorganization of the
sugar-phosphate backbone is also observed. However, the mechanism of the 8-oxoA:dGTP
Hoogsteen base pair formation with Watson–Crick-like geometry is not entirely clear. One
potential explanation might be the involvement of the enolate intermediate or the enol
tautomer of 8-oxoA in the mismatch formation.
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Figure 7. (A) Structure of the Polβ:oxoA:dTTP ternary complex (PDB ID: 6E3V) [36]. (B) Close-up
view of the active site of the Polβ:oxoA:dTTP complex. (C) Structure of the Polβ:oxoA:dGTP ternary
complex (PDB ID: 6E3W) [36]. (D) Close-up view of the active site of the Polβ:oxoA:dGTP complex.
8-kDa domain, fingers domain, palm domain, and thumb domain are shown in purple, green, yellow,
and blue, respectively. Hydrogen bonds between nucleobases and interactions with the enzyme
amino acids are represented with dashed lines.

This mismatch is stabilized primarily by Arg283- and Asn279-mediated hydrogen
bonds in the Pol β active site. The stabilization of 8-oxoA:dGTP also depends on Lys280-
mediated interactions. However, in contrast to the Pol β:8-oxoA:dTTP structure, the shift
of the Lys280 side chain observed in the Pol β:8-oxoA:dGTP ternary complex leads to the
abrogation of the hydrogen bond with Asp37 and its formation with the 5′-phosphodiester
oxygen of 8-oxoA [36].

The importance of Asn279 is consistent with enzymatic studies of the Pol β mutant
variant with an N279A substitution (Figure 8) [5]. Lack of Asn279, which contacts the
minor groove edge of the incoming dNTP, leads to a drastic decrease in the insertion
efficiency of both complementary dTMP (through the increase in Km) and especially non-
complementary dGMP opposite 8-oxoA but not opposite the undamaged A. Without
Asn279, the α-N helix fails to shift to the nascent pair, and the polymerase remains in
the open state. The accommodation of 8-oxoA:dGMP in the active site of mutant Pol β is
accompanied by the adoption of the syn conformation by both bases of the nascent pair [5].



Int. J. Mol. Sci. 2024, 25, 1342 14 of 24

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 14 of 25 
 

 

The structure of the Polβ:8-oxoA:dGTP ternary complex provides insight into the 
pro-mutagenic nature of this lesion (Figure 7). The formation of the 8-oxoA:dGMP mis-
match in the active site of Pol β does not interfere with a closed catalytically competent 
conformation of the enzyme. This closed state is achieved mainly through the shift of the 
α-N helix that recognizes the minor groove. A similar mechanism is observed during for-
mation of the 8-oxoG:dATP and G:dATP pairs [40,134]. 

The formation of a 8-oxoA:dGTP mispair is accompanied by the adoption of the syn 
conformation by 8-oxoA. As in the case of 8-oxoA:dTTP, the reorganization of the sugar-
phosphate backbone is also observed. However, the mechanism of the 8-oxoA:dGTP 
Hoogsteen base pair formation with Watson–Crick-like geometry is not entirely clear. One 
potential explanation might be the involvement of the enolate intermediate or the enol 
tautomer of 8-oxoA in the mismatch formation. 

This mismatch is stabilized primarily by Arg283- and Asn279-mediated hydrogen 
bonds in the Pol β active site. The stabilization of 8-oxoA:dGTP also depends on Lys280-
mediated interactions. However, in contrast to the Pol β:8-oxoA:dTTP structure, the shift 
of the Lys280 side chain observed in the Pol β:8-oxoA:dGTP ternary complex leads to the 
abrogation of the hydrogen bond with Asp37 and its formation with the 5′-phosphodiester 
oxygen of 8-oxoA [36]. 

The importance of Asn279 is consistent with enzymatic studies of the Pol β mutant 
variant with an N279A substitution (Figure 8) [5]. Lack of Asn279, which contacts the mi-
nor groove edge of the incoming dNTP, leads to a drastic decrease in the insertion effi-
ciency of both complementary dTMP (through the increase in Km) and especially non-
complementary dGMP opposite 8-oxoA but not opposite the undamaged A. Without 
Asn279, the α-N helix fails to shift to the nascent pair, and the polymerase remains in the 
open state. The accommodation of 8-oxoA:dGMP in the active site of mutant Pol β is ac-
companied by the adoption of the syn conformation by both bases of the nascent pair [5]. 

 
Figure 8. Active site of the Pol β Asn279Ala mutant containing the oxoA:dGTP nascent base pair 
(PDB ID: 6PKZ) [5]. Interbase bifurcated hydrogen bonds between syn 8-oxoA and syn dGTP were 
observed, and the nascent mispair is distorted. The A-site metal ion is absent, and the B-site metal 
is in a non-optimal position. In the absence of Asn279-mediated contacts, Tyr271 forms a hydrogen 
bond with O8 of syn 8-oxoA and stabilizes the mismatch in the active site. Hydrogen bonds between 
nucleobases or interactions with the enzyme amino acids are represented with dashed lines. 

6.2. 8-oxoA Bypass by DNA Polymerase η 
All eukaryotic members of the Y family of DNA polymerases—Pol η, Pol κ, Pol ι and 

REV1—are involved in DNA translesion synthesis. The exceptional ability of Pol η to 
faithfully replicate thymine–thymine (TT) cyclobutane pyrimidine dimers (CPD) and its 

Figure 8. Active site of the Pol β Asn279Ala mutant containing the oxoA:dGTP nascent base pair
(PDB ID: 6PKZ) [5]. Interbase bifurcated hydrogen bonds between syn 8-oxoA and syn dGTP were
observed, and the nascent mispair is distorted. The A-site metal ion is absent, and the B-site metal is
in a non-optimal position. In the absence of Asn279-mediated contacts, Tyr271 forms a hydrogen
bond with O8 of syn 8-oxoA and stabilizes the mismatch in the active site. Hydrogen bonds between
nucleobases or interactions with the enzyme amino acids are represented with dashed lines.

6.2. 8-oxoA Bypass by DNA Polymerase η

All eukaryotic members of the Y family of DNA polymerases—Pol η, Pol κ, Pol ι
and REV1—are involved in DNA translesion synthesis. The exceptional ability of Pol η
to faithfully replicate thymine–thymine (TT) cyclobutane pyrimidine dimers (CPD) and
its key role in protection from UV-induced DNA damage and skin cancer have been well
established [135–138]. Both yeast and human Pol η also efficiently bypasses 8-oxoG in vitro
(reviewed in [51]). In yeast, Ogg1 knockout-dependent mutagenesis is limited by Pol
η [139,140]. Pol η also has been suggested to be involved in 8-oxoG-induced mutagenesis
suppression in human cells and appears to operate in the same TLS pathway with the B
family Pol ζ [141–143].

The yeast enzyme has a slight preference for the insertion of the complementary dCMP
opposite 8-oxoG in vitro [144–146]. A structural study of the yeast Pol η active site revealed
that its cleft allows the template lesion to be accommodated in the anti conformation, almost
without distortion of the polymerase and the bound DNA [147]. Human Pol η carries out
a rather mutagenic bypass of the lesion, inserting both dCMP and dAMP, though several
studies emphasized that the fidelity of the yeast enzyme is modestly higher compared to
the human one [148]. Stabilization of the 8-oxoG:dCMPNPP Watson–Crick base pair in
the active site of human Pol η is primarily dependent on the Arg61 residue, which stacks
with the base of the incoming nucleotide, as well as on Gln38 [39]. Stabilization of the syn
orientation of 8-oxoG required to form Hoogsteen base pairs with incoming dATP and
dGTP is accomplished through hydrogen bonding between O8 and Gln38. In agreement
with biochemical studies, there is structural evidence that human Pol η efficiently extends
both complementary and non-complementary base pairs [39].

The catalytic activity of human Pol η is slightly inhibited opposite 8-oxoA; incorpora-
tion of dTMP opposite oxoA is ~2.5-fold less efficient than opposite A [36]. Pol η promotes
error-prone replication of 8-oxoA incorporating the complementary dTMP only 2-fold more
efficiently than the non-complementary dGMP [36]. In addition, Pol η is able to extend from
the 8-oxoA:dGMP mismatch without any significant reduction in the catalytic specificity
compared to the extension from the 8-oxoA:dTMP base pair [36]. In agreement with the
biochemical data, the structural analysis revealed that the Watson–Crick geometry of the
8-oxoA:dTTP pair is well-tolerated by the Pol η active site with no substantial distortion
(Figure 9). The only slight differences were found in the minor shift of the 5′-phosphodiester
bond of oxoA in order to avoid a steric clash between the 8-oxo moiety and the template nu-
cleotide in the N + 1 position [5]. The conformation of the active site in the Pol η:oxoA:dTTP
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ternary complex strongly resembles the Pol η:G:dCTP complex. Like in Pol β, 8-oxoA in the
Pol η active site adopts the anti conformation and forms the Watson–Crick base pair with
the incoming dTTP. Stacking interactions between the nascent base pair and downstream
templating nucleobase (T) and Gln38-mediated hydrogen bonding stabilize the oxoA:dTTP
pair [5].
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Figure 9. (A) Structure of the Polη:oxoA:dTTP ternary complex (PDB ID: 6PL8) [5]. (B) Close-up
view of the active site of the Polη:oxoA:dTTP complex. (C) Conformational differences between
8-oxoA (PDB ID: 6PL8) and 8-oxoG (PDB ID: 4O3P) in the active site of Pol η upon binding com-
plementary incoming nucleotide [5,39]. Superimposition of Polη:oxoA:dTTP and Polη:oxoG:dCTP.
Gln38 forms hydrogen bond with the O4 atom of 8-oxoA sugar, whereas in the Polη:oxoG:dCTP
complex it is hydrogen bonded to the N3 of 8-oxoG base. (D) Structure of the Polη:oxoA:dGTP
ternary complex (PDB ID: 6PLC) [5]. (E) Close-up view of the active site of the Polη:oxoA:dGTP
complex. (F) Conformational differences between 8-oxoA (PDB ID: 6PLC) and 8-oxoG (PDB ID:
4O3O) in the active site of Pol η upon binding non-complementary incoming nucleotide [5,39]. Super-
imposition of Polη:oxoA:dGTP and Polη:oxoG:dATP. Gln38-mediated minor groove interactions with
the oxoA:dGTP nascent base pair affect the pro-mutagenic bypass of the oxidized adenine. Palm,
fingers, thumb, and little finger domains are shown in red, yellow, blue, and green, respectively.
Hydrogen bonds between nucleobases and interactions with the enzyme amino acids are represented
with dashed lines.
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8-oxoA adopts the syn conformation and forms non-canonical Hoogsteen base pair
with an incoming dGTP (Figure 9). The Gln38-mediated minor groove hydrogen bonds
also play a key role in the formation and stabilization of oxoA:dGTP base pair with a
wobble configuration [5]. Unlike in the Pol η:oxoG:dATP ternary complex, Gln38-mediated
interactions in Pol η:oxoA:dGTP complex appear not to be limited to the template lesion,
and Gln38 also makes contacts with the incoming dGTP. The data are consistent with the
results of the Pol η mutant variant analysis, demonstrating that the substitution Q38A
leads to only a 4-fold reduction in dAMP incorporation opposite 8-oxoG but to a 55-fold
reduction in dGMP incorporation opposite oxoA [5].

The active site residue Arg61 plays an equivocal role. In the complex with T:dGTP,
major groove interactions mediated by Arg61 force this residue to adopt a conformation
unfavorable for catalysis, thereby facilitating the discrimination against this mismatch in the
Pol η active site. However, in the complex with 8-oxoA:dGTP, the conformation of Arg61,
interacting with the phosphate oxygen of the incoming triphosphate, does not prevent a
relatively efficient insertion of non-complementary dGMP opposite the template lesion.

6.3. 8-oxoA Bypass by Dpo4

The archaeal Sulfolobus solfataricus Dpo4, structurally reminiscent of Pol η and Pol κ, is
commonly employed as a model for studying translesion DNA synthesis. To date, this is
the third DNA polymerase whose structure in a complex with 8-oxoA-containing DNA
has been solved [46,47]. It was demonstrated that the incorporation of the complementary
dTMP opposite 8-oxoA is guided by the Arg331- and Arg332-mediated hydrogen contacts
stabilizing 8-oxoA in the anti conformation. However, formation of a canonical Watson–
Crick base pair apparently requires a conformational alteration of DNA downstream of the
templating lesion (in the N + 1 and N + 2 positions), as in the case of 8-oxoG lesion [46].
The highly efficient elongation from the 8-oxoA:dTMP pair in the biochemical assay is
consistent with the obtained structural findings, demonstrating that accommodation of the
pair following damage occurs without an apparent conformational distortion [47].

The solved Dpo4:8-oxoA:dGTP complex provides some insight into the pro-mutagenic
nature of 8-oxoA. The active site accommodates the 8-oxoA:dGTP Hoogsteen base pair,
apparently with three hydrogen interbase bonds, suggesting that one of the bases is in a
minor tautomeric form [46]. The hydrogen bond between Arg332 and the 8-oxo group of
8-oxoA was abrogated in this ternary complex. It has also been noted that the bulk of two
purine rings may interfere with the correct positioning of the 3′-OH terminus of the primer
and its coordination with Mg2+ in the A-site [46]. According to the kinetic analysis, this
mismatch is extended 5-fold less efficiently compared to the 8-oxoA:dTMP base pair.

Significant differences were uncovered by comparing insertion and extension struc-
tures. Thus, in the latter, template lesion adopted the anti conformation leading to rear-
rangement of the hydrogen interbase bonding. It was also unexpected that the primer
terminus, in order to avoid a steric clash between anti 8-oxoA and dGTP, shifts to an extra-
helical site where the flipped-out conformation of dG is stabilized by a network of minor
groove hydrogen bonding and Glu106- and Tyr108-mediated contacts [47].

The above-discussed BER and TLS directly involved in genome protection are likely
not the only mechanisms neutralizing the harmful effects of oxidized adenine. Depletion of
glutathione causes significant 8-oxoG and 8-oxoA accumulation in vivo [149]. Therefore,
an antioxidant vitagene network may also control the harmful effects of oxidative stress.

7. Unresolved Questions

Oxidative DNA damage is a well-known source of mutagenesis. Recent studies
demonstrated that 8-oxoA is a stable and abundant lesion induced by oxidative stress.
Given the frequency of 8-oxoA in the genome, dual-coding properties and other deleterious
effects of its persistence in the genome, the accumulation of 8-oxoA, along with 8-oxoG,
may pose a significant threat to genomic stability. Although genotoxicity studies have
demonstrated mutagenic potential of 8-oxoA in eukaryotic cells that is potentially of clinical
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relevance, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-
induced mutagenesis are available. Proposed association of SBS17a and SBS17b cancer
signatures with 8-oxoA-specific mutagenesis requires bioinformatic verification. DNA
polymerases responsible for the error-prone bypass of 8-oxoA in DNA and incorporation
of 8-oxodAMP from the nucleotide pool are yet to be identified. Since the lagging-strand
enrichment for the SBS17a and SBS17b signatures has been demonstrated, Pol δ is a possible
candidate enzyme for biochemical studies.

Another possible source of 8-oxoA-induced mutagenesis is repair and translesion
DNA polymerases. For example, Y-family Pol η and X-family Pol were shown to efficiently
incorporate dGMP opposite 8-oxoA in vitro [36]. Interestingly, the accuracy of 8-oxoG
bypass by repair and TLS enzymes is significantly enhanced in the presence of auxiliary
proteins such as PCNA, RFC, and RPA in vitro [150]. The 8-oxoG-induced mutagenesis
assay in yeast also supported the significance of Pol η interaction with PCNA [151]. TLS
opposite 8-oxoA can be affected by Me2+ ions. Some DNA polymerases (Pol ι, Pol λ,
primase-polymerase PrimPol) efficiently utilize Mn2+ ions [152–157] which often increases
the efficiency but decreases the accuracy of TLS. Mn2+ ions induce Watson–Crick-like G:T
mismatch in Pol β (with the pH-dependent insertion efficiency) suggesting the base pairing
is ionization-mediated; however, the subsequent slow protonation of the ionized form
resulting in guanine enolization is not excluded [158]. Moreover, DNA sequence context
significantly affects the accuracy of nucleotide incorporation opposite 8-oxoG by human
DNA polymerases [159]. The emerging evidence suggests that DNA sequence context
is also a key factor modulating the fidelity of TLS opposite 8-oxoA in mammalian cells.
Therefore, the role of accessory proteins, Me2+ ions, and DNA sequence context should be
taken into consideration in future biochemical studies.

Remarkably, 8-oxoA is not mutagenic in some studies but exhibits mutagenic prop-
erties comparable to 8-oxoG in others. It is well-known that the accuracy of nucleotide
incorporation by many DNA polymerases depends on DNA sequence-context [160,161]
and DNA polymerases may have specific “mutable motifs” demonstrating “mutation
signatures” [162,163]. It is quite possible that 8-oxoA-assosiated mutagenesis is sequence-
dependent and limited to specific mutagenesis sites or hotspots, including cancer driver
genes. However, a possible mechanism of sequence-dependent mutagenesis opposite
8-oxoA is unclear. Certain nucleotide combinations may have a universal effect on the
site-specific mutation rate [161,164,165]. In particular, neighbor base stacking interactions
and the relative G:C proportions can increase local thermodynamic stability causing stabi-
lization of nucleotide mispairing during DNA synthesis and interfering with nucleotide
proofreading of mispaired bases [165]. Strikingly, signatures SBS17a and SBS17b are prone
to form hotspots 10–70 times more often than the other cancer signatures. This high propen-
sity to form hotspots remains unexplained but was suggested to be associated with some
small local genomic features [166]. Prokaryotic and eukaryotic aerobic organisms have a va-
riety of versatile mechanisms to alleviate the effects of a plethora of DNA damaging agents.
Among them, BER is likely the main pathway preventing the harmful effects of 8-oxoA.
However, the exact repair pathways are yet to be determined. To date, a limited spectrum
of human DNA-glycosylases capable of excising 8-oxoA in vitro has been identified (TDG,
OGG1, NEIL1), but the biological significance of these findings remains uncertain. Studies
with reporter genes in living cells may shed light on 8-oxoA mutagenesis spectra and repair
mechanisms operating on this lesion.
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