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Abstract: Cutaneous wound healing consists of four stages: hemostasis, inflammation, prolifera-
tion/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety
of underlying medical conditions can impair the progression through the stages of wound healing,
resulting in the development of chronic, non-healing wounds. Great progress has been made in
developing wound dressings and improving surgical techniques, yet challenges remain in finding
effective therapeutics that directly promote healing. This review examines the current understanding
of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and
cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite
several promising studies, there remains only one therapeutic approved by the United States Food
and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in
the clinic. This highlights the need for new approaches aimed at understanding and targeting the
underlying mechanisms impeding wound closure and moving the field from the management of
chronic wounds towards resolving wounds.
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1. Introduction
1.1. Normal Wound Healing

Wound healing is a complex process classified into four defined stages: hemostasis,
inflammation, proliferation/repair and remodeling (Figure 1A). Immediately after injury,
hemostasis occurs through the formation of a fibrin and platelet plug which trigger a
coagulation cascade to stop the bleeding at the site of injury and promote recruitment of
cells from the surrounding tissue and bloodstream. The fibrin plug, from platelet-derived
fibrinogen, acts as a matrix for fibroblasts and macrophages [1]. Damage to endothelial
cells exposes collagen which stimulates platelets to undergo activation, adhesion, and
aggregation. Platelets produce chemotactic factors including transforming growth factor-β
(TGF-β) and platelet-derived growth factor (PDGF). These growth factors attract neu-
trophils, macrophages and fibroblasts, which are essential for the initiation and completion
of the inflammatory and proliferative stages of healing. In addition, changes in osmolarity
and an increase in hydrogen peroxide contribute to leukocyte recruitment to the wound
site [2,3].

The inflammatory phase starts within minutes of wound formation when neutrophils
adhere to the endothelium. Neutrophils use collagen and elastase to facilitate migration
into the extracellular space where they degrade matrix proteins, phagocytose microbes, and
further attract additional neutrophils as well as macrophages. Macrophages play a key role
in the acute healing process and are the predominant cell type during the inflammatory
stage. Macrophage differentiation exists on a spectrum, commonly delineated as either
M1 leaning or M2 leaning. The phenotype of macrophages changes as wounds progress
through the stages of healing, towards a resolved healed response. During the early stages
of wound healing, macrophages differentiate into an M1 phenotype, which infiltrates the
wound site and removes bacteria, debris, and dead cells. Then, as the wound begins
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to repair the macrophage population transitions to an M2 phenotype which promotes
resolution of inflammation and enables migration and proliferation of fibroblasts and
keratinocytes and rebuilding of the tissue architecture [4,5].
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Figure 1. Normal versus chronic wound healing. (A) In normal wounds, there is an orderly progres-
sion from hemostasis to inflammation, proliferation/repair and, finally, remodeling. (B) Chronic 
wounds demonstrate increased inflammation, reduced keratinocyte migration associated with hy-
perproliferation and the presence of bacterial biofilms. 
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Figure 1. Normal versus chronic wound healing. (A) In normal wounds, there is an orderly pro-
gression from hemostasis to inflammation, proliferation/repair and, finally, remodeling. (B) Chronic
wounds demonstrate increased inflammation, reduced keratinocyte migration associated with hyper-
proliferation and the presence of bacterial biofilms.

The proliferation phase begins within 24 h of wounding and comprises fibroplasia,
granulation, epithelialization and angiogenesis. The fibrin matrix created during hemosta-
sis enables keratinocyte migration from the wound edge and hair follicles across the
keratinocytes within the wound bed. In addition to TGF-β and Interleukin-6 (IL-6), the
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production of key molecules Epidermal Growth Factor (EGF) and Tumor Necrosis Factor-α
(TNF-α) are essential to balance keratinocyte proliferation and migration [6]. Interestingly,
disruption of the epithelium generates a directional electrical field, which also helps orient
keratinocytes for directed migration [7]. Angiogenesis is induced by the presence of Vas-
cular Endothelial Growth Factor (VEGF), which is upregulated by low oxygen tension [8].
Endothelial cells are recruited and stimulated to proliferate by VEGF, which induces smooth
muscle cell migration [9].

Fibroblasts migrate to the wound site between 48–72 h post wound and are integral
for dermal matrix repair. Fibroblasts produce structural proteins including elastin, matrix
metalloproteinases (MMPs) and collagen family members. MMPs degrade the fibrin
plug which was formed during hemostasis and facilitate fibroblast movement. Collagen
is present 48–72 h post wounding and is at peak secretion between 5 and 7 days [10].
Remodeling of the wound takes weeks to years. Wound contraction begins around 5 days
post wounding as fibroblasts change into myofibroblasts which are predominantly actin
producers. MMPs and MMP inhibitors reorganize type III collagen into a strong network
of type I collagen. Collagen reaches 20% of its tensile strength after ~3 weeks and 80%
strength in 12 months, during which the skin is fragile and prone to re-wounding [1].

1.2. Impaired Wound Healing in Chronic Wounds

Chronic wounds are defined by their failure to progress through the stages of wound
healing in a regulated and timely fashion. Wound healing takes between four to six weeks,
whereas chronic wounds can take significantly longer or can fail to heal entirely [11]. This
loose definition is largely a result of the heterogeneity in chronic wound etiology. Wounds
vary greatly in location, size, and host factors. Chronic wounds broadly affect the adult
population and the impact is exacerbated by comorbidities such as diabetes, cardiovascular
disease, venous/arterial insufficiency and/or lack of mobility [12]. Chronic wounds can be
further subclassified into arterial and venous ulcers, pressure ulcers and diabetic ulcers.

It is estimated that approximately 2% of the population will experience a chronic
wound in their lifetime. This translates to 5.7 million people in the United States and an
annual cost of around $20 billion. In addition to this economic burden, chronic wounds
precede 85% of all amputations, with diabetic ulcers responsible for 70% of all lower limb
amputations. Unfortunately, the 5-year mortality rate following amputation is between
40–70% [13], demonstrating the importance of effectively managing these wounds. Chronic
wounds tend to be treated as a co-morbidity of other conditions by clinicians from a range of
specialties including dermatology, podiatry, and geriatrics. Clinicians often lack specialized
training in the diagnosis and treatment of wounds as it is not a defined specialty, leading to
variations in treatment and wound management.

Chronic wounds generally stagnate between the inflammatory and proliferation stages,
failing to reduce inflammation and rebuild the tissue architecture (Figure 1B). Often there
is an increase in acute inflammatory cells such as macrophages and neutrophils, as well as
cytokines including Interleukin-1β (IL-1β) and TNF-α and an absence of cellular growth
and keratinocyte migration over the wound [13]. In addition, oxidative stress is known
to impair the healing process. Reactive oxygen species (ROS)-mediated transcription can
lead to sustained pro-inflammatory cytokine secretion and induction of MMPs specifically
MMP-1, -3, -7 and -9. Within chronic wounds it is known that MMPs have higher protease
activity which contributes to the degradation of the extracellular matrix (ECM), thus pre-
venting healing. Excessive ROS can degrade the extracellular matrix and impair dermal
fibroblast and keratinocyte function both directly and indirectly through the activation of
proteolysis [14,15]. While low levels of ROS are required for intracellular signaling and de-
fense against pathogens and can increase the rate of wound healing, higher concentrations
can prevent keratinocyte migration impeding healing [16].

One of the major impediments to wound healing is infection, which contributes to
wound chronicity. Bacteria colonize the wound and irreversibly bind to the wound surface,
forming complex communities of bacteria known as biofilms. These chronic, infected
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wounds are significantly harder to treat owing to their thick extracellular matrix and high
prevalence of antimicrobial resistance. In addition, biofilms are hard to remove through
physical methods such as sharps debridement [17,18]. Biofilms are known to be present in
at least 60% of all chronic wounds and there is evidence that they form as early as 10 h post
wounding [19]. It is thus unsurprising that many research efforts focus on antimicrobial
therapies including therapeutic release hydrogels and novel methods of debridement.

2. Current Therapeutics for Wound Healing

The care of chronic wounds has seen major advancements over the years, particularly
with improved surgical wound bed preparation [20–22] and better wound dressings [23].
Wound dressings incorporating novel biomaterials [24], altering fluid balance [25] and
modifying the pH of the wound environment [26–28] have greatly improved outcomes
for chronic wound patients. Importantly, chronic wounds are often a result of underlying
pathology, and advances in the treatment of diabetes [29,30] and venous insufficiency [31]
are some of the best ways to reduce the burden of chronic wounds. Here, we examine
the progress made in developing therapeutics designed to improve the healing of chronic
wounds and their proposed mechanisms of action (Figure 2).
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2.1. Natural Products
2.1.1. Antibiotics

Antibiotics are a front-line therapeutic within wound care and, while their primary use
is to eradicate microbial infection, there are several studies that have shown that they may
have some pro-healing efficacy. Primarily, antibiotics kill or prevent the growth of the micro-
organisms that cause infection and prevent it from spreading and worsening its effects [32].
Through the removal of micro-organisms, it is thought that antibiotics indirectly enable
wound healing to occur more quickly [33]. While there is little evidence in the literature
of antibiotics directly affecting wound healing, several studies have shown the positive
impacts of antibiotics on healing time. Hwang et al. found that a gentamicin-loaded
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hydrogel wound dressing significantly increased wound healing in a non-infectious murine
wound model compared to vehicle control dressing and untreated control wounds [34].
Further, Lin et al. showed a separate gentamicin hydrogel resulted in an increase in wound
healing within a rat wound model [35]. Interestingly, Li et al. showed that a ciprofloxacin-
releasing wound dressing significantly increased wound healing when compared to vehicle
control in a murine wound model, the group also showed that in response to ciprofloxacin,
CD34 expression was increased resulting in a vascular endothelial cell proliferation and
migration to the wound area where they participate in the regeneration of blood capillaries
and promote healing [36].

2.1.2. Silver

Silver dressings are widely used within wound care, and silver is known to be antimi-
crobial, clearing bacterial contamination and thus enabling wound healing to occur more
easily. There is extensive evidence of silver’s utility in infected open wounds [37–40]. How-
ever, despite the antimicrobial efficacy of silver, it is also toxic to fibroblasts when present in
high concentrations and thus can lead to impaired wound healing. Silver sulfadiazine (SSD)
is a topical cream/ointment used within wound care, but interestingly it has been shown to
lead to slower epithelialization in multiple randomized control trials [41]. It is hypothesized
that the heavy metal poisoning induced by SSD, which gives rise to its favorable antimicro-
bial properties, can also have a toxic effect on keratinocytes causing the observed, slowed
reepithelization [42]. Further, systemic toxicity of silver can occur through absorption of
silver through the skin and manifests as irreversible grey skin discoloration and loss of
night vision. Luckily, this is rare, with only 16 recorded cases in the U.S., as serum silver is
rapidly excreted in urine and feces [43]. Localized silver toxicity occurs more commonly
owing to the cytotoxicity of silver ions against keratinocytes and fibroblasts. Toussaint
et al. showed that Mepilex Ag had a slower healing time in a non-infected porcine burn
model than antibiotic ointment [44]. Furthermore, Innes et al. [45] showed that in skin graft
donor sites the silver-containing surgical dressing Acticoat® was found to significantly
delay epithelialization when compared to an occlusive dressing [30]. While silver has utility
within infected wound care once a wound is clean silver-free dressings should be used
owing to their detrimental effects on epithelization [41]. It should be noted that the impact
of silver on wound healing varies on mode of delivery, release rate, concentration, and
exposure. For example, it has been shown that nanocrystalline silver is the most potent
delivery system and resulted in the greatest acceleration in wound re-epithelialization
and multiple studies have shown that silver nanoparticles (AgNPs) have been shown to
increase wound healing [46–48].

2.1.3. Medicinal Honey

Honey has been used in medicine throughout history and was first used by the
Egyptians in surgical dressings to facilitate wound healing. Within wound care, honey is
known to be antimicrobial but it also has additional pro-healing effects [49]. Medical honey
is known to upregulate pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and prostaglandin
E2 production, aiding in the inflammatory phase. Honey can also increase MMP-9 and
TGF-β, contributing to the proliferative and remodeling phase [50]. One type of medicinal
honey, manuka honey, is widely used in wound care. Manuka honey has a cocktail of
enzymes in it, one of which is glucose oxidase, which catalyzes the oxidation of glucose
to gluconic acid and H2O2. Gluconic acid results in a reduction in pH and the H2O2 is
anti-bacterial. This pH change results in a reduction in protease activity at the wound site
and a subsequent increase in oxygen release from hemoglobin resulting in the stimulation
of fibroblast and macrophage activity. In addition, the H2O2 stimulates VEGF production.
Further, flavonoids are present in honey which are ROS scavengers, neutralizing free
radicles and further enhancing healing [51]. There are several Manuka honey dressings
approved by the FDA varying in the proportion of Manuka honey applied to the wound.
Robson et al. highlight the success of MedihoneyTM in their clinical setting and describe
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90% of their cases of chronic wounds as successfully closed [52]. Moreover, Biglari et al.
demonstrated a significant reduction in healing time with MedihoneyTM in patients with
chronic pressure ulcers [53]. While the utility of medical honey as an antimicrobial in
wounds is well understood, further study is required to understand if medical honey is
physiologically driving healing as opposed to simply reducing bacterial contamination and
enabling improved healing.

2.1.4. Curcumin

Curcumin is a polyphenol derived from the rhizome of Curcuma longa, which is
commonly known as turmeric. Curcumin has historically been used within herbal medicine
across the globe with applications in wound care and other illnesses owing to its anti-
inflammatory, antioxidant, antimicrobial and anti-cancer properties. Curcumin modulates
inflammatory, proliferative and remodeling phases of wound healing [54]. It has been
reported to inhibit the production of TNF-α and IL-1 via NF-κB signaling, which are
key cytokines in mediating inflammation [55,56]. In addition, curcumin scavenges ROS,
mitigating oxidative stress and increasing the production of collagen and hydroxyproline
during the proliferative phase of wound healing [54,57]. Gadekar et al. [58] showed that
applying transdermal curcumin patches to excisional wounds in rats promoted wound
contraction and angiogenesis, resulting in reduced healing time [32]. This phenomenon
was further explored in vitro by Phan et al. who used an H2O2 model of damage on
human fibroblasts and keratinocytes to demonstrate successful repair after curcumin
administration [59]. Curcumin also has been shown to play a role in the proliferative
stage of healing. Gopinath et al. treated wounded rats with curcumin-loaded chitosan
sponges and found that there was a better alignment of granulation tissue compared
to a control [57]. Curcumin is thus able to accelerate the process of wound healing by
shortening the inflammatory phase and aiding in proliferation and remodeling. Curcumin’s
hydrophobicity results in poor oral absorption, and thus it is more commonly used for
topical application [54].

2.1.5. Aloe Vera

Aloe vera is derived from the cactus-like plant Aloe barbadensis and has been used
throughout history, with its earliest use documented by Egyptians in 4000 B.C. [60,61]. Aloe
vera is used to treat burns and ulcers and has been shown to reduce pain and improve
healing time [62]. Aloe vera is also known to decrease TNF-α and IL-1 [63,64] and its
phenolic compound content promotes ROS scavenging, reducing inflammation [65,66]. In
addition, Aloe vera contains polysaccharides, such as mannose-6-phosphate, which bind
and stimulate fibroblast activity and proliferation, which increases collagen production [63].

2.1.6. Birch Bark

Betula alba (birch bark) has been used within traditional medicine across the northern
hemisphere and was first used in wound care by the Native American Ojibwe tribe, who
would wrap their wounds with birch bark to accelerate healing [67]. Birch bark’s healing
properties have since been proven clinically using n-heptane dry extract from the outer bark
of the birch; 97% of the extract is pentacyclic triterpenes [68] and the triterpene responsible
for wound healing is botulin [69]. Ebeling et al. showed that triterpenes significantly
increased wound healing in an ex vivo porcine healing model, demonstrating improved
skin barrier and enhanced migration when applied to human keratinocytes, mediated
through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling [70].
A birch bark gel bark extract (Episalvan®) has found accelerated re-epithelialization in
partial thickness skin wounds [71] and superficial partial thickness burns [72] and has been
approved for use in humans by the European Medicines Agency (EMA); however, it is yet
to be approved by the United States FDA.
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2.2. Human-Derived Factors
2.2.1. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm
and give rise to osteoblasts, chondrocytes, adipocytes, and reticular stroma. MSCs can be
isolated from a variety of sources, such as bone marrow, umbilical cord tissue, the placenta,
and adipose tissue [73]. The fundamental biological mechanism of mesenchymal stem
cell-induced wound healing is thought to be due to their ability to secrete pro-regenerative
cytokines [74]. MSCs modulate the immune response, through the secretion of interferon
gamma (IFN-λ) and TNF-α, leading to an increase in the secretion of IL-10 and IL-4
produced by various immune cells including but not limited to macrophages, dendritic
cells (DCs), and lymphocytes [75,76]. In addition, MSCs promote the formation of new
vessels and extracellular matrix and mediate cell proliferation and differentiation through
the secretion of VEGF, keratinocyte growth factor, MMP-9, and EGF [77].

There have been several trials using MSCs to treat chronic, diabetic wounds. Hashemi
et al. seeded an acellular amniotic membrane with Wharton’s jelly mesenchymal stem
cells and reported a reduction in wound size and time needed to heal [78]. Vojtaššák
et al. applied a biodegradable collagen membrane (Coladerm) in combination with au-
tologous MSCs from the patient’s bone marrow to the patient’s diabetic foot ulcer on
days 0, 7 and 17, relative to when treatment began. By day 29, closing and healing of the
wound was achieved [79]. Multiple clinical trials are ongoing, including Cell2Cure’s study
“STEMFOOT” (Trial no: NCT05595681) which is an “off-the-shelf” adipose tissue-derived
mesenchymal stem cell product [80].

Major drawbacks of MSC therapy include the “standardization” of manufacturing and
quality control owing to the variation in cellular proliferation and differentiation capacity
between donors. In addition, there is variation observed between subpopulations of MSCs
from a single source owing to RNA production variation [81]. Further complicating this is
the issue of which site to obtain MSCs, as bone marrow-derived MSCs are commonly used
in cutaneous wound healing whereas adipose-derived and umbilical cord-derived cells
have been used in diabetic ulcer trials [82,83].

2.2.2. Macrophages

Macrophage modulation has been explored as a potential therapeutic option. Goren
et al. systemically administered neutralizing monoclonal antibodies anti-TNF-α and anti-
F4/80 into diabetic wound models and reported the antibodies effectively targeted and
killed pro-inflammatory wound macrophages resulting in accelerated healing [84]. Danon
et al. administered macrophages obtained from the blood of young healthy donors and
stimulated by hypo-osmotic shock, intradermally near pressure ulcer site in elderly patients
which resulted in an increased rate of healing [85]. This was further confirmed by Zuloff-
Shani et al. with intradermal injection of macrophages increasing healing in both pressure
and diabetic ulcers [86].

2.2.3. Collagenase

Collagenase belongs to the metalloproteinase family and plays an important role in the
metabolism of collagen in mammalian tissues. Skin consists of between 70–80% collagen;
thus, unsurprisingly, the action of collagenase is immensely important. Collagenases
are the only enzymes that can specifically cleave native collagen. In healthy wounds,
endogenous collagenase breaks down necrotic tissue to enable healing to occur. However,
often in non-healing wounds the underlying disease etiology such as diabetes or age may
cause impaired collagenase activity, resulting in a buildup of necrotic tissue preventing
healing from occurring [87]. Collagenase can therefore be used as a debridement agent, as
it can break down necrotic and/or fibrotic tissues within sites of tissue damage without
damaging healthy tissue, creating a more congruent wound bed for healing. Interestingly,
collagenase has also been shown to increase proliferation, angiogenesis and migration
within wounds [88].
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Collagenase Santyl® ointment (Smith & Nephew) is a preparation of enzymes includ-
ing collagenase and non-specific proteases produced by Clostridium histolyticum fermenta-
tion and is approved by the FDA for clinical use [89]. Tallis et al. showed that collagenase
ointment significantly improved the wound bed appearance and enhanced the rate of
healing [90]. Riley et al. showed in vitro that collagenase indeed does promote keratinocyte
proliferation and keratinocyte migration. Further, in vivo findings showed that collagenase
increased the rate of re-epithelization and increased wound closure rate in the mini-pig
wound model [91].

2.2.4. Placental-Derived Products

Tissue derived from the placenta contains a variety of growth factors (PDGF-BB,
TGFα, bFGF and EGF), cytokines (IL-4, IL-6, IL-8 and IL-10) and ECM components [92],
which have been shown to contribute to wound healing. This can include dehydrated
human amnion/chorion membrane (dHACM) products such as EPIFIX (MiMedx) and a
dehydrated human umbilical cord (DHUC) such as EPICORD (MiMedx). In vitro studies
have shown that dHACM can increase fibroblast migration and induce MSC migration.
This MSC migration was also seen in a murine wound model which was treated with
dHCAM [92]. As these grafts contain a complex mixture of components with biological
activity, the key factors mediating these effects are not clear. However, there is ample clinical
evidence for a positive effect on wound healing in patients [93,94] and this treatment is
recommended by The International Working Group on the Diabetic Foot [21].

2.2.5. Autologous Leucocyte/Platelet/Fibrin Patch

It has been recognized that during the initial phases of wound healing, platelets and
leucocytes are recruited to the wound site and release growth factors such as PDGF [1].
While treatment with individual growth factors has not been reported to be beneficial,
better success has been found in developing products that contain living platelets and
leucocytes as opposed to just individual growth factors. In these systems, platelets and
leucocytes are harvested from patients and placed in a fibrin membrane for use on the
patient’s wound. Encouragingly, products such as the 3C PATCH®(Reapplix) have shown
good efficacy in diabetic foot ulcers [95–97], and this treatment has also been recommended
by The International Working Group on the Diabetic Foot [21].

2.3. Pharmaceutical Drugs
2.3.1. PDGF (Becapletmin)

Multiple growth factors have been identified as being critical in wound healing,
including PDGF, EGF, FGF and TGF. However, only PDGF has been shown to augment
wound healing in vivo [98]. PDGF is predominantly synthesized by platelets and is a dimer
of A and/or B chains held together by disulfide bonds. There are three known isomers of
PDGF that have been isolated from human platelets, AA, BB and AB, the most potent of
which is BB. PDGF can bind to cells via two cell surface receptors: α-PDGF and β-PDGF.
α-PDGF is a non-specific receptor while β-PDGF specifically binds PDGF-BB. β-PDGF is
the most common receptor found in humans; as such, only PDGF-BB has been explored as
a therapeutic [98].

Becaplermin is a homodimeric protein produced from DNA technology whereby the
gene for the B chain PDGF is inserted into Saccharomyces cerevisiae. Becaplermin’s biological
activity is like endogenous PDGF-BB specifically in its ability to promote chemotactic
recruitment and proliferation of cells involved in wound repair. Becaplermin has been used
extensively in the management of diabetic foot ulceration [99] and is currently licensed as
Regranex® (Smith and Nephew) [100]. Extensive animal and human studies have been
carried out to demonstrate the efficacy of Becaplermin. Pierce et al. applied PDGF to
incision wounds in rats and found that it both accelerated wound healing and improved
the breaking strength of the wound [101]. The in vitro evidence of PDGF’s direct effect on
keratinocytes is lacking however, it has been shown to increase the rate of epithelization
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in vivo. It is thus hypothesized that PDGF indirectly affects reepithelization through the
recruitment of macrophages and fibroblasts [102]. Controversially, upon the original FDA
approval of Regranex® in 2008, it had a black box warning owing to an increased rate of
mortality from secondary malignancy [103]. However, in 2018, the black box warning was
removed after multiple studies including one by Ziyadeh et al., and showed that there
was no increased incidence of cancer or cancer mortality associated with Regranex® gel
use [104].

2.3.2. Phenytoin

Phenytoin (diphenylhydantoin) is a medication that was FDA approved in 1939 to
treat convulsive disorders, such as epilepsy and seizures. However, according to the
National Health Services (NHS), inflamed gums, specifically the development of fibrous
overgrowth of gingiva and mild skin thickening, were common side effects of the use of
phenytoin [105]. This stimulatory effect of phenytoin on connective tissues suggested its
potential for use within wound care. Phenytoin has been shown to promote wound healing
in dental extraction sockets [106] and corneal wounds [107]. Using a rat burn skin wound
model, Sayar et al. showed administration of phenytoin increased healing through the
development of vascularized, granulation tissue and increased collagen synthesis through
re-epithelization [108]. Carneiro et al. conducted a clinical trial where acute burns were
treated with topical phenytoin powder improved healing outcomes relative to Silverex,
a cream containing SSD, commonly used for burn treatment [109]. Further, Inchingolo
et al. investigated the use of topical phenytoin on bedsores by administering phenytoin-
soaked patches at 12-h intervals. The patients treated with the phenytoin patches healed
significantly quicker than those treated with water solution-soaked patches [110]. The
exact mechanism of phenytoin in wound healing is unknown; however, studies suggest
phenytoin promotes collagen deposition, decreases wound exudate and bacteria contami-
nation [111,112] and may promote fibroblast proliferation [113].

2.3.3. Vitamin A/Retinoids

Vitamin A is an essential fat-soluble dietary vitamin that is known to play a key role
in epidermal maintenance by promoting desquamation and maturation through decreased
production of keratin, keratohyalin granules and desmosomes. Within wound healing,
vitamin A is known to contribute through the stimulation of angiogenesis, epithelization,
and collagen synthesis. The pro-healing efficacy of vitamin A can rescue the antagonistic
effect of steroids upon healing. However, their mechanism of healing is unknown. Vitamin
A’s clinical use within wound care is hindered by its secondary effects. Systemic side effects
include neurological and psychiatric effects and cutaneous effects include coarse hair, dry
skin and widespread alopecia [114,115].

Owing to these side effects, retinoids were developed to combine the therapeutic
effects of vitamin A with fewer adverse events. Retinoids are synthetic and natural deriva-
tives of vitamin A. They bind to nuclear receptors on keratinocytes and regulate gene
expression. First-generation retinoids, isotretinoin, all-trans-retinoic acid (tretinoin) and 9-
cis-retinoic acid are nonaromatic compounds with modification on the polar end group and
polyene side chain of vitamin A [116,117]. Originally an acne vulgaris therapeutic, retinoids
have proven useful in preoperative facial rejuvenation and wound management [118–120].
Second-generation retinoids are monoaromatic formed by replacing the cyclic end of vita-
min A with a modified ring. The most used is acitretin, which is used to treat psoriasis and
other conditions which involve abnormal keratinization. Third-generation retinoids are
polyaromatic compounds formed by cyclization of polyene side chains. Tazarotene is used
for psoriasis and adapalene is used for acne vulgaris [118].

The evidence for the use of topical retinoids for use on wounds is conflicting. Tretinoin’s
capacity to improve wound healing is thought to be due to its ability to reduce the produc-
tion of procollagen in fibroblasts. This has been shown to be advantageous in hypertrophic
scars and keloids. However, abnormal healing has also been reported through increased
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collagen degradation. Tom et al. showed a significant increase in diabetic ulcer healing in
tretinoin-treated patients compared to placebo [121]. These findings were further supported
by Paquette et al. in patients with chronic leg ulcers from venous disease or rheumatoid
arthritis. With a short 10-minute application of 0.05% retinoic acid solution, within 7 days
granulation tissue started to appear [122]. However, several studies have shown conflict-
ing evidence against the utility of retinoids in wound healing. Watcher and Wheeland
found that tretinoin resulted in significant retardation of reepithelization [123]. Overall,
the evidence for good outcomes with retinoic acid in wounds with unfavorable baseline
conditions is positive [114].

2.3.4. Hypochlorous Acid

The immune system produces a range of ROS to protect from invading pathogens.
During neutrophil activation, respiratory bursts generate H2O2 and activated granule
enzyme myeloperoxidase converts H2O2 to hypochlorous acid (HOCl) in the presence of
Cl− and H+. HOCl causes cell death by oxidation of sulfhydryl enzymes and amino acids,
ring chlorination of amino acids, loss of intracellular contents, decreased uptake of nutrients,
inhibition of protein synthesis, decreased oxygen uptake, breaks DNA and depressed DNA
synthesis [124,125]. As such, HOCl is a known antimicrobial capable of clearing bacterial,
viral, and fungal contamination from the wound. Using an in vitro wound migration
model, Sakarya et al. found that applying an HOCl solution, as an antimicrobial agent,
in a dose-dependent manner increased keratinocyte and fibroblast migration [124]. Da
Costa et al. showed that HOCl was effective in significantly increasing wound closure in a
murine cutaneous wound model. They also showed that HOCl increased vascularization,
increased neutrophil activity in the early phase of wounding and increased collagen [126].
Further work done by Dharap et al. showed success in the clinic where patients’ ulcers
were dressed with Oxum, a super oxidized solution containing HOCl, reduced ulcer size
and inflammation [127].

2.3.5. Pentoxifylline

Pentoxifylline (PTX) is a dimethylxanthine derivative that increases cyclic adenosine
monophosphate (cAMP) levels in the smooth muscle of blood vessels resulting in improved
blood flow and oxygenation of ischemic tissues. It is also known to increase red and
white cell filterability and platelet aggregation, fibrinogen levels and decrease whole blood
viscosity [128]. This antithrombotic effect of PTX is linked to its induction of prostacy-
clin synthesis and inhibition of phosphodiesterase E enzyme. Prostacyclin is a potent
vasodilator and platelet aggregation inhibitor. Further, PTX has been shown to inhibit the
synthesis of inflammatory mediators, decrease cytokine release, suppress leukocyte func-
tion and reduce oxidative stress [129]. Velaei et al. used PTX as a treatment in a pressure
wound-induced model on rats and reported accelerated wound healing through undefined
mechanisms [130]. A study by Lim et al. tested PTX on a burn wound model, where
relative to their small sample size, they did find a benefit compared to the placebo [131].
While the experimental data were mixed, Rawlins et al. showed in a clinical study that PTX
was able to significantly improve perioral burns and improve scarring outcomes owing
to PTX’s ability to inhibit fibroblast proliferation resulting in a decrease in type I and III
collagens and glycosaminoglycans and increase collagenase activity [132]. Overall, further
investigation is needed to define the success of PTX in wound care and the mechanisms by
which it acts.

2.3.6. Metformin

Metformin is an oral diabetic medication that helps lower blood sugar levels in type
2 diabetic patients. Interestingly, metformin treatment improved wound healing in aged
rats, increasing both vascularization of the wound bed and proliferation of keratinocytes
through activation of AMP-activated protein kinase (AMPK) [133]. Metformin has also
been shown to boost M2 macrophage polarization through the induction of AMPK and
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mTOR and accelerate wound healing [134]. Further, Han et al. showed that metformin
accelerated wound healing in the murine diabetic wound model [135]. While metformin is a
promising therapeutic in diabetic patients due to its ability to treat the potential underlying
pathology, further research is needed to assess its direct effects on wound healing.

3. Conclusions and Future Perspectives

The wound environment is a complex and changing environment, which creates
unique challenges in the development of new and effective therapeutics. For example,
treatments that promote an immune response may help prevent biofilm formation but
could impede the transition from the inflammatory phase to the proliferative phase. Spatial
differences also can complicate treatment approaches, particularly in keratinocytes, which
need to migrate at the wound edges, but proliferate further away from the wound [136].
It is therefore essential to develop therapeutic strategies which allow for precise spatial
and temporal drug release. An ideal delivery system would enable maximum therapeutic
benefit by protecting the therapeutic payload from proteolysis, localizing bioavailability,
and limiting systemic uptake and distribution to enable release maintenance at a physiolog-
ically relevant dose and duration. There is a range of biomaterials that can act as delivery
vehicles including hydrogels, scaffolds and particles [137]. Hydrogels are the favored
method of drug delivery in wound care owing to their multifaceted functionality. They
provide a physical barrier between the wound and the external environment, preventing
further pathogenic contamination, they are semi-permeable, allowing vapor transmission
and oxygen and carbon dioxide exchange, and can be made of polymers that have intrinsic
antimicrobial and pro-healing properties themselves such as chitosan. Importantly, the
physical properties of hydrogels can be tuned to release the therapeutic at the optimal rate
and concentration or in response to an environmental or physiological change, such as
using H2O2 to trigger therapeutic release [138] or wound pH [139] to maximize efficacy [25].

Traditional therapeutics, such as aloe vera, have been used for centuries to treat
wounds, and several natural products, including manuka honey and birch bark extract,
are now sold commercially as a wound therapy. While progress has been made in the
development of targeted therapeutics, the mechanisms of action of many of these treatments
remain ill-defined. Contributing to the difficulty in developing new treatments is the
fact that the underlying mechanisms regulating normal wound healing are still being
elucidated (Table 1). This knowledge gap has made it difficult to pinpoint exactly what
is dysfunctional in chronic wounds and how to correct these defects to normalize the
wound environment. Compounding this problem, patients with chronic wounds often have
underlying pathologies, like diabetes, which further impairs the healing process and creates
an altered wound environment. Despite these challenges, recent technological advances in
single-cell multi-omics and spatial profiling have vastly expanded our ability to interrogate
the wound microenvironment and the dynamic interplay between cell populations during
the wound healing process. These studies will undoubtedly lead to new, mechanism-driven
treatments with the potential to attack root causes of dysfunctional wound closure and
vastly improve patient outcomes. In summary, there are multiple therapeutic options
available that stimulate wound healing to some extent, but there are substantial unmet
needs highlighting the necessity for more effective treatments to improve the quality of life
for individuals battling chronic wounds.
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Table 1. Overview of the different categories of pro-healing drugs covered in the review, the drug
name, effect on healing and commercial name.

Category Name Effect on Wound Healing Commercial Name

Natural
Products

Antibiotics - Antimicrobial Varied

Silver sulfadiazine - Antimicrobial N/A

Medicinal Honey
- Upregulate proinflammatory cytokines
- pH reduction
- Antioxidative/ROS scavenging

MediHoneyTM

Curcumin
- Anti-inflammatory
- Antioxidative/ROS scavenging
- Increases collagen synthesis and production

N/A

Aloe Vera

- Antioxidative/ROS scavenging
- Stimulate fibroblast activity and proliferation
- Anti-inflammatory
- Upregulation of white blood cells

N/A

Birch Bark - Increases keratinocyte migration Episalvan®

Human-derived
Factors

MSCs
- Immunomodulation
- Cell proliferation and differentiation
- Promote production of growth factors data

N/A

Collagenase - Promotes keratinocyte proliferation
- Promotes keratinocyte migration Santyl®

Pharmaceutical
Drugs

PDGF (Becapletmin)
- Promotes chemotactic recruitment
- Promotes cellular proliferation
- Increases macrophage and fibroblast recruitment

Regranex®

Phenytoin - Increases vascularization of granulation tissue
- Increase in collagen synthesis Dilatin

Vitamin A/
Retinoids

- Promotes angiogenesis
- Promotes epithelization
- Promotes collagen synthesis

Tretinoin

Hypochlorous Acid - Increases keratinocyte migration
- Increases vascularization N/A

Pentoxifylline - Improves blood flow and oxygenation
- Increases platelet aggregation Trental®

Metformin - Macrophage transition from M1
(pro-inflammatory) to M2 (anti-inflammatory) Metformin
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