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Abstract: Hepatocellular carcinoma (HCC) presents a significant global health challenge due to
limited early detection methods, primarily relying on conventional approaches like imaging and
alpha-fetoprotein (AFP). Although non-coding RNAs (ncRNAs) show promise as potential biomark-
ers in HCC, their true utility remains uncertain. We conducted a comprehensive review of 76 articles,
analyzing 88 circulating lncRNAs in 6426 HCC patients. However, the lack of a standardized work-
flow protocol has hampered holistic comparisons across the literature. Consequently, we herein
confined our meta-analysis to only a subset of these lncRNAs. The combined analysis of serum highly
upregulated in liver cancer (HULC) gene expression with homeobox transcript antisense intergenic RNA
(HOTAIR) and urothelial carcinoma-associated 1 (UCA1) demonstrated markedly enhanced sensitivity
and specificity in diagnostic capability compared to traditional biomarkers or other ncRNAs. These
findings could have substantial implications for the early diagnosis and tailored treatment of HCC.

Keywords: hepatocellular carcinoma; liquid biopsy; diagnostic biomarkers; long non-coding RNA

1. Introduction

Hepatocellular carcinoma (HCC) is the most common liver cancer subtype, accounting
for 75–85% of all liver malignancies. Globally, it ranks as the third leading cause of cancer-
related mortality, with approximately 900,000 new cases and 830,000 reported deaths [1].
The primary causes of HCC are chronic infection with hepatitis B virus (HBV) or hepatitis
C virus (HCV). Furthermore, the progression of this disease can be accelerated by various
risk factors, including cirrhosis, heavy alcohol consumption, aflatoxin-contaminated foods,
non-alcoholic fatty liver disease (NAFLD), and smoking [1,2]. While preventive measures
against viral infections have proven effective in reducing HCC incidence in certain regions,
high-income countries are experiencing an uptick in cancer prevalence due to factors such
as population aging, increased body weight, and diabetes [3,4].

The early detection and timely management of HCC are crucial to reduce the economic
burden of treatment and improve patient outcomes [3]. Surveillance initiatives directed at
high-risk groups have become increasingly important for this purpose [5]. Although surveil-
lance programs offer notable advantages, they require thorough assessment, weighing their
benefits against potential downsides. Non-invasive screening tools such as ultrasound
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(US) and serum biomarker alpha-fetoprotein (AFP) have been incorporated into these
programs [6]. However, their efficacy in detecting early-stage HCC is limited, particularly
with US exhibiting only 63% sensitivity, and even more challenging in patients with chronic
liver disease, i.e., cirrhosis [7]. Combining US with AFP is proposed using several screening
criteria; however, there is difficulty in AFP result interpretation itself, which is confounded
by hepatitis viral infection, in addition to the cost increment and higher number of false
positive cases [7–9]. Other than this, people with false positive results would experience
surveillance-related physical harm in diagnosis procedures, such as computed tomography
(CT), magnetic resonance imaging (MRI), and biopsies [10]. These methods have been
associated with adverse effects, including physical, financial, and psychological burdens,
on patients, as well as invasive procedures leading to potential complications [10].

Consequently, non-invasive biopsy has become an attractive choice for the early detec-
tion of cancer. Various biomarkers for liquid biopsy in HCC have been explored, includ-
ing cell-free nucleic acids (cfNAs), extracellular vesicles, and circulating tumor cells [11].
The stability, sensitivity, and ease of detection and quantification make cfNAs, such as
circulating tumor DNA (ctDNA) and non-coding RNAs (e.g., miRNAs and lncRNAs),
advantageous for certain applications like early cancer detection and monitoring [12].

LncRNAs are a group of RNA molecules comprising at least 200 nucleotides (nts)
and possessing little to no coding potential. Similar to protein coding RNAs (mRNAs),
lncRNAs are transcribed independently via RNA Polymerase II (Pol II), often undergoing
capping, splicing, and polyadenylation. While certain lncRNAs are expressed at lower
levels than mRNAs and exhibit tissue- and cell-specific expression patterns, others are
abundant and found in various cell types [13,14]. Remarkably, lncRNAs exhibit both
structural and regulatory features, even though the precise function of cell-free circulating
lncRNAs remains unclear [15,16].

Several circulating long non-coding RNAs (lncRNAs) have shown promise as novel
diagnostic markers for hepatocellular carcinoma (HCC) [17–20], but the lack of standard-
ization, validation, biological understanding, and regulatory approval pose challenges
to widespread clinical use. In this study, we conducted a systematic search and compre-
hensive analysis of the diagnostic performance of circulating lncRNAs in HCC compared
to healthy controls (HCs) or other liver diseases (LDs). To address major limitations, we
specifically identified lncRNAs that met certain criteria: their expression was measured
in the same type of body fluid, compared using the same housekeeping gene, and accom-
panied by sensitivity and specificity data to distinguish HCC from LDs. Subsequently,
we performed a meta-analysis to extract pertinent diagnostic features of these identified
circulating lncRNAs in HCC.

2. Materials and Methods

This systematic review was conducted following the recommendation of the Cochrane
Collaboration Handbook for systematic reviews of diagnostic test accuracy [21]. Our prespeci-
fied protocol has been registered at the International Prospective Register of Systematic
Reviews (PROSPERO: CRD42022363196), and the ethical exemption was approved due to
secondary data utilization by the Ethical Committee of the Faculty of Medicine, Chiang Mai
University (EXEMPTION 9255/2022, FAC-MED-2565-09255). The study was reported in
line with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA)
statement (Supplementary Table S1).

2.1. Systematic Searching and Eligible Criteria

We conducted a comprehensive search through electronic medical databases in-
cluding PubMed, EMBASE, and Scopus from their inception until 7 December 2022
with no language restriction. Search strategies and obtaining records are described in
Supplementary Tables S2–S4. Deduplication of records was performed in citation manager,
and the screening process of relevant titles and abstracts was conducted in Rayyan by
two independent authors (L.L. and L.L.P.). The remaining records were retrieved, and
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full-text articles were evaluated for eligibility (L.L. and K.J.). The inclusion criteria were
case-control or cohort studies presenting comparative data of human biospecimens ob-
tained from liquid biopsy, including peripheral blood, plasma, or serum of HCC and control
subjects. We excluded records that (i) were case series/case reports, reviews, commentaries,
letters to editor and (ii) investigated the expression in cell compartments (i.e., peripheral
blood mononucleated cells). Any discrepancies in screening processes were resolved by
discussion with the third reviewer. Reasons for exclusion of each full-text record are listed
in Supplementary Table S5.

2.2. Outcome of Interest

The expression level of circulating lncRNAs and their diagnostic performance in
discriminating HCC from liver disease (LD) patients were retrieved from a systematic
literature search. The HCC patients, with or without viral infection, could be diagnosed
based on imaging of the liver using computed tomography (CT) and/or dynamic magnetic
resonance imaging. The stage of HCC could be classified according to the Barcelona Clinic
Liver Cancer (BCLC) classification. LD group was defined as high-risk patients in whom
surveillance is recommended based on the EASL Clinical Practice Guidelines: Management
of hepatocellular carcinoma [7]. This group includes patients with liver disease with
cirrhosis and without cirrhosis but with hepatitis viral infection.

2.3. Data Extraction

Data were independently extracted by two reviewers (L.L. and K.J.). For all eligible
studies, we extracted study characteristics (i.e., authors, year of publication, study site, can-
didate lncRNAs), sample preparation (i.e., type of sample, expression level measurement
method), sample size, and participant definitions (definition of case and control groups).
We counted the frequency of lncRNAs being investigated, and those investigated in more
than three articles were further examined in detail. We extracted detailed information from
those studies, and the number of participant groups, lncRNA expression levels, housekeep-
ing genes, diagnostic performance including area under receiver operative characteristic
curves (auROCs), as well as their cut-off value, sensitivity, and specificity, were collected.
Data presented in graphs or bar charts were extracted using WebPlotDigitizer [22].

2.4. Quality Assessment

Two reviewers (L.L. and P.J.) determined the quality of studies investigated on candi-
date lncRNAs using QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic
Accuracy Studies [23]. Risk of bias was evaluated across 4 domains, which were patient
selection, index test, reference standard, and flow and timing as high risk, low risk, or un-
clear. In addition, applicability concerns were similarly assessed across the first 3 domains.
Disagreements were resolved by the third reviewer (L.L.P.) to reach a consensus.

2.5. Statistical Analysis

All statistical analyses were conducted using Stata version 16 (StataCorp, College Station,
TX, USA) and Microsoft Excel v.16.75.2 (Microsoft Corporation, Redmond, WA, USA).
Mean expression levels of candidate lncRNAs were calculated and compared between HCC
patients and healthy groups. The effect size was reported using Cohen’s d standardized
mean difference (SMD) and 95% confidence interval (CI). Meta-analysis of mean expression
level was performed using a random effects model comparing continuous variables. Het-
erogeneity was estimated based on I-square (I2) and Q-statistics. The expression differences
based on housekeeping genes were visualized, using a forest plot, as downregulated or
upregulated. We calculated true positive, false negative, true negative, and false positive
using their sample size, sensitivity, and specificity. Overall diagnostic indices (e.g., sum-
mary receiver operating characteristic (SROC) curve, pooled sensitivity and specificity,
diagnostic odds ratio) were estimated using midas command in Stata. In the case that more
than 10 studies were included in the meta-analysis, sensitivity analysis, subgroup analy-
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sis, and publication bias assessment using funnel plot and Egger’s test were conducted
as appropriate.

3. Results

This study identified 4108 records from three databases. After screening for relevant
abstracts and titles, 111 articles were obtained. Of these, we evaluated 107 retrievable full-
text studies, and 76 of them were eligible for our data synthesis (Figure 1). All exclusions
are listed in Supplementary Table S5.
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3.1. Characteristics of Eligible Studies

The study characteristics of all inclusions are listed in Supplementary Table S6. Among
76 studies, 64 (79.0%) studies were conducted in East Asian countries (China and the
Republic of Korea), 15 (18.5%) studies were conducted in Egypt, and 2 (2.5%) were con-
ducted in Italy. More than half of them (47 studies, 58.0%) utilized serum samples, and
19 studies (23.5%) used plasma. Exosomes were investigated in both serum and plasma,
accounting for seven (8.6%) and four (4.9%) studies, respectively. Whole blood samples
were examined in two (2.5%) studies, as well as saliva (2.5%).

All studies were case-control designs investigating the diagnostic potential of lncRNAs
in HCC. There was a total of 13,621 participants including 6479 cases and 7142 controls.
While cases were HCC (either with or without hepatitis viral infection), controls were
recruited as healthy volunteers, LD patients, or cirrhosis patients. There were 34 studies
(42%) comparing the expression of lncRNAs in HCC with liver diseases, whereas the others
(47 studies) compared the results with only healthy controls.

Only a few serum lncRNAs have been consistently investigated for their association
with HCC.
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From all studies included, 88 lncRNAs were identified (Supplementary Table S7), of
which only 6 lncRNAs have been investigated in more than two independent studies or
validations, which included HOTAIR, HULC, TUG1, MALAT1, MEG3, and UCA1 (hereafter
referred to as candidate lncRNAs). Data were extracted from 15 eligible studies on the
candidate lncRNAs and are presented in Table 1 and Supplementary Table S8. These
studies included 937 HCC patients and 387 LDs. The expression levels and diagnostic
performances of these lncRNAs were examined using quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR) and normalized in comparison to different types
of housekeeping genes including 5S or 18S rRNAs, β-actin, Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH), and Hydroxymethylbilane Synthase (HMBS).

Table 1. Characteristics of studies with replicated investigation on candidate lncRNAs.

First Author, Year
(Country)

House
Keeping Gene

Case/Control
Group

Sample
Size

(Case/Control)

auROC
(95% CI)

Cut-Off
Value

Sensitivity
(%)

Specificity
(%)

HOTAIR

Rhosdy F, 2020
(Egypt) [24] B-actin

HCC/LD 25/50 0.74 9.20 64.00 86.00

HCC/cirr 25/25 0.70 7.00 64.00 76.00

Cirr/non-Cirr 25/25 0.52 4.70 48.00 72.00

Shaker OG, 2020
(Egypt) [25] GAPDH HCC/HCV 50/50 0.78 3.13 80.00 68.00

El-Shendidi A., 2022
(Egypt) [26]

GAPDH
HCC stage AB/cirr 40/40 0.82

(0.73–0.89) 9.42 67.50 93.30

HCC stage
CD/HCC stage AB 40/40 0.71

(0.56–0.90) 15.45 66.00 78.00

Lou Z., 2022
(China) [27]

18S rna
HCC/HC 61/20 0.99

(0.98–1.00) 0.49 × 10−4 96.70 95.00

HCC/cirr 61/20 0.81
(0.71–0.91) 1.45 × 10−4 59.00 100.00

HULC

Xie, 2014
(China) [28] GAPDH HCC/HC 30/20 0.86 NA NA NA

Li, 2015
(China) [29] 5S rRNA HCC/HC 24/24 NA NA NA NA

Li, 2015
(China);
validation [29]

5S rRNA HCC/HC 66/24 0.78 NA NA NA

Hunag J, 2020
(China) [30]

GAPDH
HCC/HC 129/93 0.80

(0.73–0.86) NA 86.00 62.40

HCC/other 129/169 0.76
(0.70–0.81) NA 86.00 55.60

MALAT1

Li, 2015
(China) [29] 5S rRNA HCC/HC 24/24 NA NA NA NA

Huang J, 2020
(China) [30]

GAPDH
HCC/HC 129/93 0.77

(0.71–0.83) NA 59.70 80.60

HCC/other 129/169 0.73
(0.68–0.79) NA 59.70 75.70

Kim SS, 2021
(Korea) [31] HMBS HCC/HC 7/9 NA NA NA NA
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Table 1. Cont.

First Author, Year
(Country)

House
Keeping Gene

Case/Control
Group

Sample
Size

(Case/Control)

auROC
(95% CI)

Cut-Off
Value

Sensitivity
(%)

Specificity
(%)

MEG3

Li, 2015
(China) [29] 5S rRNA HCC/HC 24/24 NA NA NA NA

Dong, 2019
(China) [32] B-actin HCC/HC 54/54 NA NA NA NA

Mohammed S.R., 2022
(Egypt) [33] GAPDH HCC/HC 114/110 0.72

(0.64–0.81) 0.98 72.20 100.00

TUG1

Li, 2015
(China) [29] 5S rRNA HCC/HC 24/24 NA NA NA NA

Refai NS, 2019
(Egypt) [34] GAPDH HCC/HC 30/20 NA 20.60 93.30 100.00

Mohyeldeen M, 2020
(Egypt) [35] GAPDH

HCC/HC 40/20 0.96 40.00 90.00 92.30

HCC/HCV 40/40 0.71 25.00 75.00 64.10

UCA1

Li, 2015
(China) [29] 5S rRNA HCC/HC 24/24 NA NA NA NA

Kamel, 2016
(Egypt) [36] GAPDH HCC/HC 82/44 0.86

(0.80–0.92) 1.04 92.70 82.10

Chen, 2017
(China) [37] GAPDH HCC/HC 20/20 NA NA NA NA

Zheng, 2018
(China) [38] GAPDH

HCC/HC 105/105 0.90 1.85 73 99.00

HCC/LD 105/105 0.85 1.99 71.4 94.30

Huang J, 2020
(China) [30] GAPDH

HCC/HC 129/93 0.86
(0.81–0.91) NA 81.40 75.30

HCC/others 129/169 0.81
(0.76–0.86) NA 67.40 80.50

Abbreviation: auROC—area under receiver operating characteristics curve; BLD—benign liver disease; cirr—cirrhosis;
HCC—hepatocellular carcinoma; HC—healthy control; HCV—hepatitis C virus; IQR—interquartile range; LD—liver
disease; med—median; NA—not available; SD—standard deviation.

3.2. Quality of Evidence among Candidate lncRNAs

The quality of eligible studies was determined based on QUADAS-2 across four
risks of bias domains and three applicability concerns (Figure 2). All studies adopted a
case-control design, which is generally necessary for primary investigations into lncRNA
expression levels. However, the interpretation of the results raised some concerns. Since
the diagnostic study required measurements in all consecutive patients suspected of having
the disease to prevent potential bias, the use of a case-control design may result in an
overestimation of the outcomes [23].

Additionally, concerning the index test, none of the studies pre-specified the appro-
priate cut-off (threshold) point for diagnostic accuracy analyses. Consequently, the results
exhibited high heterogeneity and were considered data-driven analyses by the nature of
the study.

Furthermore, a few studies (13.3%) did not provide adequate diagnostic criteria for
patients with HCC and liver disease. Most healthy subjects did not undergo similar
reference tests, primarily because these tests are invasive, such as liver biopsy. Additionally,
one study (Kim SS et al., 2021) excluded certain patients from the final analysis. Notably,
seven studies (46.7%) (Xie et al., 2014; Li et al., 2015; Kamel et al., 2016; Dong et al., 2019;
Huang et al., 2020; Shaker et al., 2020; Kim et al., 2021) did not clearly specify whether the
HCC samples were collected before any treatment.



Int. J. Mol. Sci. 2024, 25, 1258 7 of 17

In terms of applicability, more than 80% of the studies provided evidence that matches
our research question across three applicability domains (Supplementary Table S8.15).
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3.3. Expression Level of Candidate lncRNAs in HCC Compared to Healthy Controls

Comparing HCC and healthy controls, circulating HOTAIR and HULC were consis-
tently upregulated regardless of the housekeeping genes used for their normalization
(Figure 3). Conversely, conflicting results were obtained for circulating MALAT1, MEG3,
TUG1, and UCA1, the expression of which in serum has been found to be either up- or
downregulated in HCC versus healthy controls, depending on the housekeeping gene used
for their normalization (Figure 3). Of these studies, no significant publication bias was
observed when Egger’s test of small study effects was performed (Figure 4; p-value, 0.208).
Nonetheless, we performed a comparative analysis of circulating UCA1 expression levels
by consolidating data from four independent studies that had normalized serum UCA1
levels to GAPDH. In addition, we calculated Cohen’s d effect size, resulting in an estimated
overall expression difference of 1.40 (95% CI, 0.70–2.09) between HCC and healthy controls
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(Figure 5). Altogether, HOTAIR, HULC, and UCA1 lncRNAs exhibited upregulation in
HCC serum compared to healthy controls when normalized against GAPDH.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 17 
 

 

TUG1, and UCA1, the expression of which in serum has been found to be either up- or 
downregulated in HCC versus healthy controls, depending on the housekeeping gene 
used for their normalization (Figure 3). Of these studies, no significant publication bias 
was observed when Egger’s test of small study effects was performed (Figure 4; p-value, 
0.208). Nonetheless, we performed a comparative analysis of circulating UCA1 expression 
levels by consolidating data from four independent studies that had normalized serum 
UCA1 levels to GAPDH. In addition, we calculated Cohen’s d effect size, resulting in an 
estimated overall expression difference of 1.40 (95% CI, 0.70–2.09) between HCC and 
healthy controls (Figure 5). Altogether, HOTAIR, HULC, and UCA1 lncRNAs exhibited 
upregulation in HCC serum compared to healthy controls when normalized against 
GAPDH. 

 

Figure 3. Expression level of candidate lncRNAs in HCC compared to healthy control. SMD—standardized
mean difference; LCI—lower bound confidence interval; UCI—upper bound confidence interval.
HOTAIR [24–27], HULC [29,30], MALAT1 [29–31], MEG3 [29,32,35], TUG1 [29,34,35], UCA1 [29,30,36–38].



Int. J. Mol. Sci. 2024, 25, 1258 9 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 17 
 

 

Figure 3. Expression level of candidate lncRNAs in HCC compared to healthy control. SMD—stand-
ardized mean difference; LCI—lower bound confidence interval; UCI—upper bound confidence in-
terval. HOTAIR [24–27], HULC [29,30], MALAT1 [29–31], MEG3 [29,32,35], TUG1 [29,34,35], UCA1 
[29,30,36–38]. 

 
Figure 4. Funnel plot for assessment of publication bias. 

 
Figure 5. Meta-analysis of UCA1 expression level [30,36–38]. The standardized mean difference 
(SMD) was calculated from expression level of UCA1 in patients with HCC compared to healthy 
control. Blue boxes indicate point estimation and the whisker represented 95% confident interval. 
Green diamond represents pooled effect from four studies and red line refers to no difference in 
expression level. 

3.4. Diagnostic Performance to Discriminate HCC from Liver Diseases 
While a screening test is used to detect conditions in healthy individuals, a diagnostic 

test is designed to confirm or rule out the health condition of patients at high risk or hav-
ing signs of symptoms. Thus, we further investigated the discriminative ability of 
lncRNAs in HCC compared to LD patients, in whom surveillance is recommended. We 
extracted the diagnostic performance of serum HOTAIR, HULC, and UCA1 that contained 
the most similar measurement condition in HCC compared to patients having LDs. Con-
sequently, the results determined under GAPDH normalization were extracted (Table 2). 

Figure 4. Funnel plot for assessment of publication bias.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 17 
 

 

Figure 3. Expression level of candidate lncRNAs in HCC compared to healthy control. SMD—stand-
ardized mean difference; LCI—lower bound confidence interval; UCI—upper bound confidence in-
terval. HOTAIR [24–27], HULC [29,30], MALAT1 [29–31], MEG3 [29,32,35], TUG1 [29,34,35], UCA1 
[29,30,36–38]. 

 
Figure 4. Funnel plot for assessment of publication bias. 

 
Figure 5. Meta-analysis of UCA1 expression level [30,36–38]. The standardized mean difference 
(SMD) was calculated from expression level of UCA1 in patients with HCC compared to healthy 
control. Blue boxes indicate point estimation and the whisker represented 95% confident interval. 
Green diamond represents pooled effect from four studies and red line refers to no difference in 
expression level. 

3.4. Diagnostic Performance to Discriminate HCC from Liver Diseases 
While a screening test is used to detect conditions in healthy individuals, a diagnostic 

test is designed to confirm or rule out the health condition of patients at high risk or hav-
ing signs of symptoms. Thus, we further investigated the discriminative ability of 
lncRNAs in HCC compared to LD patients, in whom surveillance is recommended. We 
extracted the diagnostic performance of serum HOTAIR, HULC, and UCA1 that contained 
the most similar measurement condition in HCC compared to patients having LDs. Con-
sequently, the results determined under GAPDH normalization were extracted (Table 2). 

Figure 5. Meta-analysis of UCA1 expression level [30,36–38]. The standardized mean difference
(SMD) was calculated from expression level of UCA1 in patients with HCC compared to healthy
control. Blue boxes indicate point estimation and the whisker represented 95% confident interval.
Green diamond represents pooled effect from four studies and red line refers to no difference in
expression level.

3.4. Diagnostic Performance to Discriminate HCC from Liver Diseases

While a screening test is used to detect conditions in healthy individuals, a diagnostic
test is designed to confirm or rule out the health condition of patients at high risk or having
signs of symptoms. Thus, we further investigated the discriminative ability of lncRNAs
in HCC compared to LD patients, in whom surveillance is recommended. We extracted
the diagnostic performance of serum HOTAIR, HULC, and UCA1 that contained the most
similar measurement condition in HCC compared to patients having LDs. Consequently,
the results determined under GAPDH normalization were extracted (Table 2). For these
four studies, 271 LD patients from Chinese and Egyptian backgrounds were all defined
as having chronic HBV infection, cirrhosis, or fatty liver disease. The performance for
each study and the pooled performance of serum HOTAIR, HULC, and UCA1 are shown
in Figure 5. Notably, serum HULC [30] demonstrated the best performance, while serum



Int. J. Mol. Sci. 2024, 25, 1258 10 of 17

HOTAIR and UCA1 showed comparable results. When considering the overall estimates
for serum HULC [30] HOTAIR [25,26], and UCA1 [30,38], they collectively exhibit excellent
discrimination capabilities between HCC and LD patients (with an area under the SROC
curve of 86%; 95% CI, 83–89%). Their sensitivity is approximately 75% (95% CI, 67–82%),
and their specificity is 87% (95% CI, 83–89%). The diagnostic odds ratio (DOR) stands at
20 (95% CI, 10–42), albeit with a notable heterogeneity of 81% (I2 81%; 95% CI, 60–100)
(Figure 6). These data suggest that a combinatorial gene expression profiling of serum
HULC, UCA1, and HOTAIR lncRNAs could provide excellent diagnostic performance to
differentiate hepatocellular carcinoma from LD.
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Table 2. Diagnostic indices extracted from candidate lncRNAs for discrimination of HCC and liver
disease patients.

Study
No. Author, Year lncRNA

HCC
Case (n)

LD
(n)

Diagnostic Indices

TP FN TN FP

1 Shaker, 2020 [25] HOTAIR 50 50 40 10 34 16

2 El-Shendidi, 2022 [26] HOTAIR 40 40 27 13 37 3

3 Zheng, 2018 [38] UCA1 105 105 75 30 100 5

4 Huang, 2020 [30] UCA1 129 76 87 42 61 15

5 Huang, 2020 [30] HULC 129 76 111 18 66 10
Abbreviation: FN—false negative; FP—false positive; HCC—hepatocellular carcinoma; LD—liver diseases;
TN—true negative; TP—true positive.
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4. Discussion

The early diagnosis of hepatocellular carcinoma (HCC) has been a subject of intense
investigation, with recent studies emphasizing the effectiveness of combining multiple
biomarkers. These studies have explored the combination of alpha-fetoprotein (AFP),
alongside other biomarkers such as Des-γ-carboxy-prothrombin (DCP), AFP-L3 isoform,
serum alanine aminotransferase, serum alkaline phosphatase measurements, and relevant
clinical factors like age and sex. These elements are used to construct statistical models,
leading to the development of various diagnostic tools, including the GALAD score [39,40],
Doylestown algorithm [41], and HES algorithm [42]. More recently, alternative strategies
have been considered, involving the use of circulating nucleic acid biomarkers such as
miRNAs. However, a valid tool for the early diagnosis of HCC is still lacking.

Our results demonstrated the diagnostic performance of a few circulating lncRNAs as
potential non-invasive biomarkers. Notably, HULC, HOTAIR, and UCA1 showed promis-
ing diagnostic sensitivity and specificity, potentially impacting early HCC diagnosis and
treatment. Notably, the AUC of the SROC curve from the pooled studies presented here is
higher than that of circulating miRNAs 141 and the 200a family, which have been recently
proposed as novel liquid biopsy diagnostic markers to distinguish HCC from LDs (with
AUC values of 0.75 and 0.73, respectively) [43]. Given these advancements, it is of particular
interest to assess the performance of a panel of dysregulated serum long non-coding RNAs
(lncRNAs) including serum HULC, HOTAIR, and UCA1 in conjunction with statistical
models like the GALAD model.

Cell-free nucleic acids are fragments of DNA or RNA that are likely released into
the bloodstream by tumor cells [17]. Among these, long non-coding RNAs (lncRNAs)
represent the most abundant group and are remarkably resilient to degradation caused by
repetitive freeze–thaw cycles, prolonged exposure to 45 ◦C, and even room-temperature
conditions [44,45]. While the precise role of circulating lncRNAs remains unclear, they are
widely recognized as crucial regulators of gene expression.

For example, HULC, which is specifically associated with HCC, is known to enhance
the expression of the HMGA2 oncogene, stabilize the COX-2 protein, and upregulate
sphingosine kinase 1 (SPHK1) [46–49]. On the other hand, HOTAIR and UCA1 play
significant roles in cancer development and progression, primarily through epigenetic
mechanisms like miRNA sponging or by recruiting specific chromatin remodelers [50,51].

Altogether, HULC, HOTAIR, and UCA1 are implicated in diverse processes linked
to carcinogenesis, impacting cell mobility, proliferation, apoptosis, invasion, aggression,
and metastasis. However, the physiological or disease mechanisms of their circulating
forms remain unclear. Nevertheless, they remain subjects of significant interest in cancer
research and hold potential as targets for therapeutic interventions aimed at impeding
cancer development and improving patient outcomes.

4.1. Study Limitations

Our study presents an updated panel of circulating lncRNAs that hold promise for
further implementation in clinical practice for the early diagnosis of HCC. However, it is
important to acknowledge a few limitations. Initially, only a limited number of lncRNA
types were included from the pool of 88 identified lncRNAs. This decision was influenced
by the scarcity of comprehensive information available for an in-depth qualitative synthesis.
As a result, the capacity to perform subgroup analyses considering various clinical charac-
teristics, such as age, gender, tumor stage, and lymphatic metastasis, was restricted. These
factors could potentially contribute to between-study variations. Therefore, to establish
the comprehensive diagnostic utility of lncRNAs in HCC, it is imperative to await further
relevant studies and engage in more extensive data analysis.

Furthermore, the risk of bias assessment for diagnostic studies (QUADAS-2) was
originally devised with a focus on clinical diagnostic investigations, prioritizing cross-
sectional populations and rigorous index and reference tests. Nonetheless, it is worth
noting that all the molecular studies included in our analysis utilized a case-control design
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to examine differential expression levels and conduct additional performance analyses.
Although the application of this tool was not entirely straightforward and aligned with the
nature of molecular studies, it is recommended that future research endeavors consider
aligning their study designs with the recommended procedures for diagnostic studies.

Additionally, the summary receiver operating characteristic (SROC) analysis was
conducted individually for various lncRNAs, each with its distinct cut-off point, elucidating
the diagnostic performance of each lncRNA as well as the collective performance of the
three selected lncRNAs. Consequently, drawing comprehensive overarching conclusions
from this array of diverse measurements is not practically feasible. Nevertheless, these
outcomes do indicate an encouraging trend toward the utilization of lncRNAs as potential
diagnostic biomarkers.

Fourthly, it is noteworthy that a majority of the studies were carried out within
Asian populations, while only a limited number of European patients were investigated.
Although this may introduce complexities in terms of data generalization, it is important
to highlight that our study offers valuable insights into population-specific patterns of
lncRNA expression.

4.2. Implications and Future Research

Despite the limitations and challenges inherent in the current research, our findings
suggest that specific serum lncRNAs, notably HULC, HOTAIR, and UCA1, exhibit promising
potential as diagnostic biomarkers for HCC. These lncRNAs display abnormal upregulation
in HCC patients, indicating their capacity to distinguish HCC from other conditions.

Future research endeavors in this field should concentrate on several critical areas.
First and foremost, validation in larger and more diverse patient cohorts is imperative
to confirm the diagnostic potential of these lncRNAs across various populations. This
validation process will enhance the reliability and applicability of these biomarkers.

Furthermore, the development of a standardized workflow protocol for lncRNA
analysis is essential. This protocol will facilitate comprehensive comparisons across studies,
ensuring consistency and reliability in future research endeavors. For instance, adopting a
cross-sectional study design that targets individuals scheduled for diagnosis could yield
valuable insights. This approach should focus on a population at high risk of HCC,
including those with abnormal AFP levels, hepatitis virus infections, chronic liver disease,
or presenting symptoms suggestive of undiagnosed HCC. Conducting rigorous exploratory
analyses will pave the way for robust findings. To bolster the strength of these findings, it
is essential to validate the results in an external population, establishing predefined cut-off
points for diagnosis.

While a diagnostic marker’s specificity, sensitivity, and clinical validation are pivotal
factors, comprehending the biological roles of circulating lncRNAs can offer valuable
context and insights. This biological understanding can assist researchers in selecting
and validating the most suitable lncRNAs for diagnostic purposes, thus enhancing the
overall effectiveness of clinical diagnostic tools. Currently, some circulating long RNAs
have shown stability in blood and diagnostic potential in cancer management. However,
we still lack a clear understanding of how these circulating RNAs maintain stability in
RNase-rich blood or their specific functions in body fluids. To bridge these knowledge
gaps, further studies are essential to uncover their functional roles.

5. Conclusions

To date, long non-coding RNAs (lncRNAs) have garnered growing attention as poten-
tial diagnostic markers for hepatocellular carcinoma (HCC). Through our meta-analysis,
we have observed elevated serum levels of HULC, HOTAIR, and UCA1 in HCC patients,
indicating that these lncRNAs, when combined with other non-invasive biomarkers, could
constitute an enhanced tool for early HCC diagnosis. However, further validation in
larger patient cohorts is necessary to assess their potential utility as novel biomarkers in
clinical practice.
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