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Abstract: SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known
proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository
provides an even broader range of computationally translated proteins and serves, for example, to aid
with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database.
We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and
murines based on transcript reconstruction, sequence annotation and detection at the transcriptome
and proteome levels. In this release, the annotation data used in the reconstruction of transcripts
based on the methodology of ternary matrices were acquired from new databases such as Ensembl,
UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts
predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository
and its applications represent a valuable resource for the proteogenomics community.

Keywords: proteogenomics; transcriptome-informed protein databases; proteomics

1. Introduction

Accompanying the rapid development of genomic technologies, protein high-
throughput sequencing by mass spectrometry has made it possible to generate a continu-
ous and large volume of data, fostering the development of new approaches to integrate
and extract information from these data [1–4]. Proteogenomics integrates genomics, tran-
scriptomics, and proteomics data to generate customized protein sequence repositories.
Proteogenomics repositories can be tailored toward different conditions, such as samples,
individuals, and habitats, based on the studied transcriptome, proteome, and genome
information [1,2]. These customized databases are then used for mass spectrometry data
searching, enabling the detection of unique peptides in each sample. This strategy may lead
to a deeper understanding of several molecular processes such as gene expression, alterna-
tive splicing (AS), and protein synthesis. Moreover, the use of customized proteogenomics
databases may improve the characterization accuracy of proteoforms and proteotypic
peptides that are usually discarded when reference databases are used to analyze specific
samples [5–7]. In short, customized proteogenomic databases open new opportunities for
research in less explored areas.

One such area is AS, a molecular mechanism by which a gene can generate multiple
transcripts, leading to more than one proteoform. Proteoforms are defined as different
proteins encoded by the same gene, differing due to AS, nonsynonymous polymorphisms
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or post-translational modifications [8–12]. In humans, AS occurs in more than 90% of
genes and constitutes an essential process of gene regulation [13–17]. AS is a conserved
mechanism across species, and homologous genes in different species may be spliced in
different ways, resulting in different proteins [18–20]. These genes may be classified as
orthologous if they are shared by a species group, have a common ancestor, and show simi-
lar functions [21]. The similarity of the proteome of species whose genes are substantially
similar, as is the case for humans and mice, has been evaluated in the context of AS [18,21].

AS is a molecular mechanism that strongly impacts the proteome and should not
be overlooked when building optimized sequence repositories [18,20,22]. Errors and
aberrations in AS may result in the development of numerous human diseases, including
cancer, Alzheimer’s disease, Duchenne muscular dystrophy, and lateral amyotrophic
sclerosis [13–15,23,24]. Faulty AS can result in the production of a truncated protein
through the introduction of a premature termination code (PTC) in transcripts [25,26].
However, if this PTC is located between 50–55 nucleotides upstream of the last exon–exon
junction, the transcript is likely to be degraded by the nonsense-mediated decay (NMD)
pathway [27].

Most experimentally obtained peptides are associated with known protein sequences.
Alternative transcripts may produce different polypeptide sequences, which may be absent
from current reference proteome sequence repositories [12,28]. Therefore, the validation
of transcripts and proteoforms created by AS is of utmost importance. Nevertheless, this
remains challenging due to the need to detect proteotypic, proteoform-specific peptides by
mass spectrometry [7,12,28–30]. To solve this issue efficiently, several customized databases
of protein sequences and analysis pipelines have been developed, as available databases
do not currently contain this information (e.g., Ensembl, RefSeq, UniProtKB/SwissProt,
UniProtKB/TrEMBL, and NeXtProt) [31–42].

In this study, we present the latest release of SpliceProt [29], a customized proteoge-
nomics repository focused on AS events using sequence and annotation data from En-
sembl [28], UniProtKB/SwissProt [30,31], and APPRIS [32–34] to reconstruct transcript
structures. Additionally, this new version includes the purging of computationally pre-
dicted NMD events [28,30–34]. Using our customized database, we improved proteo-
typic peptide identification through shotgun proteomics datasets from healthy human
(Homo sapiens), mouse (Mus musculus), and rat (Rattus norvegicus) livers. We demon-
strate the applications of SpliceProt 2.0 to explore proteotypic peptides, RNA-Seq data,
and orthologous proteoforms. The complete pipeline and datasets are freely available at
http://spliceprot.icc.fiocruz.br/ (accessed on 2 January 2024) [35].

2. Results
2.1. SpliceProt 2.0 Sequence Diversity at Transcript and Protein Levels

Table 1 describes the total amount of transcript variants identified by applying the
ternary matrices methodology to transcript reconstruction, the number of variants selected
for translation, and the polypeptide sequences obtained after in silico translation of all
variants for human, mouse, and rat datasets.

Table 1. Total amount of transcript variants identified by ternary matrices methodology and of
transcripts selected for computational protein sequence translation.

Human Mouse Rat

Number of transcripts 242,578 135,694 37,453
Number of transcripts selected for

computational translation 203,709 115,321 34,868

Number of polypeptide sequences
obtained after computational translation 120,964 74,702 24,739

http://spliceprot.icc.fiocruz.br/
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2.2. Purging SpliceProt 2.0 Protein Sequences Predicted to Be Targeted for the NMD Pathway and
First Methionine Sequence Selection

The NMD Classifier [36] predicted PTC-containing transcripts as targets of the NMD
pathway in our dataset. The NMD Classifier also analyzes the possible AS event related
to the insertion of PTC in the transcript (Figure 1). The NMD Classifier identified more
NMD targets for the human dataset, with 16.50% NMD targets from the entire dataset,
followed by 10.95% for mice and 1.45% for rats. We constructed SpliceProt 2.0 after purging
proteins whose transcripts were predicted to be an NMD pathway target for each species.
These datasets are available at http://spliceprot.icc.fiocruz.br/download.php (accessed on
2 January 2024).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 27 
 

 

Table 1. Total amount of transcript variants identified by ternary matrices methodology and of 
transcripts selected for computational protein sequence translation. 

 Human Mouse Rat 
Number of transcripts 242,578 135,694 37,453 

Number of transcripts selected for 
computational translation 203,709 115,321 34,868 

Number of polypeptide sequences obtained 
after computational translation 

120,964 74,702 24,739 

2.2. Purging SpliceProt 2.0 Protein Sequences Predicted to Be Targeted for the NMD Pathway 
and First Methionine Sequence Selection 

The NMD Classifier [36] predicted PTC-containing transcripts as targets of the NMD 
pathway in our dataset. The NMD Classifier also analyzes the possible AS event related 
to the insertion of PTC in the transcript (Figure 1). The NMD Classifier identified more 
NMD targets for the human dataset, with 16.50% NMD targets from the entire dataset, 
followed by 10.95% for mice and 1.45% for rats. We constructed SpliceProt 2.0 after 
purging proteins whose transcripts were predicted to be an NMD pathway target for each 
species. These datasets are available at http://spliceprot.icc.fiocruz.br/download.php 
(accessed on 2 January 2024). 

 
Figure 1. Descriptive statistics for SpliceProt2.0 predicted NMD-targets: (A) number of transcripts 
predicted as NMD targets and number of genes with at least one transcript predicted as an NMD 
target for each species at SpliceProt 2.0; (B) information about AS events associated with PTC 
insertion at NMD targets in each species. A3SS—alternative 3′splice site, A5SS—alternative 5′ splice 
site, A3SS + A5SS—“both sites”, NMD_in—exon inclusion-caused, NMD_ex—exon exclusion-
caused, multi_NMD_in—multiple exon inclusion-caused, multi_NMD_ex—multiple exon 
exclusion-caused, complex—“complex event”, IntronRetention—retention of an intron region and 
UTR-related—event associated with UTRs regions. 

In the development of SpliceProt’s latest release, we used a set of computational 
approaches to hypothetically translate all mRNA sequences (detailed description 
available in the Materials and Methods section). Following the in silico translation step of 
the transcripts, one method for evaluating the translation performed by the Transeq tool 
from the EMBOSS package (version 6.0) [37] based on ternary matrices was to compare 
such sequences with UniProtKB/SwissProt sequences. The results of this comparison 

Figure 1. Descriptive statistics for SpliceProt2.0 predicted NMD-targets: (A) number of transcripts
predicted as NMD targets and number of genes with at least one transcript predicted as an NMD
target for each species at SpliceProt 2.0; (B) information about AS events associated with PTC insertion
at NMD targets in each species. A3SS—alternative 3′ splice site, A5SS—alternative 5′ splice site,
A3SS + A5SS—“both sites”, NMD_in—exon inclusion-caused, NMD_ex—exon exclusion-caused,
multi_NMD_in—multiple exon inclusion-caused, multi_NMD_ex—multiple exon exclusion-caused,
complex—“complex event”, IntronRetention—retention of an intron region and UTR-related—event
associated with UTRs regions.

In the development of SpliceProt’s latest release, we used a set of computational
approaches to hypothetically translate all mRNA sequences (detailed description available
in the Section 4). Following the in silico translation step of the transcripts, one method
for evaluating the translation performed by the Transeq tool from the EMBOSS package
(version 6.0) [37] based on ternary matrices was to compare such sequences with UniPro-
tKB/SwissProt sequences. The results of this comparison revealed discrepancies in the
initial methionine proposed in a subset of proteins that did not match with information from
UniProtKB/SwissProt. Given this, and with the aim of being as conservative as possible in
the choice of the initial methionine, considering its importance in translation, all SpliceProt
sequences having corresponding Ensembl transcript IDs with the annotation made avail-
able in UniProtKB were modified to match the UniProtKB/SwissProt counterparts. This
led to the modification of 2021, 813, and 114 sequences for human, mouse, and rat proteins,
respectively, ensuring that the first methionine residue in SpliceProt, release 2.0 accurately
reflected the UniProtKB/SwissProt data (Supplementary File S11). Regarding the possible
cause of these differences in the initial methionine, the very approach employed by Transeq
in translating the three possible reading frames was a contributing factor.

http://spliceprot.icc.fiocruz.br/download.php
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2.3. The SpliceProt Release 2.0

This SpliceProt release 2.0 was generated using the Ensembl dataset aiming for an
increase in the transcripts hypothetically translated and to permit the study of orthologous
proteins among humans and two additional species, Rattus norvegicus and Mus musculus.
The current version of SpliceProt relies on annotation data from Ensembl and APPRIS to
reconstruct transcript structures, apply the removal of transcripts computationally pre-
dicted as susceptible to NMD events, and present a version for use in shotgun proteomics
data analysis. The Splice 2.0 version for PSM search is the most recommended file for use
as database search input files in shotgun proteomic data analysis, as the following modi-
fications have been implemented in this dataset: (i) removal of entries whose sequences
containing fewer than ten amino acids; (ii) labeling of sequences from SpliceProt 2.0 identi-
cal to those previously made available and manually annotated by UniProtKB/SwissProt;
(iii) the marking and separation of sequences classified as canonical and variants based
on the longest sequence; and (iv) the removal of sequences classified as susceptible to
degradation through the NMD pathway by the NMD Classifier tool. Table 2 shows the
number of protein sequences in each species classified as canonical and non-canonical
according to the criteria presented in Section 4.1.

Table 2. Number of canonical and non-canonical proteins in the SpliceProt release 2.0.

Canonical Proteins Non-Canonical Proteins Total Proteins

Human 30,976 55,616 86,592
Mouse 25,138 37,301 61,439

Rat 16,136 7251 23,387

With a pairwise global sequence alignment approach, we compared the protein se-
quences generated in the current release of SpliceProt (2.0) with the protein sequences re-
trieved from OpenProt release 1.6 [38] and UniProtKB/SwissProt, as these are the databases
most often used in proteogenomics analyses. We used the Ensembl transcript as the track-
ing identifier to point out protein sequences that were common to the various databases.
Pairs of proteins sequences from distinct databases with no Ensembl ID correspondence
were not compared.

The pairwise global sequence alignment comparison of SpliceProt 2.0 and SwissProt
showed the highest identity levels among the protein sequences, followed by OpenProt 1.6
against SwissProt, and SpliceProt 2.0 against OpenProt 1.6 (Table 3 and Supplementary File
S1 Table S3). The OpenProt is a proteogenomics repository that also employs the Transeq
tool for the hypothetical translation of transcripts provided in other biological databases.
However, OpenProt applies a cutoff value of only 30 codons to define the start of an open
reading frame (ORF), in addition to considering multiple ORFs per transcript. Such a
characteristic would reduce the identity sequence values in pairwise comparisons.

Table 3. Mean and standard deviation from approximate identity values obtained in the pairwise
global alignment of protein sequences retrieved from SpliceProt 2.0, SwissProt and OpenProt 1.6.

Species
SpliceProt 2.0 against SwissProt OpenProt 1.6 against SwissProt SpliceProt 2.0 against OpenProt 1.6

Mean SD Mean SD Mean SD

Human 99.9 0.017 96.2 15.2 79.9 32.6
Mouse 99.9 0.018 98.2 9.36 87.3 26.0

Rat 99.9 0.009 96.2 15.2 97.0 11.0

To investigate why the comparison between SpliceProt 2.0 and OpenProt yielded so
many alignments with identities below 20% (Supplementary File S1 Figure S2), we divided
the dataset into four groups using the categorization defined by OpenProt as follows: the
RefProt or reference proteins (known proteins annotated in RefSeq, Ensembl, and UniProtKB)
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were divided into two groups. The first group comprised all proteins annotated solely in
RefSeq, while the second group included all proteins annotated by UniProtKB. The third
group consisted of proteins categorized as New Isoforms (unannotated proteins with a sig-
nificant sequence identity to a RefProt from the same gene). The fourth group comprised
proteins categorized as AltProts (unannotated proteins with no significant identity to a Ref-
Prot from the same gene). An additional round of pairwise alignments was then performed
to investigate this pattern (Supplementary File S1 Figures S3–S6). The results showed that
most of the alignments with low identity and similarity values occurred when comparing
sequences predicted by OpenProt as new Isoforms (Supplementary File S1 Figure S3), mainly
in the human datasets and in those from the RefSeq database in the human and mouse
datasets (Supplementary File S1 Figure S4). As expected for the proteins already annotated
by UniProtKB/SwissProt, called Reference proteins by the OpenProt release 1.6, most align-
ments presented an identity value higher than the identity mean in both analyzed organisms
(Supplementary File S1 Figure S5). Transcripts without correspondence using the Ensembl ID
between the two databases (Supplementary File S2) were observed as classified and annotated
by different consortia, such as RefSeq, UniProtKB/SwissProt, and OpenProt (categorized as
new Isoforms and Alternative Proteins) (see Supplementary File S1 Figure S6).

We also compared the SpliceProt 2.0 and OpenProt release 1.6 sequences to those
provided by UniProtKB/SwissProt. The UniProtKB/SwissProt dataset was chosen as the
reference in this analysis because its protein sequences are manually curated by experts [31].
Pairwise global sequence alignment revealed that SpliceProt 2.0 and SwissProt share 41,806,
22,651 and 4981 identical sequences for human, mouse, and rat, respectively (Supplemen-
tary File S1 Tables S4 and S5). Pairwise global sequence alignment revealed that OpenProt
1.6 and SwissProt share 35,811, 20,942 and 7302 identical sequences for human, mouse, and
rat, respectively (Supplementary File S1 Tables S4 and S5).

The lower percentage of matches between SpliceProt 2.0 and the UniProtKB/SwissProt
rat datasets is due to a bias in the number of sequences generated when the Ensembl
version 100 dataset is used as input in the analysis. A set of the proteins and mRNAs anno-
tated and revised by UniProtKB/SwissProt does not have a transcript with an equivalent
Ensembl identifier. This reduced the number of possible comparisons among Ensembl
transcripts [39] computationally translated in SpliceProt 2.0 and protein sequences from
UniProtKB/SwissProt. Only 5161 identifiers had at least one ID directly associated between
Ensembl [39] and UniProtKB/SwissProt annotation files.

The OpenProt is a proteogenomics repository that also employs the Transeq tool for
the hypothetical translation of transcripts provided in other biological databases. However,
they apply a cutoff value of only 30 codons to define the start of an open reading frame
(ORF), in addition to considering multiple ORFs per transcript.

Although UniProtKB/TrEMBL contains significant information for proteogenomics
analyses, we decided not to use UniProtKB/TrEMBL in these sequence comparisons at the
global alignment level because not all UniProtKB/TrEMBL entries have a corresponding
Ensembl transcript or gene identifier. The high levels of redundancies and errors in the
annotations compromise the number of possible comparisons between repositories.

2.4. SpliceProt 2.0 Performance against Other Databases for Proteotypic Peptide Detection

The association of protein spectra to known protein sequences is still a challenge in the
data analysis of shotgun proteomics. Transcriptomics data is currently accepted to validate
findings obtained in PSM searches in shotgun proteomics, but its application is restricted
to studies with both transcriptome and proteome data generated from the same organ or
tissue. Another important application of transcriptomics is the generation of the repository
of protein sequences, which will be used as a search file to generate the peptide-spectrum
matches (PSMs) [43,44]. In mammals, the liver is the key organ in body homeostasis, and
the role of AS in liver diseases and in healthy livers is poorly understood [45,46]. Therefore,
we decided to use the liver as a model to investigate the PSM search performance in publicly
available shotgun proteomics using the following databases: SpliceProt 2.0 version for PSM



Int. J. Mol. Sci. 2024, 25, 1183 6 of 24

for the search, OpenProt release 1.6 [38,47] UniProtKB/SwissProt, and UniProtKB/TrEMBL.
In Table 4, we present the contribution of each database in classical shotgun proteomics
based on the criteria of Delta CN > 0.05 and primary score ≥ 2 [30,31,38,46,48,49].

Table 4. Number of peptides and proteins identified using liver shotgun proteomics studies [45,46]
in each species for each database.

SpliceProt 2.0 for
PSM Search OpenProt 1.6 UniProtKB/

SwissProt
UniProtKB/

TrEMBL

Human
Peptides 13,503 905 15,090 11,351
Proteins 1805 451 1986 1243

Mouse
Peptides 10,375 437 9944 9560
Proteins 1793 237 2347 1405

Rat
Peptides 20,400 122 13,504 15,021
Proteins 4032 72 3212 3710

Compared to OpenProt 1.6 [38], SpliceProt 2.0 generated 2 and 5 proteotypic peptides
in common and 19 and 4393 unique proteotypic peptides using the human and rat reposi-
tories, respectively (Figure 2). No peptides in common were observed among the mouse
repositories (Figure 2b). Peptides were considered proteotypic in this analysis if they were
exclusive to a protein sequence in the database and identified strictly with SpliceProt 2.0.
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Figure 2. Venn diagram representing the comparison of proteotypic peptides identified with the
PatternLab V tool using the SpliceProt 2.0 version for the PSM search (SpliceProt 2.0) and OpenProt
1.6 repositories: (a) human repositories comparison; (b) mouse repositories comparison; and (c) rat
repositories comparison.

Our analyses identified 21, 83, and 4393 unique proteotypic peptides that are not
present in UniProtKB/SwissProt for human, mouse, and rat MS datasets, respectively
(Figure 3).
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Compared to UniProtKB/TrEMBL, 588, 1174, and 4393 proteotypic peptides were
identified exclusively by SpliceProt 2.0 version for PSM search in human, mouse, and rat
repositories, respectively (Figure 4).
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Taken together, our results show that the number of redundant peptides between
SpliceProt 2.0 and the other databases is always below five, especially for mice and rats
(Figures 2–4; Supplementary Files S3–S5).

Identical proteotypic peptides identified among humans, mice, and rats were also
compared. This comparison showed five proteotypic peptides in common among the
results obtained (Figure 5).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 5. Venn diagram representing the comparison of identical proteotypic peptides identified by 
PatternLab V tool using SpliceProt 2.0 repositories for humans, mice, and rats. 

2.5. Identification of Orthologous Proteoforms 
The role played by AS events in evolution has not been fully clarified, and this has 

motivated our search for AS proteoforms shared between humans, mice, and rats [49]. The 
search for orthologous proteoforms between humans, mice, and rats identified 23,458 
orthologous proteins between humans and mice, 13,633 between humans and rats, and 
13,292 between mice and rats. Of these, 12,257 are orthologous between humans, mice, 
and rats (Table 5) (Supplementary File 5). 

Table 5. Number of orthologous proteins identified. 

 Datasets Proteins 
Total human 120,932 

 mouse 74,694 
 rat  24,739 

Orthologous human/mouse 23,458 
 human/rat 13,633 
 rat/mouse 13,292 

Triads (perfect match) human/mouse/rat 12,257 

A range of 14 to 18% of the proteoforms identified as being orthologous between (1) 
humans and mice, (2) mouse and rat, and (3) human and rat are identical. The remaining 
proteoforms (82–86%), also classified as orthologous by our approach, have pairwise 
identity scores between 60 and 99.9% (Figure 6). The number of identifications made 
separately by the Needle [37] and RBH [50] tools showed that the step performed by RBH 
resulted in the identification of two to 10 times more pairs of identical proteins than the 
Needle tool, suggesting that combining the tools considerably increases the number of 
predictions. For identifications with identity scores between 60 and 99.9%, the Needle tool 
[37] identified a larger number of pairs (Table 6). 

Figure 5. Venn diagram representing the comparison of identical proteotypic peptides identified by
PatternLab V tool using SpliceProt 2.0 repositories for humans, mice, and rats.

2.5. Identification of Orthologous Proteoforms

The role played by AS events in evolution has not been fully clarified, and this has
motivated our search for AS proteoforms shared between humans, mice, and rats [49]. The
search for orthologous proteoforms between humans, mice, and rats identified
23,458 orthologous proteins between humans and mice, 13,633 between humans and
rats, and 13,292 between mice and rats. Of these, 12,257 are orthologous between humans,
mice, and rats (Table 5) (Supplementary File S5).
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Table 5. Number of orthologous proteins identified.

Datasets Proteins

Total human 120,932
mouse 74,694

rat 24,739
Orthologous human/mouse 23,458

human/rat 13,633
rat/mouse 13,292

Triads (perfect match) human/mouse/rat 12,257

A range of 14 to 18% of the proteoforms identified as being orthologous between (1)
humans and mice, (2) mouse and rat, and (3) human and rat are identical. The remaining
proteoforms (82–86%), also classified as orthologous by our approach, have pairwise
identity scores between 60 and 99.9% (Figure 6). The number of identifications made
separately by the Needle [37] and RBH [50] tools showed that the step performed by RBH
resulted in the identification of two to 10 times more pairs of identical proteins than the
Needle tool, suggesting that combining the tools considerably increases the number of
predictions. For identifications with identity scores between 60 and 99.9%, the Needle
tool [37] identified a larger number of pairs (Table 6).
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Table 6. Quantitative number of pairs of proteoforms identified by Needle and RBH tools.

Comparison Identity Score Needle RBH

human vs. mouse 100% 479 3752
human vs. rat 100% 203 2223
rat vs. mouse 100% 609 1263

human vs. mouse 60–99.9% 13,208 6019
human vs. rat 60–99.9% 7588 3278
rat vs. mouse 60–99.9% 10,180 1581

The comparison between the results obtained from the analysis of publicly available
healthy liver shotgun proteomics datasets and the list of orthologous proteoforms between
humans, mice, and rats indicated 290 peptides identified in the liver proteomics datasets
that are present in 23 orthologous proteins shared by all three species. These 23 proteins
are supported by at least one peptide (Table 7) (see Supplementary Files S6–S9). The
primary score values denote high statistical confidence for all peptides (Table 8) (see
Supplementary File S1 Figures S7–S11).
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Table 7. The 23 proteins classified as orthologous between humans, mice, and rats with at least one proteotypic peptide as supporting evidence.

Human Mouse Rat

Gene
Symbol Ensembl Proteotypic

Peptides TPM Gene
Symbol Ensembl Proteotypic

Peptides TPM Gene
Symbol Ensembl Proteotypic

Peptides TPM

ADK ENST00000539909 2 0 Adk ENSMUST00000045376 2 145.1 Adk ENSRNOT00000016709 1 156.8
CMAS ENST00000229329 5 19.8 Cmas ENSMUST00000032419 1 27.8 Cmas ENSRNOT00000018734 1 49.3

DDX3Y ENST00000336079 1 6.5 Ddx3y ENSMUST00000091190 2 8.6 Ddx3y ENSRNOT00000092078 2 0
FAM120A ENST00000277165 3 20.2 Fam120a ENSMUST00000060805 1 56.5 Fam120a ENSRNOT00000060568 16 91.2

FGA ENST00000651975 13 515.5 Fga ENSMUST00000166581 8 62.6 Fga ENSRNOT00000064091 15 2326.7
GDI2 ENST00000380191 3 58.7 Gdi2 ENSMUST00000223396 2 5.9 Gdi2 ENSRNOT00000024952 5 2703.4

GLYCTK * ENST00000436784 6 14.6 Glyctk ENSMUST00000036382 2 52.3 Glyctk * ENSRNOT00000074595 3 211.5
GLYCTK * ENST00000436784 6 14.6 Glyctk ENSMUST00000112543 2 34.5 Glyctk * ENSRNOT00000074595 3 211.5
GLYCTK * ENST00000436784 6 14.6 Glyctk ENSMUST00000159809 2 8.2 Glyctk * ENSRNOT00000074595 3 211.5
GLYCTK * ENST00000436784 6 14.6 Glyctk ENSMUST00000162562 2 21.2 Glyctk * ENSRNOT00000074595 3 211.5

GPT2 ENST00000340124 1 20.3 Gpt2 ENSMUST00000034136 1 186.2 Gpt2 ENSRNOT00000077275 3 100.1
HSDL2 ENST00000398805 4 25.2 Hsdl2 ENSMUST00000030078 1 33.6 Hsdl2 ENSRNOT00000059458 2 34.9
HSPA4 ENST00000304858 2 7.1 Hspa4 ENSMUST00000020630 6 33.5 Hspa4 ENSRNOT00000023628 7 34.8

IQGAP2 ENST00000274364 8 3.9 Iqgap2 ENSMUST00000068603 1 110.7 Iqgap2 ENSRNOT00000035017 38 101.5
MTTP ENST00000265517 1 26.3 Mttp ENSMUST00000029805 21 135.4 Mttp ENSRNOT00000014631 4 186.2
NAXE ENST00000368235 2 25.7 Naxe ENSMUST00000029708 3 72.8 Naxe ENSRNOT00000025986 2 47.8

NUDT12 ENST00000230792 2 4.5 Nudt12 ENSMUST00000025065 2 15.6 Nudt12 ENSRNOT00000066968 2 9.3
PGRMC2 ENST00000520121 3 0.2 Pgrmc2 ENSMUST00000058578 1 15.9 Pgrmc2 ENSRNOT00000018796 2 101.6
PSMC2 ENST00000292644 4 7.8 Psmc2 * ENSMUST00000030769 2 52.4 Psmc2 * ENSRNOT00000016450 4 79.9
PSMC2 ENST00000425206 4 7 Psmc2 * ENSMUST00000030769 2 52.4 Psmc2 * ENSRNOT00000016450 4 79.9
PSMC2 ENST00000435765 4 0 Psmc2 * ENSMUST00000030769 2 52.4 Psmc2 * ENSRNOT00000016450 4 79.9
PSMD1 ENST00000308696 4 13.8 Psmd1 ENSMUST00000027432 1 54.8 Psmd1 ENSRNOT00000024306 1 64.5
SCFD1 ENST00000458591 4 5.7 Scfd1 ENSMUST00000021335 3 28 Scfd1 ENSRNOT00000040548 2 23.9

SEC24D ENST00000280551 1 11.6 Sec24d ENSMUST00000047923 1 26.9 Sec24d ENSRNOT00000064809 8 38.5
STIP1 ENST00000305218 1 31.6 Stip1 ENSMUST00000025918 1 37.3 Stip1 ENSRNOT00000028743 4 56.8

UGT1A1 ENST00000305208 5 203.8 Ugt1a1 ENSMUST00000073049 3 508.8 Ugt1a3 ENSRNOT00000025045 3 211.2
XYLB ENST00000207870 1 6.2 Xylb ENSMUST00000039610 1 19.7 Xylb ENSRNOT00000019106 6 56.3

YWHAB ENST00000353703 4 25.3 Ywhab ENSMUST00000018470 6 27.2 Ywhab * ENSRNOT00000016981 6 30.7
YWHAB ENST00000372839 4 3.7 Ywhab ENSMUST00000131288 6 0.4 Ywhab * ENSRNOT00000016981 6 30.7

* Orthologous protein comes from more than one transcript according to the hypothetical translation based on the reconstruction of transcript ternary matrices.
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Table 8. List of identified peptides of the proteins from Glycerate Kinase gene.

Peptide Primary Score Human Mouse Rat

AVLGMAAAAEELLGQHLVQGVISVPK 5.76 X - -

LLAARGATIQELNTIRK 4.77 - X -

ADSDPHGPHTCGHVLNVIIGSNSLALAEAQR 4.88 - - X

GPVCLLAGGEPTVQLQGSGK 4.03 - X X

GPVCLLAGGEPTVQLQGSGK 4.45 - X X

GPVCLLAGGEPTVQLQGSGR 3.72 X - -

2.5.1. Relationships between the Orthologous Proteoforms, Shotgun Proteomics Analysis,
and Transcript Quantification

We used publicly available transcriptome data to confirm our results for the 23 proteins
identified as orthologous between humans, mice, and rats that showed proteotypic peptides
identified in the analysis of publicly available healthy liver shotgun proteomics datasets
using our repository (Table 7). When analyzing transcripts whose hypothetical translation
originated the orthologous proteoforms, we found 81 transcripts with TPM ≥ 1 (Table 7).

2.5.2. Orthologous NMD Pathway Targets

We identified a set of three orthologous proteins in humans, mice, and rats that were
predicted to be targets to the NMD pathway (Table 9). The NMD prediction provided by
the NMD Classifier agreed with Ensembl annotations for all human transcripts and two
mouse Ensembl transcripts.

Table 9. Orthologous NMD targets.

Human Mouse Rat

Gene Name Ensembl ID Gene Name Ensembl ID Gene Name Ensembl ID

PLCB4 ENST00000492632 Plcb4 ENSMUST00000184371 Plcb4 ENSRNOT00000049855

AP1S2 ENST00000672063 Ap1s2 ENSMUST00000140845 Ap1s2 ENSRNOT00000081652

FOXP3 ENST00000651307 Foxp3 ENSMUST00000234479 Foxp3 ENSRNOT00000091146

2.6. Web Repository—User Interface

We present a simple and user-friendly tool to access SpliceProt 2.0 data (Figure 7a).

2.6.1. Search Tab

The Search tab (Figure 7b,d) finds transcripts of a particular gene of interest. Users can
enter a gene symbol in the query and select human, mouse, or rat species. They can also
increase or decrease the graphical representation of the transcripts on the Chart Scale button.
The gene search returns three main sections: (1) gene symbol, chromosome, strand, and
genomic coordinates; (2) graphic representation of transcripts reconstructed by the ternary
matrix methodology for the gene of interest; and (3) amino acid sequence obtained through
the hypothetical translation of transcripts reconstructed by the ternary matrix methodology.

2.6.2. Download Tab

In the Download tab (Figure 7c), users can obtain the following database versions of
the SpliceProt 2.0 to use in classic analyses of raw shotgun proteomics data: (1) the entire se-
quence repository for humans, mice, and rats; (2) the repository, purged of NMD-predicted
target sequences and sequences showing no redundancies with UniProtKB/SwissProt for
humans, mice, and rats; (3) SpliceProt sequences computationally digested with trypsin
and showing no redundancies with sequences from UniProtKB/SwissProt; and (4) the
entire UniProtKB/SwissProt database used in our analysis.
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Figure 7. SpliceProt 2.0 web repository interface screenshots: (a) Home tab: description of SpliceProt
2.0 and brief user’s guide; (b) Search tab: search for gene of interest to see transcript and hypothetical
translation information; (c) Download tab: page to download SpliceProt 2.0 datasets; (d) detailed
search tab using CDKN2A as a gene of interest; (e) Submit Query Tab: tab to submit a FASTA file
to receive the corresponding amino acid sequence in the user’s e-mail; and (f) Contact tab: contact
information to report bugs, request features, and other issues.
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2.6.3. Submit Query Tab

The Submit Query tab (Figure 7e) is used to submit a FASTA file containing nucleotide
sequences (cDNA) to a search for the sequences available in our repository. The search
returns a FASTA file containing the protein obtained in the hypothetical translation of the
submitted sequence to an e-mail address provided by the user.

3. Discussion

Proteogenomics studies and tools integrate data from genomics, mass spectrometry
proteomics and transcriptomics to analyze sequence variations observed at the nucleotide
and mRNA levels and their corresponding protein expressions [1,4,10–12,51]. However, the
creation of new proteogenomics approaches and personalized databases is still a challenge
for the proteomics community due to key factors, including: (i) the need to use a well-
annotated reference transcriptome and a protein sequence file to perform the spectrum
match with which to associate proteomics shotgun data; (ii) the need to integrate tools
and results from different omics in a user-friendly way; and (iii) the characterization of
non-canonical proteomes [1,4,52–54]. In this context, the characterization of non-canonical
peptides is related to the identification of molecular mechanisms on the transcripts that
can generate multiple proteins from the same gene, such as PTC and AS [18,20,25,27]. In
this section, we discuss the results obtained in different applications of the SpliceProt 2.0
repository and present some evidence found in the literature about our findings and the
role of the proteoforms presented as examples in both human and murines.

Comparisons performed at the global alignment level, and for the sequence identity
and similarity scores between our repository, OpenProt 1.6, and UniProtKB/SwissProt,
showed that the canonical sequences available in SpliceProt 2.0 are almost identical to
the utilized version of UniProtKB/SwissProt from humans, mice, and rats. Based on
this finding we removed identical sequences and peptides between SpliceProt 2.0 and
UniProtKB/SwissProt to perform the identification of proteotypic peptides identified
exclusively with SpliceProt 2.0 in the proteomics datasets.

Regarding sequence identity and similarity scores observed in the pairwise global
alignments between SpliceProt 2.0 and OpenProt 1.6 using the Ensembl transcript ID to
track hypothetic identical sequences, mean values in the human and mouse datasets did
not reach 90%, indicating differences at the amino acid sequence level. This difference
can be attributed to in silico translation, mainly from the computational reconstruction
of transcripts using the ternary matrix approach [29] and coordinate selection filters such
as TSL [55] and APPRIS [32–34] because both repositories use the Transeq tool [38] with
different parameters to computationally translate cDNA sequences [29,38,47].

The results obtained by comparing the proteotypic peptides identified using the Spli-
ceProt 2.0, OpenProt 1.6 and UniProtKB repositories indicate that SpliceProt 2.0 has an
overall superior performance compared to OpenProt 1.6 in identifying unique proteotypic
peptides in mouse and rat proteomics, particularly in the latter. Since rat genome anno-
tation is precarious, the SpliceProt 2.0 repository of Rattus norvegicus has the potential to
significantly contribute to the community. The qualitative results were another important
feature observed when comparing the two repositories in the proteomics analysis.

The comparison between UniProtKB/SwissProt and SpliceProt 2.0 also indicates the
potential of our repository to identify proteoforms and proteotypic peptides that are not
represented in reference databases. The PatternLab V tool identified exclusive proteotypic
peptides in the results obtained with our repository; nevertheless, important points about
the use of large databases in the analysis of shotgun proteomics data should be raised. First,
the size and scope of UniProtKB/TrEMBL can lead to an increased incidence of errors and
redundancies in protein annotations. This is due to the inclusion of sequences automati-
cally generated from large-scale sequencing data, which may contain assembly errors or
inaccurate annotations [1,2,31,56–62]. Therefore, appropriate statistical parameters should
be carefully chosen in proteomics shotgun data analysis tools, mainly in those affected by
the size and curation of the database, such as FDR and significance thresholds [63–67].
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The importance and possible roles of alternative splicing in the evolution, diversity
and similarities present in two or more orthologous genomes is a hypothesis already
raised by other authors such as Modrek and Lee (2003) [21] and Abril and colleagues
(2005) in past decades [68]. The fact that the role of alternative splicing in evolution has
not yet been fully clarified has motivated the search for alternative splicing proteins that
are orthologous between human, mouse, and rat. Among our results, three examples
of orthologous splice variants were selected that have multiple levels of support. The
GLYCTK, NAXE, NUDT12, YWHAB and PSMC2 genes were chosen due to the similarity
in both the number of exons and the architecture of the transcripts expressed in the three
species (see Supplementary File S1 Figures S13–S16).

Glycerinate protein kinase (GLYCTK) is an enzyme found in the cytoplasm that has
been identified in various species such as animals, plants, and bacteria. The structure of the
glycerinate kinase genes is very similar between the three species in several aspects, such
as the number and order of exons they contain (Supplementary File S1 Figure S12). An
interesting feature observed here involves the consequences of using the TSL as a parameter
for choosing genomic coordinates in the hypothetical reconstruction and translation steps
of a transcript, with two transcripts of a mouse Glyctk gene having a TSL value equal to
1 (ENSMUST0000036382 and ENSMUST112543) and another TSL value equal to 5, both
producing the same protein according to our hypothetical translation. Another point
to consider is the difference in the number of exons of human transcript GLYCTK-201
(ENST00000436784) reconstructed by our approach compared to the Ensembl transcript
structure (Supplementary File S1 Figure S12).

The NMD prediction by the NMD Classifier agrees with the Ensembl annotation for
all those human transcripts and two mouse transcripts [37]. Although the limited number
of identifications of orthologous proteins predicted to be targets of the NMD pathway,
AP1S2 and FOXP3 have intriguing literature that should be further investigated in the
context of the biological role of the NMD pathway regarding PTC mutations and human
diseases [69–73].

Here, we present SpliceProt 2.0, the new release of a public proteogenomics database of
known proteins and potential new proteoforms generated by the ternary matrices method-
ology [29]. SpliceProt 2.0 expanded the applications of SpliceProt repository as, besides
human, also provides information for mouse and rat, model organisms for biomedical
research. The value of SpliceProt 2.0 was demonstrated by the proteomic validation of
splice variants absent from reference UniProtKB/SwissProt database, by its ability to pre-
dict orthologous proteins between human and murines (at both the transcriptome and
proteome levels), and by providing evidence for AS-NMD-target conservation in mammals.

4. Materials and Methods
4.1. SpliceProt 2.0 Construction

The initial release of SpliceProt was based on annotations from UniGene for humans.
Due to UniGene discontinuity [74], human data were updated to Ensembl version 100,
and data for the mouse and rat species were included. Human and murine genomes
(hg38/GRCh38, mm10/GRCm10, and Rnor 6.0) and transcriptome datasets (cDNA and
ncRNA) were then obtained from the Ensembl Genome Browser, Version 100, to generate
SpliceProt release 2.0. Transcript sequences were aligned with their respective genomes
using the BLAT alignment tool [75]. The best alignments selected by pslReps [75] were
ranked using an in-house Perl script, and only the best alignment coordinates were used as
inputs for our pipeline [29].

In the previous version of SpliceProt, annotations from RefSeq [40] were used to
support transcript structure quality control for external coordinates of the first and last
exons (5′ and 3′ coordinates) before performing transcript reconstruction and the hypo-
thetical in silico translation. By contrast, in the current release of SpliceProt, the Transcript
Support Level (TSL) method from Ensembl was chosen to obtain only the transcripts with
the highest degree of annotation reliability for humans and mice and the APPRIS system
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annotation [32–34] for rats. In the absence of the APPRIS and TSL flags, the transcript with the
most extended sequence was chosen as the reference gene sequence to define the external coordi-
nates used in the consensus table (see Supplementary File S1—Tables S1 and S2 and Figure S1).

4.1.1. Computational Translation of Predicted Transcripts

The ternary matrix methodology was used to cluster similar splicing patterns for each
Ensembl gene. In the ternary matrix methodology, each gene coordinate is represented
by a matrix with three characters: “1”, “0” and “|”. Thus, each matrix row represents a
transcript, and each column represents an exon or an intron. The exons are represented by
“1”, introns by pipe characters “|” and “0” denotes exons in alternative spliced regions [29].

The hypothetical protein sequence was obtained for each cDNA sequence for a corre-
sponding transcript using the Transeq program from the EMBOSS package [37], version
6.3.1. Transeq default parameters were selected to perform in silico translation in all three
reading frames of the known gene orientation.

In the first stage, if the same splicing pattern represented more than one transcript,
the most reliable transcript was identified to represent the variant and then submitted to
the in silico translation step. Only transcripts annotated as protein-coding according to
the manual annotation from the HAVANA project [43,55], lower TSL [55,76] and APPRIS
values or longest sequence were selected. The extraction of gene consensus coordinates and
selection of reading frames were performed as in the previous version of the repository [29].

A new step was introduced for the SpliceProt 2.0 predicted sequences to correct
the methionine selected during the in silico translation step, as the first methionine was
considered the correct point of translation initiation in the first SpliceProt version. If the
first methionine of a SpliceProt translation does not match the first methionine present
in the UniProtKB/SwissProt reference sequence, our sequence is corrected by removing
the chosen methionine and subsequent amino acids until it matches the one from the
UniProtKB/SwissProt using clustalw2 [77].

4.1.2. Identification of Hypothetical Transcripts Predicted to Be Susceptible to Degradation
by the Nonsense-Mediated Decay Pathway

Molecular events can generate transcript variants with no potential for translation,
such as those sensitive to the nonsense-mediated decay (NMD) pathway [78,79]. Consider-
ing this characteristic, we needed to identify whether PTC was present in the transcripts
used to input data when generating SpliceProt 2.0.

To this end, NMD Classifier was chosen to create a subset of our data without transcript
variants predicted to be susceptible to the NMD pathway. NMD Classifier uses PTC
distancing rules, adopting 50 nucleotides upstream of the last junction between exons or
searching the annotation file to identify the transcript as a target of the NMD pathway. A
customized GTF file based on the ternary matrix for each transcript and the coordinates of
each gene available in SpliceProt 2.0 was created to perform the prediction of NMD pathway
susceptibility. Additionally, we removed the “ENST” characters from the transcript name
to force a de novo annotation for PTC by NMD Classifier. The NMD Classifier (Last update
April 2019) analysis was performed at our GTF, but the software also requests a GTF from
Ensembl (version 100) and a FASTA file for each chromosome sequence as input files
(Ensembl, version 100).

4.2. Using SpliceProt 2.0 for Shotgun Proteomic Analysis

One of the main challenges in mass-spectrometry-based proteomics is to find the
proteotypic peptides [80] with unique sequences in the database [81]. According to previous
work [82], building customized databases based on combining complete AS canonical
protein sequences and unique peptides of non-canonical proteins is a common approach in
identifying proteotypic peptides. However, due to the large number of changes performed
for the new release of our repository, after the hypothetical translation, the sequences were
no longer submitted to a computational trypsin digestion step [29,37]. Instead, we prepared
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customized protein sequence databases for humans, mice, and rats, according to a novel
strategy described below.

First, SpliceProt 2.0 sequences with less than 10 amino acids in the UniProtKB/
SwissProt (available in 20 November 2021) were removed. A search was then performed
for SpliceProt 2.0 sequences that are substrings of UniProtKB/SwissProt sequences and
vice versa [31]. In both cases, only the UniProtKB/SwissProt sequence remained in the file.
Finally, sequences from the SpliceProt 2.0 repository that showed 100% identity aligned
to the UniProtKB/SwissProt sequences were removed from the SpliceProt 2.0 repository.
Then, for each gene only unique sequences from the SpliceProt repository were selected
and ordered by length, with the longest classified as canonical and the others as variants
originating from the in silico translation of transcripts. At the end of this step, we gen-
erated the file corresponding to the SpliceProt 2.0 version that we argue to be optimized
for PSM (peptide spectrum match) search (Figure 8). For genes that have a match with
UniprotKB/SwissProt the canonical protein was elected by the definition of that database,
that is indicated by “−1” after the UniProtKB/SwissProt ID in the FASTA file. All pro-
tein sequence databases are available at http://spliceprot.icc.fiocruz.br/download.php
(accessed on 2 January 2024).
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Figure 8. Flowchart exemplifying redundancy filters applied to obtain the SpliceProt 2.0 version for
PSM search.

4.2.1. Database Search Using Publicly Available Shotgun Proteomics Data

SpliceProt 2.0 version for PSM search, OpenProt 1.6, UniProtKB/TrEMBL and UniPro-
tKB/SwissProt files, were used as database search input files to PatternLab V [63] using
the default parameters and the carbamidomethylating of cysteine and oxidation of methio-
nine modifications to be considered. The raw files were obtained from three studies that
deposited raw data of MS1 and MS2 high-resolution MS/MS at ProteomeXchange [83], as

http://spliceprot.icc.fiocruz.br/download.php
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follows: PXD008720 for humans, PXD020656 for mice, and PXD016793 for rats. We applied
a 1% false discovery rate (FDR) at spectra, peptide, and protein levels to obtain a list of
identifications in which we could have confidence. The common and default parameters
used can be accessed in Supplementary File S10.

4.2.2. Proposed Strategy to Proteotypic Peptide Identification after Peptide Spectrum
Match Search

The peptide spectrum match search is a widely adopted approach used to associate a
given peptide spectrum to a protein sequence present in a database file. We needed to purge
redundancies between SpliceProt 2.0 and UniProtKB/SwissProt to select the proteotypic
peptides identified exclusively using the SpliceProt 2.0 version optimized for the PSM
search file in the database search step using PatternLab V [63] (Figure 9a). The output files
containing the identified peptide lists were filtered by applying three parameters:
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Figure 9. Flowchart showing the steps taken to filter the results obtained in the reanalysis of
mass spectrometry data: (a) outputs from PatternLab V were compared and submitted to score
cutoffs (Delta CN and Primary Score) and redundancy removal filters before reaching the identified
proteotypic peptide level. The first gray boxes represent the number of entries from each database,
FASTA files used in engine search for human, mouse, and rat SpliceProt 2.0 and UniProtKB/SwissProt
portion repositories. The second gray box represents the number of peptides obtained in the raw
PatternLab peptides and list outputs, and the number of proteotypic peptides are described in the
third gray box; (b) identification of exclusive peptides from SpliceProt 2.0; and (c) comparison of
exclusive peptides from SpliceProt to UniProtKB/SwissProt complete sequences to obtain a list
containing only proteotypic peptides identified using SpliceProt 2.0 Full Version.
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1—Primary Score ≥ 2.5 and Delta CN > 0.05 [63] ;
2—Removal of redundant peptides in the same database with same MS1 values

present in PatternLab V outputs. In these cases, we discard all duplicates and select only
one peptide;

3—Removal of peptides identified in more than one protein sequence.
In the next step, the two lists of peptides returned by the applied filters, and conse-

quently identified in only one protein, were compared (Figure 9b). Only peptides unique to
SpliceProt 2.0 were selected for the next step (Figure 9c). After performing this last step, we
obtained the list of proteotypic peptides identified exclusively by SpliceProt 2.0 (Figure 9c).

4.2.3. Benchmarking for Classic Shotgun Proteomics Analysis Using Known Databases

We then performed a benchmarking-type analysis to verify similarities and differ-
ences between SpliceProt 2.0 and OpenProt 1.6, applied in the analysis of classic shotgun
proteomics. The custom FASTA file indicated by OpenProt as its gold standard was used,
with the following download parameters selected: AltProt and Isoforms, with a minimum
of two unique peptides detected, and Ensembl Transcriptome Annotation [55]. We also
used the datasets from UniProtKB (SwissProt and TrEMBL) [31] as they are widely used in
classical shotgun proteomics analyses.

4.2.4. SpliceProt, OpenProt, and UniProtKB Database Comparisons

To identify similarities and differences between the entries provided by our repository
and OpenProt, release 1.6, since both repositories use the Transeq tool from the EMBOSS
package [37], the hypothetical in silico translations from SpliceProt 2.0 were compared
with those available in OpenProt, release 1.6, for human, mouse, and rat. The analysis was
performed at the identity level between the sequences from each repository with the same
Ensembl ID (ENST for human, ENSMUST for mouse, and ENSRNOT for rat), using the
software Needle from EMBOSS package version 6.0 [37], with the parameters -gapopen
10.0 and -gapextend 0.5.

Considering UniProtKB/SwissProt as the reference database in annotation quality
and protein sequence datasets, we also performed two other comparisons at the sequence
identity level: SpliceProt 2.0 or OpenProt, release 1.6 versus UniProtKB/SwissProt. This
analysis was also performed using the Needle tool [37], with the same parameters and
criteria mentioned above.

The protein sequence global alignment comparative analysis between SpliceProt
2.0 and UniProtKB/TrEMBL was not performed. According to the literature, UniPro-
tKB/TrEMBL still has limitations, lacking the full correspondence information with other
bases such as Ensembl [39,55], resulting in the loss of data quality and reliability, which are
important features in proteogenomics repositories [1,2,57,84].

4.3. Healthy Liver RNA-Seq Analysis

We performed a standard RNA-Seq analysis using public and controlled RNA-Seq data
to analyze the expression of alternative splice variants in healthy human, mouse, and rat liv-
ers. Public RNA-Seq raw datasets were retrieved from the NCBI Gene Expression Omnibus
with accession numbers GSE153986 (eight control samples) and GSE174535 (six wild-type
samples). Human raw reads were retrieved from GTEx Consortium (phs000424) [84–86]
(10 samples). The raw reads were trimmed with Illumina sequencing default parameters
using TrimGalore software (version 0.6.6) [87]. We used HISAT2 (version 2.2.1.0) [88] to
align the trimmed reads to human (UCSC hg38), mouse (UCSC mm10), and rat (UCSC
Rnor 6.0) reference genomes. The SAM files were converted into BAM files and indexed
using samtools, version 1.10 [89]. Salmon, v.0.12.0 [90] was used to quantify the number of
reads mapped to each transcript. Additionally, Cufflinks, v.2.2.1 [91] was used to measure
the relative abundance of transcripts, set with default parameters with genome annotation
files (GTF format) available in Ensembl Project, version 102-104.



Int. J. Mol. Sci. 2024, 25, 1183 18 of 24

4.4. Identification of Orthologous Proteoforms

To identify orthologous proteoforms between humans, mice, and rats using the Spli-
ceProt 2.0 repository, the available proteins were clustered based on the orthology gene
classification available in Ensembl, release 100 [37] (Figure 10). Thus, three comparisons
were performed: (1) human versus mouse, (2) human versus rat, and (3) rat versus mouse.
For each pair of genes classified by Ensembl as orthologs, a new FASTA file was created
containing the proteins encoded by the transcripts according to the predictions made in
the in silico translation of the SpliceProt 2.0 FASTA file. From this step, grouped proteins
were submitted to a pairwise alignment using the Needle tool from the EMBOSS package
(version 6.0) [37] with default parameters (Figure 10).
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Figure 10. Workflow used to find ortholog proteoforms between humans, mice, and rats:
(1) filter and clustering of proteins based on Ensembl Ortholog Genes List; (2) pairwise global
alignment of human, mouse, and rat proteoforms pairs using Needle tool. Pairs of proteoforms with
similarity ≥ 80% and gap ratio ≤ 1% were considered orthologs; and (3) proteoforms without a
matched pair in the alignment from the Needle (Step (2)) were retrieved and subjected to Recipro-
cal Best Hit using the tool diamond. Pairs of proteoforms with target coverage ≥ 60% and query
coverage ≥ 90% were considered orthologs.

Only protein pairs with alignments with similarity ≥ 80% and a gap value ≤ 0.1
were selected. Subsequently, protein pairs that were not selected in the previous step
were subjected to the method described by Hernández-Salmerón and Moreno-Hagelsieb
(2020) [50] to establish a new alignment coverage cutoff value using the Reciprocal Best Hit
(RBH) value as a parameter to filter diamond [92] alignment outputs. In this step, protein
pairs alignments with a target coverage ≥ 60% and query coverage ≥ 90% were selected
(Figure 10).

Proteins were classified as orthologous between the three organisms when a perfect
match between the pairs from the three analyses (human versus mouse, human versus rat,
and rat versus mouse) was identified.

To investigate the possibility of finding cases in which orthologous proteins between
humans, mice, and rats are susceptible to the NMD pathway, we applied the same pipeline
above to proteins for which the respective transcripts were predicted as NMD targets.
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4.5. Web Interface Implementation

All data and results obtained using the ternary matrix [29] and the hypothetical trans-
lation were deposited in a PostgreSQL database containing six tables: the first table stores
all information from the alignment of cDNA/ncRNA to their respective genomes, such as
coordinates, transcript identifiers, chromosome and identity scores; the second stores exon
coordinates and identifiers; the third stores consensus coordinates; the fourth stores TSL
or APPRIS values; the fifth stores gene symbols, protein sequences and transcript/protein
identifiers; and the sixth stores ternary matrix outputs. SpliceProt 2.0′s web interface system
was implemented using PHP, JavaScript, Canvaon in the front end, and Perl in the back end.
We designed five principal sections (Figure 11): the ‘Home’ page describes SpliceProt 2.0
and guides users through the web repository; the ‘Search’ page allows for quick searches
to be performed on a transcript and its hypothetical translation information using a gene
of interest as input; the ‘Download’ page is used for downloading SpliceProt 2.0 datasets;
the ‘Submit Query’ page serves to submit a FASTA file containing a nucleotide sequence
and to discover the corresponding amino acid sequence obtained using the ternary ma-
trix methodology; the ‘Contact’ page displays contact information to report bugs, feature
requests, and other issues.
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5. Conclusions

Here, we present the new and updated version of SpliceProt with several improve-
ments. Using SpliceProt 2.0, we investigated orthologous relationships between proteo-
forms detected in humans, mice, and rats. Public shotgun proteomics data and RNA-Seq
data from healthy human, mouse, and rat liver samples were analyzed to support our
findings and demonstrate the usefulness of our sequence repositories.

Some of the main improvements implemented in this new release include: the in-
clusion of two new organisms in the repository (Mus musculus and Rattus norvegicus);
the new source of cDNA sequences used as inputs to the ternary matrices methodology;
the addition of two new annotation flags (TSL, APPRIS and HAVANA) to select reliable
genomic coordinates for ternary representation construction; a new approach to creating a
repository FASTA file for the analysis of shotgun proteomics data, making it possible to
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infer peptides missing in UniProt; and a description of how the user can identify ortholo-
gous proteoforms between humans and murines in our repository. Our web application
also received upgrades, mainly in the back end with the development and implementation
of new scripts in JavaScript and Perl. These new scripts decrease the response time of the
results for end users of the application.

This methodology allowed us to analyze the latest version of the SpliceProt repository
in terms of the numbers of identified proteoforms with evidence of proteotypic peptides
and the relationship between expression levels in the analyzed transcriptome and pro-
teome. Finally, we also used our repository to predict orthologous proteoforms between
humans, mice, and rats. We correlated these findings with proteotypic peptides identified
in these proteins by analyzing shotgun proteomic data. The annotation of proteoforms
and splice junctions is not yet complete in biological databases such as RefSeq and UniPro-
tKB/SwissProt, highlighting the need further to study the transcriptome’s diversity [93].

In this context, our results, obtained by analyzing shotgun proteomics data from the
liver of three species, indicate that SpliceProt 2.0 may be used for the discovery of new
proteoforms and disease biomarkers in humans and mice, with an improvement in the
results for rats.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25021183/s1. References [94–108] are cited in the
supplementary materials.
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