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Abstract: Mitochondria are double-membrane organelles that are involved in energy production,
apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have
correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial
ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochon-
dria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells.
In this review, the different mitochondrial transplantation techniques and their clinical applications
have been discussed. In addition, the challenges and future directions pertaining to mitochondrial
transplantation and its potential in the treatment of diseases with defective mitochondria have
been summarized.

Keywords: mitochondrial transplantation; mitochondrial defective diseases; cerebral ischemia;
myocardial ischemia-reperfusion; cancer

1. Introduction

Mitochondria are the “powerhouses” of eukaryotic cells and the primary sites of
intracellular adenosine triphosphate (ATP) production through oxidative phosphorylation
and tricarboxylic acid cycle [1]. In addition, the mitochondria are also involved in the
regulation of cell growth and differentiation, cell signaling, apoptosis, and cell cycle [2].

Mitochondria are susceptible to damage from various stress stimuli, including is-
chemia, hypoxia, radiation, and drugs [3]. The dysfunctional mitochondria produce ex-
cessive levels of reactive oxygen species (ROS), and the resulting oxidative damage to
macromolecules and cells can eventually lead to abnormal organ function, systemic disease,
or even death [4].

Mitochondrial transplantation involves the transfer of healthy mitochondria into cells
or tissues with dysfunctional mitochondria [5]. The healthy mitochondria can be derived
from autologous or allogeneic sources, such as skeletal muscle cells, mesenchymal stem
cells (MCSs), or cell lines. The transplanted organelles are taken up by the recipient cells
and integrated into the existing mitochondrial network, thereby enhancing mitochondrial
function and promoting cellular viability [6].

Recent studies have shown that mitochondria can be transferred between similar
and different types of somatic cells, a phenomenon known as horizontal mitochondrial
transfer (HMT) [7]. HMT has been observed both in vitro and in vivo, as well as under
physiological and pathological conditions. It also occurs during tumor progression and
lung injuries, where it plays a role in bio-energetic signaling, maintaining homeostasis,
recovery, and therapeutic response and recalcitrance [8,9]. In addition to intercellular
transfer, mitochondria also undergo constant morphological changes through fusion and
fission [10].

Int. J. Mol. Sci. 2024, 25, 1175. https://doi.org/10.3390/ijms25021175 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25021175
https://doi.org/10.3390/ijms25021175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1048-2758
https://orcid.org/0000-0002-9046-3142
https://doi.org/10.3390/ijms25021175
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25021175?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 1175 2 of 14

2. Methods of Mitochondrial Transplantation
2.1. Natural Mitochondrial Transfer Mechanisms

Mitochondria are highly dynamic organelles that continuously change their shape
through fusion and fission, forming a network structure [11]. In recent years, the in-
tercellular transfer of mitochondria has become increasingly important as it promotes
the integration of transferred mitochondria into the endogenous network of recipient
cells, leading to changes in the recipient cells’ bioenergetic features and other functional
characteristics [12]. Several natural mechanisms have been identified for this transfer, in-
cluding tunneling nanotubes (TNTs), extracellular vesicles (EVs), and gap junction channels
(GJCs) [13] (Figure 1).

Figure 1. Natural mitochondrial transfer mechanisms.

TNTs are F-actin-based transient filamentous membrane protrusions or cytoplasmic
bridges that allow cell-to-cell communication and the transfer of biological material [14].
In addition, the TNTs also serve as conduits for the trafficking of mitochondria and other
organelles, such as endosomes, ER, Golgi/ER, lysosomes, and melanosomes [15,16]. HMT, a
major function of the TNTs, protects cells against mitochondrial injury in both physiological
and pathological states [17]. Ahmad et al. showed that MSCs can form TNTs with epithelial
cells in response to various stimuli (e.g., rotenone (100 nM) or TNF-α (20 ng)) and transfer
mitochondria to the latter via these nanotubes, thus restoring mitochondrial function in
the stressed recipient cells and aiding in their repair and regeneration [18]. Wang et al.
discovered that co-culturing UV-treated pheochromocytoma (PC) 12 cells with untreated
PC12 cells led to the formation of various types of TNTs, characterized by the presence
of continuous microtubules inside these TNTs, forming microtubule-containing TNTs
(MT-TNTs). Within these TNTs, mitochondria exhibited co-localization with microtubules
and were transported along these structures from healthy cells to stressed cells. The MT-
mediated functional transfer of mitochondria during the early stages of apoptosis exerted
a reversal effect on stressed cells, ultimately rescuing the damaged cells. These newly
observed TNTs play a crucial role as determinants for long-distance organelle transport [19].

Cell fusion is a mechanism analogous to the formation of TNTs, whereby cytoplasmic
constituents and organelles are equitably shared between adjacent cells of distinct cell
types. This process occurs through physical connections of their plasma membranes,
leading to their permanent fusion [20,21]. Acquistapace et al. conducted a co-culture
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experiment involving fully differentiated mouse cardiomyocytes and human multipotent
adipose-derived stem cells, wherein they observed the partial fusion of heterologous cells.
Notably, the transfer of mitochondria from stem cells to cardiomyocytes was observed,
and the involvement of intercellular structures, specifically those composed of F-actin and
microtubules, was revealed. Furthermore, it was shown that adult stem cells are capable of
reprogramming cardiomyocytes to a progenitor-like state through the process of partial
cell fusion and subsequent transfer of functional mitochondria [22].

Mitochondria are also transported from donor cells via EVs [23] and enter the cyto-
plasm of the recipient cells through endocytosis or fusion [24]. Zhang et al. found that
EV-mediated mitochondrial transfer from human umbilical cord-derived mesenchymal
stem cells to okadaic acid-treated SH-SY5Y cells, an in vitro model of Alzheimer’s disease,
reversed apoptotic signaling, improved cellular immune response, and reduced oxidative
stress [25]. Furthermore, Ikeda et al. discovered that in an in vivo model of myocardial
infarction in mice, functional mitochondrial vesicles rich in induced pluripotent stem cell-
derived cardiomyocytes (iCMs) can be isolated from the centrifugation of iCM culture
medium. These mitochondria-rich EVs (M-EVs) transfer their mitochondrial cargo to
hypoxia-injured iCMs, integrating into the endogenous mitochondrial network. Treatment
with 1.0 × 108/mL M-EVs significantly impacts ATP production, restoring cellular energy
and mitochondrial biogenesis in cardiomyocytes, thus enhancing cardiac function after
myocardial infarction [24]. These findings confirmed that mitochondria can enter target
cells through EVs.

Gap junctions are specialized intercellular channels that enable direct communication
between adjacent cells. These channels allow the passage of ions, metabolites, and signaling
molecules, thereby facilitating coordinated responses in tissues and organs [26]. Recent
studies have shown that gap junctions also serve as conduits for mitochondrial exchange
between cells and, therefore, play a crucial role in diseases associated with mitochondrial
dysfunction [27]. Three-dimensional electron microscopy and immunogold labeling of
the gap junction protein connexin 43 (Cx43) have shown that entire organelles, including
mitochondria and endosomes, are incorporated into double-membrane vesicles, known
as connexosomes or annular gap junctions, that form as a result of gap junction inter-
nalization [28,29]. Li et al. co-cultured bone marrow-derived mesenchymal stem cells
(BMSCs) with VSC4.1 motor neurons subjected to oxygen–glucose deprivation (OGD), a
cellular model of spinal cord injury (SCI), and found that mitochondria transferred from the
BMSCs to the injured neurons via gap junctions promoted neuronal survival by preventing
OGD-induced apoptosis and restored motor function. The heterotypic gap junctions be-
tween BMSCs and neurons are formed by connexin 43 and connexin 32, and mitochondrial
transfer to neurons through these gap junctions can prevent SCI [30].

2.2. The Artificial Mitochondrial Transfer Pathway

Isolated mitochondria from exogenous sources have been successfully transplanted
into different recipient cells in multiple in vitro and in vivo models. Exogenous mitochon-
dria can be incorporated into recipient cells by direct injection, co-incubation, liposomes,
and cell-penetrating peptides [31] (Figure 2).

Isolation and purification of mitochondria are crucial steps in studying mitochondrial
transplantation. The process of isolating mitochondria through homogenization and differ-
ential centrifugation takes approximately 90 min [32]. Preble et al. describe a method for
the rapid isolation of mitochondria from mammalian biopsies using a commercial tissue
dissociator and differential filtration. This method aims to reduce the time required for
mitochondrial purification and improve the purity and availability of mitochondria. Firstly,
tissue homogenization is performed using the tissue dissociator. Then, Bacillus protease A
is added to degrade proteins and release mitochondria. Subsequently, the broken tissue
is filtered through 40 µm and 10 µm mesh filters. Finally, purified mitochondria are ob-
tained through differential velocity centrifugation. The total procedure time is less than
30 min [33].
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Figure 2. The artificial mitochondrial transfer pathway.

Purified mitochondria can be spontaneously taken up by target cells during co-
culture [34]. Pour et al. co-incubated mitochondria isolated from L6 skeletal cells with
normal H9c2 cardiomyocytes for 24 h and found that the latter could internalize the non-
autologous mitochondria. Furthermore, mitochondrial transplantation enhanced ATP
production and basal respiration and improved metabolism in the cardiomyocytes within a
short period of time [35]. Bhattacharya et al. isolated myofibrillar interstitial mitochondria
from mouse skeletal muscle and incubated them with damaged fibroblasts harboring mito-
chondrial DNA (mtDNA) mutations. The purified mitochondria were incorporated into
the host cells, thereby enhancing mitochondrial dynamics and metabolism and restoring
recipient cell function [36].

Microinjection refers to the delivery of isolated mitochondria by direct injection into
the target area or through vascular infusion [37,38]. The first clinical use of mitochondrial
transplantation was in pediatric patients with myocardial ischemia-reperfusion injury
following coronary artery occlusion and hemodialysis. Doulamis et al. performed mito-
chondrial transplantation by intrarenal injection of autologous mitochondria after renal
ischemia-reperfusion injury. The mitochondria were taken up by the tubular epithelium
in both the cortex and medulla, protecting the kidney from ischemia-reperfusion dam-
age, significantly improving renal function, and reducing kidney injury [39]. In addition,
Mobarak et al. improved pregnancy outcomes in women with high reproductive senes-
cence by microinjection of autologous mitochondria [40]. Although microinjection can
effectively enhance transplantation efficiency, it requires considerable technical skills, as
well as specialized equipment for isolating and preserving mitochondria, which limits its
clinical application at present.

Liposomes are artificial lipid bilayer vesicles that are routinely used for drug delivery
due to their versatility and biocompatibility and are ideal carriers for mitochondrial transfer
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as well. The process involves the extraction of mitochondria from donor cells and their
encapsulation in liposomes, followed by the delivery of these liposomes to recipient cells.
Liposomal encapsulation offers several advantages, including protection of mitochondria
from the harsh extracellular environment, controlled and targeted delivery, and the possi-
bility of site-specific release. Liposome-mediated mitochondrial transplantation has been
greatly improved in terms of precision, efficiency, and functional integrity and has been
successfully applied in animal models. Shi et al. transferred Mito Tracker RedH CMXRos-
labeled live mitochondria to fibroblasts in NIH/3T3 mice using synthetic liposomes and
verified mitochondrial transfer by fluorescence microscopy [41,42].

Peptide-mediated mitochondrial delivery (PMD) has significantly higher transfer
efficiency compared to co-culture methods since it is not limited by endocytosis [43]. A
mitochondria-Pep-1 complex was synthesized by incubating free mitochondria with the
cell membrane-penetrating peptide Pep-1 and delivered into MERRF cells (MitoB2) and
mtDNA-depleted Rho-zero cells (Mito) with transfer efficiencies of 77.48% and 82.96%,
respectively. Mitochondrial transfer led to a significant reduction in the levels of mitofusin-2
(MFN2) and dynamin-related proteins and an increase in optic atrophy 1 and MFN2 in
MitoB2 cells, indicating that PMD is a potential therapeutic intervention for mitochondrial
diseases [44].

3. Mitochondrial Transplantation for Mitochondria-Deficient Diseases
3.1. Mitochondrial Transplantation Protects against Neuronal Damage Caused by
Cerebral Ischemia

Cerebral ischemia or stroke is a condition caused by insufficient blood supply to
the brain, resulting in hypoxia and damage to brain tissue. Severe cerebral ischemia or
stroke can lead to neuronal damage and transient ischemic attacks [45]. Glutamate is a
neurotransmitter in the central nervous system that mediates rapid excitatory synaptic
responses upon binding to N-methyl-D-aspartate (NMDA)-type receptors on neuronal
membranes [46]. High concentrations of glutamate have been detected in the cerebral
cortex, hippocampus, and amygdala during cerebral ischemia and can cause severe neuro-
toxicity. NMDA receptor is a ligand-gated ion channel that is highly permeable to calcium
ions. Glutamate binding effectively opens the Ca2+ channel [47], leading to an increase
in intraneuronal Ca2+ concentrations [48]. The Ca2+ overload triggers the opening of the
mitochondrial permeability transition pore (MPTP) [37], which prevents oxidative phos-
phorylation and ATP production, leading to mitochondrial membrane depolarization, ATP
hydrolysis [49], and the release of NAD+ and Ca2+. The ensuing mitochondrial swelling
and rupture releases ROS, cytochrome c, and other apoptosis-inducing factors [50,51]. The
excessive amount of ROS released into the cytoplasm can also trigger ROS-induced ROS
release (RIRR) in the neighboring mitochondria, leading to a vicious cycle of MPTP opening
and continuous increase in ROS levels that ultimately leads to mitochondrial damage
and cell death [52]. Transplantation of functionally normal mitochondria into injured
neurons can reduce ROS production and restore ATP production, thus providing the cells
with sufficient energy to activate mitochondria-targeted autophagy and enable repair [12].
Pourmohammadi-Bejarpasi et al. replicated an adult rat model of cerebral ischemia using
nylon threads to block cerebral arteries and injected hucMSC-derived normal mitochondria
directly into the brain using an ICV device. Examination of the brain tissue showed that the
injected mitochondria were internalized into the neurons and astrocytes at the ischemic site,
which was accompanied by a reduction in coagulative necrosis and restoration of normal
cellular structure in the brain. In addition, the infarcted area, blood creatine phosphoki-
nase levels, number of apoptotic cells and astrocytes, and microglial activation showed a
significant decrease, resulting in improved motor function and coordination [53,54]. Ex-
isting studies have shown that Miro1 appears to be a key participant in mitochondrial
transfer. In an epithelial cell injury model, Miro1 has the ability to regulate the intercellular
movement of mitochondria from MSCs to epithelial cells (ECs). The overexpression of
Miro1 enhances mitochondrial transfer, effectively reversing mitochondrial dysfunction
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in ECs and rescuing them [18]. Conversely, the knockdown of Miro1 leads to a loss of
therapeutic effect. Tseng et al. conducted in vitro found that the transfer of mitochondria to
oxidatively damaged neurons can improve neuronal preservation after an ischemic stroke
and enhances neuronal metabolism. The research results revealed a decrease in neuronal
viability and the presence of significant mitochondrial dysfunction following oxidative
damage in vitro. However, co-cultivation with MCSs can restore mitochondrial function
and significantly improve neuronal metabolic activity, including mitochondrial respiration
and ATP production. In this study, ischemia damages neuronal mitochondria and triggers
an inflammatory response, resulting in an increased production of Miro1. This, in turn,
promotes mitochondrial movement and the transfer of healthy mitochondria from MCSs to
neurons, potentially safeguarding neurons from apoptosis [55]. These findings suggest that
mitochondrial transplantation can effectively protect against acute cerebral ischemia.

Studies show that mitochondria can be transferred from astrocytes to neurons via
CD38 and cyclic ADP-ribose (cADPR) signaling. SiRNA-mediated CD38 knockdown signif-
icantly reduced the number of mitochondria released from astrocytes as well as the number
transferred into neuronal cells, which mitigated the protective effect against cerebral is-
chemia [56]. In addition, Li et al. demonstrated the protective effects of mitochondrial
transfer and internalization against severe spinal cord injury [30]. Transcellular transfer of
mitochondria opens up new avenues for treating diseases of the central nervous system
as well as the peripheral nervous system [57]. Several studies have shown that mitochon-
drial transplantation protects against neuronal damage caused by cerebral ischemia and
promotes the repair of injured cardiomyocytes [58] and lung epithelial cells [26].

3.2. Mitochondrial Transplantation for Myocardial Ischemia-Reperfusion Injury

The heart is an oxygen-demanding organ that requires a continuous supply of energy.
Unsurprisingly, mitochondria account for approximately 30% of the cardiomyocyte volume,
and the functional status of these mitochondria directly influences the fate of cardiomy-
ocytes. During ischemia, reduced blood flow to the heart limits the delivery of oxygen and
nutrients, leading to mitochondrial dysfunction and impaired ATP production. This energy
deficit impairs cardiac muscle contraction and triggers a series of events that culminate
in myocardial ischemia-reperfusion injury (IRI) [59]. Ischemic injury, in turn, disrupts the
mitochondrial inner membrane and expands the mitochondrial matrix. Therefore, the
replacement of injured mitochondria with intact functional mitochondria isolated from
healthy cells or tissues is a promising therapeutic strategy against myocardial IRI [18]. The
transplanted mitochondria can alleviate myocardial injury by restoring lipid and glucose
metabolic pathways and generating sufficient energy for cardiac functions [17].

Sun et al. constructed PEP-TPP mitochondrial complexes through the ischemic sen-
sitivity of PEP and the mitochondrial targeting ability of TPP+. These complexes were
able to enter ischemia-damaged cardiomyocytes through direct internalization or via
endothelial cells and enhanced the respiratory capacity and mechanical contractility of
cardiomyocytes, decreased the levels of pro-inflammatory cytokines such as IL-2, and
reduced cardiomyocyte apoptosis after transplantation. In a mouse model of infrared
radiation injury, 7.5–10 × 104 intravenously injected PEP-TPP mitochondrial complexes
promoted intraventricular mitochondrial engraftment in the ischemic myocardium, which
significantly reduced the myocardial infarct area and provided long-term (2–4 weeks)
protection against cardiomyocyte reperfusion injury [60]. The therapeutic effects of mito-
chondrial transplantation have also been demonstrated in rabbit and porcine models of
cardiac IRI. McCully et al. isolated fresh, intact, viable, and respiring mitochondria from
non-ischemic hearts. During the early reperfusion period, they injected these mitochondria
into the ischemic zone to limit the damage caused by decreased mitochondrial function
during ischemia. The study found that exogenous ATP and ADP were unable to protect
the heart, while mitochondrial transplantation significantly reduced myocardial necrosis
and cardiomyocyte apoptosis, markedly decreased infarct size (IS), caspase-3-like activity,
TUNEL, as well as the release of creatine kinase isoenzymes (CK-MB) and cardiac troponin
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I (cTnI), alleviating myocardial injury and significantly enhancing regional and overall
myocardial function recovery after ischemia [32]. Furthermore, autologous mitochondrial
transplantation has unique therapeutic potential for improving ischemia-reperfusion injury
and enhancing myocardial function. Isolation and preparation of autologous mitochondria
from the patient’s body can prevent inflammation and rejection reactions. Masuzawa et al.
observed that autologous mitochondrial transplantation led to the internalization of mito-
chondria by cardiomyocytes, followed by enhanced ATP production and enrichment in the
generation of differentially expressed proteins associated with mitochondrial pathways
and proteins responsible for the production of precursor metabolites related to energy and
cellular respiration. Ultimately, this improved myocardial injury and enhances regional
function [61].

Furthermore, the transplanted mitochondria in the ischemic regions of the heart
exhibit intra- and extracellular functionality [62]. In one study, clusters of transplanted
mitochondria were detected around the endogenous damaged mitochondria and in the
vicinity of the nuclei of cardiomyocytes one hour after injection, and the damaged cells
were protected by increasing oxygen consumption and ATP synthesis [61].

Apart from enhancing the energy supply to the injured myocardium, mitochondrial
transplantation also initiates angiogenic, immunomodulatory, anti-apoptotic, anti-oxidant,
and anti-inflammatory effects. In addition, the transplanted mitochondria can increase the
circulating levels of epidermal growth factor (EGF), growth-regulated oncogenes (GRO),
interleukin 6 (IL-6), monocyte chemotaxis protein 3 (MCP-3), and nuclear factor erythroid2-
related factor 2 (Nrf2), which are related to the recovery of myocardial function [63,64].
During myocardial ischemia/reperfusion, EGF maintains the integrity of the myocardial en-
dothelium by stimulating cardiomyocyte growth, proliferation, and migration [65,66]. After
myocardial infarction, GRO and IL-6 promote vascularization and prevent apoptosis in
the infarcted area. Along with MPC-3, these cytokines can rapidly improve cardiac remod-
eling after myocardial infarction through non-cardiomyocyte regenerative pathways [67].
Nrf2 activation also attenuates myocardial infarct size and preserves cardiac function
through coordinated upregulation of anti-oxidant, anti-inflammatory, and autophagic
mechanisms [57]. In addition, the internalized normal mtDNA can replace damaged
mtDNA and exert a cardio-protective effect at the genetic level [37,68].

Mitochondrial transplantation was clinically tested for the first time in 2016 in pedi-
atric patients with myocardial IRI. Five patients experiencing extracorporeal membrane
pulmonary oxygenation (ECMO) were treated with local injections of autologous normal
mitochondria isolated from the rectus abdominis muscle [69]. The systolic function im-
proved significantly in all five patients, including four children with ischemia-induced
coronary artery obstruction and one child with subepicardial ischemia-induced left ven-
tricular hypertrophy [58]. Taken together, mitochondrial transplantation can improve
myocardial function in animal models and humans and is a promising therapeutic strategy
against cardiac IRI. It can be used alone or in combination with other clinical interventions,
or as an adjunct to other clinical interventions. Given the availability of simple and rapid
techniques for high-purity mitochondrial isolation, this approach can be applied on a
large scale.

3.3. Mitochondrial Transplantation for Tumor Therapy

Mitochondrial dysfunction triggers the release of various death factors such as ROS,
Ca2+, and cytochrome c, resulting in oxidative stress [70] and cellular damage [71]. Aber-
rant mitochondrial function and ROS overproduction in the tumor cells trigger mutations in
mtDNA and nuclear DNA, leading to impaired oxidative phosphorylation that exacerbates
ROS production and creates a vicious cycle [72]. The altered redox balance activates signal-
ing pathways involved in cell survival, proliferation, and angiogenesis, further promoting
tumor growth [73]. Cancer cells undergo metabolic reprogramming with an increase in
glycolysis rates, a phenomenon known as the Warburg effect [74–76]. This transformation
not only allows cancer cells to meet the energy needs for rapid proliferation [7] but also
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underlies radio-resistance and chemoresistance in tumors. Therefore, inhibiting glycolysis
in tumor cells can sensitize them to radiation or chemotherapeutic drugs and overcome
treatment resistance [77,78]. Mitochondrial transplantation in tumor cells can reduce aero-
bic glycolysis, block cell cycle progression by downregulating cycle-related proteins, and
activate the intrinsic apoptosis pathway by upregulating pro-apoptotic proteins, eventually
inhibiting cell proliferation [79]. Sun et al. found that endocytosis-mediated mitochondrial
transplantation from normal human astrocytes to glioma cells rescued aerobic respiration,
attenuated the Warburg effect, and improved radiosensitivity of gliomas. Furthermore,
endocytosis of mitochondria into the glioma cells was mediated by nicotinamide adenine
dinucleotide (NAD+)-CD38-cADPR-Ca2+ signaling [80]. CD38 is a single-chain type I trans-
membrane glycoprotein that catalyzes the generation of cADPR from NAD+ and transports
cADPR into the cell in the form of a homodimer [81]. cADPR acts as a second messenger in
the intracellular signaling cascade that mediates the release of intracytoplasmic Ca2+ and
regulates changes in the cytoskeleton, endocytosis, or exocytosis, which may be responsible
for transcellular mitochondrial transfer [82,83].

Elliott et al. co-cultured the mitochondria isolated from normal breast epithelial cells
(MCF-12A) with breast cancer cell lines (MCF-7, MDA-MB-231, and NCI/ADR-Res). The
introduction of normal mitochondria into the breast cancer cells inhibited proliferation
and enhanced their sensitivity to doxorubicin, abraxane, and carboplatin [84]. Recent
studies have shown that mitochondrial transplantation can also inhibit the proliferation of
melanoma cells and induce apoptosis. Chang et al. isolated normal and A8344G-mutated
mitochondria from homeoplasmic 143B osteosarcoma cells and delivered them to MCF-7
breast cancer cells through passive uptake or Pep-1. Mitochondrial transplantation induced
apoptosis in the recipient cells by increasing nuclear translocation of apoptosis-inducing
factor AIF [85]. Yu et al. administered intact mitochondria extracted from mouse livers
into mice harboring subcutaneous and metastatic melanomas via the intravenous route.
Transplantation of the healthy mitochondria induced cell cycle arrest and apoptosis by
downregulating transcription of the anti-apoptotic protein BCL-2 and upregulating the
mitochondria-associated apoptosis-inducing factor gene (Aifm3) transcripts. In addition,
autophagy-related proteins such as LC3 were also upregulated at the transcriptional level.
Finally, mitochondrial transplantation induced transcriptional silencing of proliferation-
related and anti-apoptotic genes via histone methylation [86].

Hypoxia is one of the recognized hallmarks of cancer and contributes to the resis-
tance of tumor cells to chemotherapy and radiotherapy. High glycolysis rates in hypoxic
tumor cells support rapid tumor cell proliferation, and the metabolites create an acidic
environment that is conducive to tumor growth [87,88]. Spees et al. treated A549 cells
with ethidium bromide to induce mtDNA mutations and depletion and inhibit aerobic
respiration. Following co-incubation of the mtDNA-depleted (A549ρ0) cells with human
bone marrow-derived skin fibroblasts, the latter formed cytoplasmic extensions toward the
target cells. Mitochondrial transplantation from the fibroblasts via these extensions restored
oxidative phosphorylation in A549ρ0 cells, decreased the level of oxygen deprivation in
the tumor cells, and attenuated the degree of malignancy [89].

In conclusion, mitochondrial transplantation has shown significant potential in the
field of tumor therapy. Transplantation of healthy mitochondria into cancer cells can
inhibit cell proliferation, enhance sensitivity to chemotherapy and radiation, and induce
apoptosis. In addition, mitochondrial transplantation has been shown to rescue aerobic
respiration and attenuate the Warburg effect in glioma and breast cancer cells, improve their
radiosensitivity [80,90], induce apoptosis in melanoma cells, and inhibit lung cancer cells
under hypoxic conditions [86,89]. These findings highlight the potential of mitochondrial
transplantation as a novel tumor treatment strategy.

4. Discussion

In this review, we have summarized the recent research on the therapeutic potential of
mitochondrial transplantation in diseases related to defective mitochondria. Neurodegener-
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ative disorders such as Alzheimer’s disease, Parkinson’s disease, aging-related neuropathy,
type 2 diabetes, and cancer are associated with mitochondrial dysfunction [91–94]. Mito-
chondrial transplantation has been applied in the therapeutic management of neurodegen-
erative disorders due to its ability to restore or enhance normal mitochondrial functionality
and energy supply, thereby exerting neuroprotective effects. In addition, mitochondrial
therapy for cardiac ischemia-reperfusion has progressed to clinical testing. Intact mitochon-
dria can rescue target cells in injured tissues by restoring normal physiological functions,
maintaining cellular homeostasis, and replacing the damaged mitochondria through fusion
and fission, which remodels the mitochondrial network and promotes cell survival [95].

Mitochondrial dysfunction in tumor cells is closely related to tumorigenesis and
progression, and studies have revealed multifaceted roles of mitochondrial dynamics,
metabolic reprogramming, and signaling pathways in tumorigenesis. Furthermore, selec-
tive targeting of mitochondria in cancer cells can overcome radioresistance and chemoresis-
tance by restoring mitochondrial function [96]. The efficacy of mitochondrial transplanta-
tion combined with radiotherapy and chemotherapy against resistant cancer cells will have
to be evaluated through animal models and clinical trials.

Unfortunately, there is currently no effective method for the long-term storage of mito-
chondria, which have to be used immediately after extraction. The isolated mitochondria
are prone to inner and outer membrane damage, resulting in greatly reduced function
and activity [97]. Therefore, it is crucial to establish methods for optimal mitochondrial
isolation, quality control, storage, and transplantation in order to preserve intact and viable
mitochondria for clinical applications.

Monogenic mitochondrial diseases are caused by specific gene mutations that affect
mitochondrial function, such as mitochondrial encephalopathy, lactic acidosis, and stroke-
like episodes (MELAS) syndrome, Leigh syndrome, and Neuropathy, ataxia, and retinitis
pigmentosa (NARP) syndrome [98–100]. Mitochondrial transplantation has the potential
to treat monogenic mitochondrial diseases by restoring normal mitochondrial function
and alleviating symptoms associated with these diseases. Taivassalo et al. found that
mitochondrial myopathy patients have limited ability to extract usable oxygen from the
blood [101]. Due to inadequate energy for intracellular magnesium transport, intracellular
hypomagnesemia may be a contributing factor to MELAS syndrome [102]. From this
perspective, mitochondrial transplantation may also improve aerobic metabolism, enhance
energy production, and play a role in the treatment and prevention of stroke-like episodes
in MELAS syndrome. Although mitochondrial transplantation provides some hope for the
targeted treatment of monogenic mitochondrial diseases, there is still a long way to go for
the successful application of this method in laboratory experiments and clinical practice.

Autologous mitochondrial transplantation is a promising therapeutic intervention for
various diseases. Since mitochondria are processed outside the body and reintroduced
into the same patient, this therapy would be of high specificity and would eliminate
post-transplantation immune rejection. From the perspective of precision medicine, mi-
tochondrial transplantation can be effective against different pathological processes. We
also believe that every patient with mitochondrial defective diseases will possess their own
mitochondria biological agents in the near future.
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