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Abstract: With the explosion research on the gut microbiome in the recent years, much insight has
been accumulated in comprehending the crosstalk between the gut microbiota community and host
health. Acute pancreatitis (AP) is one of the gastrointestinal diseases associated with significant
morbidity and subsequent mortality. Studies have elucidated that gut microbiota are engaged in
the pathological process of AP. Herein, we summarize the major roles of the gut microbiome in
the development of AP. We then portray the association between dysbiosis of the gut microbiota
and the severity of AP. Finally, we illustrate the promises and challenges that arise when seeking to
incorporate the microbiome in acute pancreatitis treatment.

Keywords: gut microbiota; acute pancreatitis; dysbiosis of intestinal flora; intestinal barrier
dysfunction

1. Introduction

Acute pancreatitis (AP) is a type of inflammatory response in which pancreatic en-
zymes are activated in the pancreas due to multiple etiologies, causing self-digestion,
edema, hemorrhage and even necrosis in the pancreatic tissue [1,2]. AP occurs due to
various causative factors, such as alcohol, infection, obstruction and intestinal microe-
cological factors. The intestines are connected to the outside world and need to fight
against the invasion of outside bacteria and other pathogens, and at the same time, the
intestines contain many colonizing bacteria. The immune system monitors and responds
to the intestinal microbial consortium with both tolerance and intolerance. The pancreas
maintains close communication with the digestive tract through the pancreatic ducts. In-
testinal dysfunction is a common complication of severe acute pancreatitis (SAP) and
an important factor contributing to the development of the disease and even inducing
multi-organ dysfunction [3,4]. Dysbiosis of the intestinal flora may play an important role
in the pathogenesis of AP and affect the prognosis, including structural disorders of the
intestinal flora and bacterial translocation [5]. It may also affect host metabolism, increase
the production of toxic metabolites and affect the treatment of AP. Intestinal dysfunction
includes intestinal mucosal barrier damage and intestinal dysmotility. In recent years, there
has been increasing evidence that the intestinal flora plays an important role in the progres-
sion of AP and that the balance of intestinal microecology can reduce bacterial overgrowth
and the occurrence of intestinal-derived infections by regulating the immune system and
metabolic pathways and forming a biological barrier in the intestinal mucosa. Moreover,
the resumption of feeding in AP patients remains controversy. Some doctors believe AP
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should be managed with aggressive hydration with intravenous fluids and fasting, while
other doctors believe oral feeding should be recommenced in mild pancreatitis once pain
and nausea and vomiting have resolved. This controversy is focused on the relationship
between gut microbes and AP. The doctors insisting on fasting believe the occurrence of AP
is closely correlated with the disruption of commensal microbes in the gut and colonization
of pathogens. The doctors advocating for early oral feeding believe the recovery of intestine
function will aid the reconstruction of gut microbiota and thus promote the recovery of
health. Thus, understanding the complexity and molecular aspects of the link between
gut microbes and health will help lay the groundwork for new therapies that have been
developed [6].

2. Dysbiosis of Intestinal Flora in Acute Pancreatitis

The occurrence of AP is inextricably linked to intestinal dysbiosis [6]. There are more
than 1500 species of bacteria in the human intestinal tract, and the intestinal flora is char-
acterized by bacteria of varying dynamics, number, variety and complexity. Intestinal
microbiota include beneficial bacteria, intermediate or conditionally pathogenic bacteria
and harmful bacteria. The interdependence and confrontation among these three types of
bacteria maintain the stability of the intestinal microenvironment. During the development
and progression of AP, abnormal secretion of trypsin and destruction of the pancreatic
structure lead to abnormal pancreatic secretion, which in turn leads to an imbalance of
homeostasis in the body and changes in the intestinal flora. It has been shown that intesti-
nal flora can regulate intestinal mucosal barrier function by affecting intestinal mucosal
epithelial cell renewal, intestinal permeability, release of intestinal antimicrobial peptides
and the intestinal mucus layer. Zhu et al. found that the rate of bacterial detection was
proportional to the severity of the patients’ disease [7]. It was shown that Escherichia coli,
Enterococcus, Enterobacter, Immunobacterium, Shigella fowleri and Bacillus coagulans were the
main intestinal pathogenic bacteria detected in peripheral blood. Escherichia coli, Enterococ-
cus and Enterobacteriaceae are documented as the main pathogens of secondary intestinal
infections caused by AP [8]. It was reported that in AP, an imbalance exists in the flora
ratio [9,10]. Intestinal aerobic bacteria showed a significant increase in their proportion,
represented by Escherichia coli, Enterococcus, Enterobacter and Streptococcus, while anaer-
obic bacteria showed inhibition in growth, represented by Bifidobacterium, Bacteroidetes
and Prevotella [6]. The increase in pathogenic bacteria could disrupt the intestinal barrier
and increase the intestinal permeability and bacterial translocation. Increased intestinal
permeability leads to the occurrence of pathogen-associated molecular patterns (PAMPs) in
the blood circulation, activating the innate immune response. The trigger of inflammation
further promotes the development of AP. These studies suggest that the disturbance of the
intestinal flora is closely associated with AP.

The disturbance of the intestinal flora is associated with the disruption of the intestinal
mucosal barrier. The disruption of the intestinal barrier contributes to the development of
AP. A normal intestinal mucosal barrier consists of mechanical, chemical, immune and bio-
logical barriers. Studies have shown that the intestinal microbiota can regulate the intestinal
mucosal barrier function by affecting intestinal epithelial cell regeneration, intestinal perme-
ability, intestinal antimicrobial peptide release and intestinal mucosal layers [11–14]. There
are many reasons for the disruption of the intestinal mucosal barrier. Fasting, gastrointestinal
decompression and other therapeutic measures commonly used in the treatment of AP can
cause intestinal flora disruption [15,16]. Additionally, microcirculatory disorders caused by
reduced blood volume can lead to intestinal ischemia and hypoxia, thus weakening intestinal
dynamics [17]. All the above can affect the normal excretion of harmful substances and thus
leads to dysbiosis of the intestinal flora. The simultaneous use of a large amount of fluids
during treatment can lead to intestinal reperfusion, resulting in intestinal wall cell dysfunc-
tion, increased intestinal ischemia–reperfusion injury, reduced intestinal barrier function and
disruption of the intestinal microecological balance [18]. During the treatment of pancreatitis,
broad-spectrum antibiotics are often used to control the infection, resulting in the suppres-
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sion of normal intestinal flora [19]. In addition to these aforementioned factors affecting
the intestinal mucosa, the role played by intestinal dysbiosis should not be underestimated.
Intestinal commensal microbes themselves form a direct intestinal barrier by competing for
space and nutrition, resisting colonization by pathogens [20]. Moreover, commensal microbes
also secrete short-chain fatty acids, which modulate gut inflammation. When the intestinal
mucosal barrier is disrupted, even health-promoting bacteria can weaken host health and
promote pancreatitis. Due to the lack of inhibition of the normal flora, fungi and drug-resistant
pathogens in the intestine are more likely to multiply [21]. The imbalance of flora species
and ratios disturbs the environmental microecological balance of the intestine [22]. All of the
above therapeutic measures lead to further dysbiosis and translocation of intestinal ecology,
the increased release of endotoxins and increased inflammatory response in patients with AP.
These studies suggest that the disturbance of the intestinal flora is closely correlated with AP.

3. Effect of Intestinal Flora on Acute Pancreatitis

An increase in pathogenic bacteria and a decrease in beneficial bacteria have been
observed in AP patients after gut microbiota dysbiosis [23]. The beneficial bacteria that
have been reported include Bacteroidetes, Lactobacillus and Bifidobacterium. These beneficial
bacteria contribute substantially to the health status of the host by inhibiting the growth of
harmful bacteria and secreting substances essential for gut health [24–26]. The pathogenic
bacteria that have been reported include Enterobacteriaceae, Clostridia and Bacilli. These
pathogenic floras also participate in relevant pathways in the development of AP. The
ratio of beneficial bacteria to pathogenic bacteria maintains the normal functioning of the
intestine. This ratio is significantly altered in pancreatitis. It was reported that the number
of Escherichia/Shigella increased in rats with pancreatitis, and further research revealed
the bacteria aggravated pancreatitis through targeting intestinal epithelial cells and being
translocated by activated regulatory T cells, which causes necrosis of the pancreas [27].
Moreover, the elevation of Escherichia/Shigella increases the abundance of Toll-like receptor
4 (TLR4)/MyD88/p38 mitogen-activated protein (MAPK) and leads to endoplasmic reticu-
lum stress (ERS) signaling-induced intestinal epithelial injury [28]. The TLR4/MyD88/p38
MAPK pathway is associated with tight-junction proteins. ERS signaling is not only asso-
ciated with tight-junction proteins but also inflammation. Among these molecules, TLR4
plays a role in the pathogenesis of AP [29]. In a nutshell, the destruction of intestinal
epithelial cells further causes necrosis of the pancreas.

Gut microbiota not only directly promote AP but also indirectly trigger relevant
inflammation and are associated with the severity of AP. The diaminopimelic acid (DAP)-
containing bacteria Romboutsia and Allobaculum are increased in SAP rat models. The
increasing abundance of DAP activates the NOD1/RIP2 inflammatory signaling pathway
and affects the systemic inflammatory response [30]. Gut-microbiota-derived nicotinamide
mononucleotide alleviates AP by being transported to pancreas and converted into NAD+,
which further activates pancreatic SIRT3 signaling through the SIRT3-PRDX5 pathway.
SIRT3 improves the oxidative damage and inflammation caused by AP and then acetylates
PRDX5, which aggravates the cell injury of pancreatic acinar cells [31]. Bifidobacterium spp.
and their metabolite lactate can protect against multiple-organ dysfunction syndrome in
AP patients via inhibition of pancreatic and systemic inflammatory responses [32]. Higher
abundances of Proteobacteria phylum, Enterobacteriaceae family, Escherichia-Shigella genus
and Klebsiella pneumoniae but lower abundances of Bifidobacterium genus were found in
AP patients with acute respiratory distress syndrome [33].This association between gut
microbiota and acute respiratory distress syndrome may be related to the lung microen-
vironment [33]. There are other reports demonstrating an association between specific
intestinal floras and the development of acute pancreatitis, as achieved through special-
ized molecular mechanisms. According to Yue’s research, the decreasing abundance of
Lactobacillus is associated with the downregulation of Paneth cells, which are essential
components of the intestinal epithelium. Interestingly, the upregulation of Paneth cells
could alleviate AP, thus indicating that the loss of Lactobacillus can indirectly exacerbate
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pancreatic damage [34]. This research also indicated the essential regulatory role of gut
microbiota in intestinal epithelial cells and the development of AP. More research indicated
the crosstalk between gut microbiota and intestinal epithelial cell receptor activation in the
development of AP. It was identified that there existed a bidirectional modulation between
the gut microbiota and NLRP3 in the progression of AP, which suggests the interplay of
the host and microbiome during AP [35]. The researchers observed synchronous changes
in gut microbiota restoration and intestinal NLRP3 inflammasome inactivation during
AP recovery.

4. Molecular Actors in Acute Pancreatitis

Besides the intestinal flora itself, its metabolites have an effect on intestinal barrier
function in AP. SCFAs play an important role in intestinal barrier function. SCFAs are
metabolites produced by gut microbiota. SCFAs are a fermentative product of gut bac-
teria [6]. There are many bacteria that produce SCFAs, including Blautia hydrotrophica,
Akkermansia muciniphila, Bacteroides vulgatus, Coprococcus catus, Megasphaera elsdenii, Ru-
minococcus bromii, Clostridium butyricum, Roseburia inulinivorans and so on. According to
some research, SCFAs have been shown to maintain the mechanical barrier, enhance the
immune barrier and regulate the biological barrier of the intestinal mucosa [36–38]. Me-
chanically speaking, SCFAs play crucial roles in the growth of intestinal epithelial cells and
the expression of Zo-1 and Occuludin, which are tight-junction proteins in the intestinal
epithelium. Intestinal epithelial cells can produce antimicrobial peptides, which participate
in the immunity of the intestine. The pH of the gut can also be reduced by SCFAs, leading
to an increase in beneficial bacteria. Recent studies have also shown that SCFAs play vital
roles in SAP-associated lung injury. The possible mechanisms underlying this include
inhibition in the proliferation of pathogens, anti-inflammatory effects, enhancement of
intestinal epithelial barrier, a reduction in bacterial translocation and immunomodulatory
effects [6].

Bile acids (BAs) and lipopolysaccharides (LPSs) are two more common metabolites
closely associated with AP. BAs are also important microbiota metabolites that affect
the intestinal barrier and important cholesterol metabolites that can solubilize dietary
lipids. Through their antimicrobial activity and by activating host signaling pathways that
maintain gut homeostasis, BAs can shape the microbiota composition [39]. The dysbiosis
of gut microbiota caused by bile acids leads to the dysregulation of epithelial transport
and barrier function, which interacts with the pathogenesis of pancreatitis [40]. BAs are
the leading cause of AP, and research has been carried out exclusively on the retrograde
infusion of bile acids into the pancreatitis duct. However, systemic bile acids affect the
severity of acute pancreatitis under different disease conditions. Research has found
that hydrophobic BAs aggravate AP when AP is independent of serum cholecystokinin
(CCK). However, BAs reverse CCK-induced injury based on an interaction with the CCK
receptor on acinar cells [41,42]. Another metabolite worth mentioning is lipopolysaccharide
(LPS). LPSs are an important component of the outer membrane of gram-negative bacteria.
According to Vonlaufen’s research, it is believed that LPSs activate the Toll-like receptor 4
(TLR4) and CD 14 pathways of innate immunity, leading to pancreatic damage [43].

Some molecular actors affect the occurrence and development of AP by affecting the
gut microbiota. The endogenous cannabinoid system (ECS) is widely expressed in the
human body and plays important roles in gastrointestinal functions. Interaction between
the ECS and intestinal flora regulates the permeability of the intestinal epithelial barrier [44].
It is reported that the increasing number of ligands and receptors in the ECS in the pancreas
is associated with AP. The underlying mechanism is the ECS’s association with the brain–
gut–microbiota axis and effect on systemic inflammation [45]. Cannabinoids (CBs) exert
their activities of regulating inflammation and gut–adipose tissue signaling through binding
to the CB1 and CB2 receptors and non-CB1/non-CB2 receptors such as G-protein-coupled
receptor 55 (GPR55) or the transient receptor potential channels [46]. These receptors inhibit
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adenylate cyclase and the production of cAMP, attenuating the protein kinase A pathway,
and thus regulate the inflammation of pancreas.

These newly discovered molecules provide potential therapy targets (Table 1). TLR4
mediates the recognition of bacterial LPSs and is thought to be highly relevant to systemic
inflammatory response syndrome. TLR4 has been widely used as a potential mechanistic
target for the treatment of AP [34]. SAP stimulated by caerulein (HY-A0190) and LPSs
can be reduced by Sitagliptin [47]. Biliary pancreatitis is also one of the main causes of
AP. The proposed mechanism is the reflux of bile acids into the pancreatic duct. The
increase in bile acid concentration causes an increase in cytoplasmic calcium and further
causes damage to pancreatic acinar cells, so targeting bile acid is also a potential treatment
method necessitating further research [48]. In addition, NLRP3 was reported to play
an essential role in promoting inflammation in AP. NLRP3 is one of the NLR proteins,
mediating caspase-1 activation and the secretion of the pro-inflammatory cytokine IL-1β in
response to microbial infection and cellular damage [35]. NLR3 also showed a bridging
role in gut microbiota and AP. Recently, it has been reported that gut microbiota can
secret nicotinamide mononucleotide, which alleviates AP by activating pancreatic SIRT3
signaling [31]. Further studies revealed that during the development of acute pancreatitis,
microbiota dysbiosis is promoted by inflammatory factors. Gut microbiota dysbiosis in turn
ameliorates the severity of AP, including mitochondrial dysfunction, oxidative damage and
inflammation. It was proven that nicotinamide mononucleotide mitigates AP-mediated
mitochondrial dysfunction, oxidative damage and inflammation by increasing pancreatic
NAD+ levels. Molecular lab tests indicated that gut-microbiota-derived nicotinamide
mononucleotide alleviates the severity of AP by activating the SIRT3-PRDX5 pathway. In
conclusion, the gut microbiome influences AP in multiple ways (Figure 1).
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Figure 1. The close relationship between gut microbiota and the activation of AP. In AP, significant
disorganization of the intestinal flora occurs. The first manifestation is the abnormal ratio of intestinal
flora species, which is mainly characterized by an increase in harmful bacteria and a decrease
in probiotics, resulting in a serious imbalance in the ratio of harmful bacteria to probiotics. Secondly,



Int. J. Mol. Sci. 2024, 25, 1159 6 of 14

the alteration in gut flora leads to the explosion of harmful microbiome-released substances. The
metabolites of harmful bacteria increase, while the beneficial metabolites of probiotics (e.g., SCFAs)
decrease. Altered intestinal permeability also accelerates the progression of AP. The intestinal mucosal
barrier, which can be directly and indirectly disrupted, is also affected, leading to translocation and
direct invasion of the flora. These changes will cause harmful substances to accumulate in the
intestine, directly stimulate the TLR4 receptor of the epithelial cells in the intestine, activate the
relevant inflammatory response pathways and ultimately accelerate the destruction of pancreatic
cells and aggravate AP. Some harmful substances may even enter the blood circulation directly and
activate the body’s immune response, thus causing the development of AP.

Table 1. Newly discovered molecules associated with the gut microbiome and their mechanisms in
AP. (The pictures of structural formulae are from Human Metabolome Database, https://hmdb.ca/,
accessed on 1 November 2023).

Molecules Correlated
with AP Potential Roles of Molecules Year

Discovered Structural Formula

Nicotinamide
mononucleotide

Activates the SIRT3-PRDX5
pathway and alleviates AP by

activating pancreatic SIRT
signaling [31]

2023
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5. Future and Prospects

With an enhanced understanding of gut microbiota and pancreatitis, the treatment
of pancreatitis has been constantly improving. The application of probiotics and the early
recovery of diet are considered important in the recovery of AP. Probiotics are beneficial
bacteria that can be consumed from various sources and can improve health in different
ways. In inflammatory diseases, probiotics have many functions. First of all, probiotics
compete with harmful bacterial communities to inhibit the growth of pathogenic bacte-
ria [55]. Secondly, probiotics stimulate the intestinal mucosa to secrete mucin, inhibit the
binding of pathogens to the intestinal epithelium and reduce their passage through the
intestinal wall into peripheral organs [56]. Thirdly, probiotics promote the biosynthesis of
glutathione, improve the dysfunction of the intestinal mucosal barrier, reduce oxidative
stress, reduce the permeability and apoptosis level of the ileal mucosa and thereby inhibit
the migration of intestinal bacteria [57]. Fourthly, probiotics affect the function of immune
cells in various ways (for example, by regulating the production of pro-inflammatory and
anti-inflammatory cytokines) [58]. Thus, the application of probiotics in AP can restore the
intestinal microbiota balance and prevent bacterial translocation and infection. In pancreati-
tis, the most commonly used probiotics are Lactobacillus acidophilus, Lactobacillus bulgaricus
and Bifidobacterium bifidum [59–61]. Studies have shown that probiotics may shorten the
length of hospital stay and reduce the infection rate in mild AP [62]. Moreover, it has been
reported that probiotic supplementation for experimental AP did not show an adverse
effect on mortality but showed a positive effect of reduced histopathology of the pancreas
and bacterial translocation to the pancreas and mesenteric lymph nodes [63]. In addition, a
study by Hooijmans et al. also revealed that single-strain probiotic supplementation might
be more effective in reducing the risk of bacterial translocation than multi-strain supple-
mentation. The safety of probiotics is also monitored. The probiotics used in clinical trials
are various strains of bacteria that are intended to modulate the gut microbiota and enhance
the host immune system, such as Lactobacillus paracasei ssp. paracasei F19 and Bifidobacterium
lactis Bb12. They have been tested for different conditions, such as infectious diseases and
inflammatory bowel diseases [64]. The safety of probiotics clinical trials is generally good,
but there are some potential risks and adverse effects that need to be monitored. These
include bacteremia, fungemia, endocarditis, sepsis, organ failure, antibiotic resistance and
immune dysregulation [65]. However, these adverse events are only documented in case
reports of individuals. We lack specific statistics of the adverse effects of probiotics.

Since gut microbiota are closely associated with the development of AP, gut microbiota
may have predictive values in AP [66]. With the emergence of the concept of precision
medicine, the study of biomarkers has become particularly important. Precision medicine
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is an emerging approach to disease prevention and management that takes into account
differences in an individual’s genes, environment and lifestyle habits [67,68]. Precision
medicine is a new medical concept and medical model based on individualized medicine
and developed with the cross-application of bioinformatics and big data science [69,70].
The essence of precision medicine is to analyze, identify, validate and apply biomarkers
to a large sample of people and specific disease types through analyzing the genome and
proteome and other genomics technologies and cutting-edge medical technologies, so as to
accurately search for the causes of diseases and the targets of treatments and accurately
categorize the different states and processes of a disease, and ultimately to achieve the goal
of personalized and precise treatments for diseases and specific patients and to improve the
effectiveness of disease diagnosis and treatment as well as prevention. All in all, this im-
proves the efficiency of disease diagnosis and treatment and prevention. AP is categorized
as mild or severe, with or without necrosis. For different types of pancreatitis, the prognosis
and treatment are very different. For instance, acute necrotizing pancreatitis has a higher
mortality and worse outcome than non-necrotizing pancreatitis. Current research suggests
that changes in the intestinal flora have a close relationship with the severity and prognosis
of pancreatitis (Figure 2). Therefore, the intestinal flora has the potential to become a
marker for measuring the prognosis of pancreatitis, thus realizing the precise treatment
of pancreatitis. Studies show that the intestinal microbiota in necrotizing pancreatitis
patients are distinct from those in non-necrotizing pancreatitis patients’ intestinal micro-
biota [66]. Necrotizing pancreatitis patients presented a lower abundance of Bifidobacterium
and Blautia and higher abundance of Enterococcus and Escheichia/Shigella compared with
non-necrotizing pancreatitis patients. It is worth mentioning that Bifidobacterium and Blautia
are considered probiotic candidates, while Enterococcus and Escheichia/Shigella are regarded
as possible pathogens. Surprisingly, both necrotizing pancreatitis and non-necrotizing
pancreatitis are associated with a decrease in certain probiotic microbes and increase in
opportunistic pathogens. This research also pointed out that the gut microbiota’s influence
on the progression of the narcotizing of the pancreas may be associated with ketone body
or benzoate metabolism [71]. Thus, Enterococcus faecium and Finegoldia magna are potential
biomarkers for necrotizing pancreatitis [66]. Research by others showed that different types
of pancreatitis are associated with different gut microbiota compositions. The gut micro-
biota class Melainabacteria was specifically mentioned due to its strong causality to acute
necrotizing pancreatitis. This association between gut microbiota and pancreatitis may
indicate biomarkers for the non-invasive identification of AP [72]. Moreover, researchers
found that an alteration in gut microbiota may indicate the possibility of complications.
One study showed that during the early stage of AP, higher abundances of the Proteobacteria
phylum, Enterobacteriaceae family, Escherichia-Shigella genus and Klebsiella pneumoniae but
lower abundances of the Bifidobacterium genus were strong indications for the occurrence of
acute respiratory distress syndrome in AP patients [33]. Not only do gut microbiota show
potential as biomarkers in AP; microbiome-associated substances also show potential in AP.
It was reported in pancreatitis mouse models that an increased abundance of Streptomyces,
Turicibacter and Methylobacterium was associated with pancreatic fibrosis [71]. Further
experiments revealed that dysbiosis of the gut microbiota may increase CD4+ T cells and
macrophage infiltration in pancreas tissues and modulate fibrotic progression. Since gut
microbiota play a key role in AP, we can determine the severity of pancreatitis based on
changes in the intestinal flora, which will determine the appropriate time to start eating and
restore intestinal function as early as possible without aggravating the intestinal infection.
Considering these studies, interventions based on probiotic intake could be designed to
ameliorate the conditions of AP patients. Based on the relationship between the gut and
AP, we can not only intervene in pancreatitis by directly interfering with the gut flora
but also alleviate the inflammatory response associated with pancreatitis by influencing
the pathways associated with the gut flora. AP-associated dysbiosis is often associated
with activation of intracellular inflammatory pathways. The most common pathways are
the TLR4-related pathway and CD14 pathway, as well as the NOD1/RIP2/NF-κB-related



Int. J. Mol. Sci. 2024, 25, 1159 9 of 14

pathway. Inhibiting these inflammatory pathways activated by aberrant floras by designing
relevant drug molecules is not a new idea for the treatment of AP.
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With the further study of AP and intestinal floras, researchers have realized that in-
testinal microbiota are important modulatory elements in the human body. The interaction
of intestinal microbiota with other organs provides multiple promising therapeutic targets.
New concepts have been introduced to represent these newly discovered interactions, such
as lung–gut axis, brain–gut axis and liver–gut–heart axis. AP can cause various complica-
tions, the most serious of which is acute respiratory distress syndrome (ARDS), which is
diffuse damage to the lung [73]. By regulating the intestinal microbiota, reducing bacterial
translocation and pathogen-associated molecular pattern (PAMP) production, the intestinal
permeability and inflammatory response can be reduced [74]. This is referred to as the
lung–gut axis. The protection of lung tissue can be achieved through improving intestinal
barrier function, preventing pancreatic enzymes and toxins from entering the lung, balanc-
ing the immune system, inhibiting excessive pro-inflammatory factors and oxidative stress
and enhancing anti-inflammatory factors and antioxidant capacity [75]. Another gut–organ
axis is the gut–brain axis, which can regulate the balance of gut microbiota that may affect
the function of the pancreas and reduce inflammation reactions. Through the release of
neurotransmitters and hormones, the axis can inhibit the stress response, which in a way
reduces the damage of pancreatitis. The protection of the integrity of the intestinal barrier
by neuroimmune pathways can prevent intestinal endotoxins from entering the blood-
stream and cause systemic inflammatory reactions [76]. Last but not least, in the context
of the liver–gut–heart axis, the interconnectedness of different organs plays a crucial role
in health. An unhealthy liver can influence the gut microbiota, which in turn can impact
the cardiovascular system. Within the liver–gut axis, reducing the production of intestinal
endotoxins can lower the risk of a systemic inflammatory response and multiple-organ
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failure caused by acute pancreatitis (AP) [77]. In the gut–heart axis, regulation of the car-
diovascular system can enhance the circulatory condition of AP patients, thereby reducing
the risk of stroke and heart failure associated with AP. Lastly, within the liver–heart axis,
regulation of metabolic pathways can improve the nutritional status of AP patients, which
in turn can reduce the risk of complications such as consumptive disorders and infections
associated with AP [78].

6. Conclusions

In this review, we have discussed the essential role of gut microbiota in AP. We also
illustrated how gut microbiota dysbiosis, bacterial translocation and molecular actors affect
the pathogenesis and progression of AP and its complications. The potential therapeutic
strategies that target the gut microbiota are highlighted, such as probiotics. Furthermore,
we have explored the emerging concepts of gut–organ axes, providing new insights into the
mechanisms and interventions of AP. However, more studies are needed to elucidate the
causal relationship between gut microbiota and AP to identify the specific microbial strains
and metabolites that are involved and to evaluate the safety and efficacy of microbiota-
based therapies in clinical settings.
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