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Abstract: Lung squamous cell carcinoma (LUSC) is one of the most common malignancies. There is
growing evidence that glycolysis-related genes play a critical role in tumor development, maintenance,
and therapeutic response by altering tumor metabolism and thereby influencing the tumor immune
microenvironment. However, the overall impact of glycolysis-related genes on the prognostic
significance, tumor microenvironment characteristics, and treatment outcome of patients with LUSC
has not been fully elucidated. We used The Cancer Genome Atlas (TCGA) dataset to screen glycolysis-
related genes with prognostic effects in LUSC and constructed signature and nomogram models
using Lasso and Cox regression, respectively. In addition, we analyzed the immune infiltration and
tumor mutation load of the genes in the models. We finally obtained a total of glycolysis-associated
DEGs. The signature model and nomogram model had good prognostic power for LUSC. Gene
expression in the models was highly correlated with multiple immune cells in LUSC. Through this
analysis, we have identified and validated for the first time that glycolysis-related genes are highly
associated with the development of LUSC. In addition, we constructed the signature model and
nomogram model for clinical decision-making.

Keywords: lung squamous cell carcinoma; glycolysis; signature model

1. Introduction

Lung cancer seems to be the major cause of cancer deaths globally [1]. Non-small cell
lung cancer is the most common histological form of lung cancer, accounting for more than
85% of all occurrences, and is characterized by high metastasis and recurrence, including
the following four subtypes: lung adenocarcinoma, lung squamous carcinoma (LUSC),
large cell carcinoma, and pulmonary neuroendocrine carcinoma, with LUSC accounting for
approximately 30% of all lung cancer cases [2].

LUSC is treated in a similar way to the vast majority of solid tumors. The main treat-
ment modalities currently include surgery, chemotherapy, radiotherapy, immunotherapy,
and targeted therapy. Despite significant advances in lung cancer prevention, diagnosis,
and therapy, the 5-year overall survival rate for lung cancer patients is just 19% [3,4]. Gly-
colysis is quite important for the growth of certain malignant tumors, as it can provide the
energy required by active cancer cells to promote the growth of such cancer cells and other
important tumor behaviors [5]. During this process, glucose will be broken down into
ethanol and aldehydes, which will provide the energy and molecular structure needed for
other intracellular substances that contribute to the growth and development of tumors [6].
Therefore, in this study, we determined the risk genes and their correlation coefficients
associated with the progression of LUSC based on the TCGA LUSC database [7] and estab-
lished a prognostic model for LUSC based on various clinical indicators, thus providing a
basis for early intervention in LUSC patients.
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2. Results
2.1. Identification of DEGs with Prognostic Effects

A total of 5676 DEGs were obtained from our study. 2288 genes upregulate, while
3388 genes upregulate (Figure 1A).
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The DEGs were enriched in the p53 signaling pathway, skin development, the cGMP-
PKG signaling pathway, second-messenger-mediated signaling, and other processes
(Figure 1C).

2.2. Signature Model Construction

A total of 109 glycolysis-associated DEGs were eventually obtained. After dimension-
ality reduction based on lasso, a model including four genes (AGL, ALDOA, ADH1B, and
ALDH3B1) was obtained (Figure 2A,B). Riskscore = (−0.0045) × AGL + (0.0633) × ALDOA
+ (0.0048) × ADH1B + (0.0937) × ALDH3B1, where lambda.min = 0.0523 and the KM curve
shows that log-rank p < 0.01 indicates a significant difference between the survival times in
the high Riskscore score group and the low Riskscore score group (Figure 2D). The ROC
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curves of the model with AUC = 0.53 at 1 year, AUC = 0.62 at 3 years, and AUC = 0.66
at 5 years indicated that the risk model was a good predictor of squamous lung cancer
(Figure 2). In addition, we found positive correlations with macrophages, endothelial cells,
and NK cells and negative correlations with uncharacterized cells (Figures 3 and 4).
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Figure 4. Correlation analysis of signature models and immune cells using CIBERSORT.

2.3. Construction of a Nomogram Model

We developed a line plot capable of predicting OS at 1, 3, and 5 years using the
expression of glycolysis-related DEGs and other clinical features (including age, gender,
and TNM stage) in squamous lung cancer. AGL, ALDOA, and ADH1B were eventually
included in the nomogram model (Figure 5). The column line plot has a C-index of 0.63.
To read the column line plot, a vertical line should be drawn up to the top dotted row,
assigning points to each variable. The total points for the patients can then be summed,
and the probabilities of 1-, 3-, and 5-year OS can be obtained by plotting vertical lines from
the total points rows. Calibration plots of the 1-, 3-, and 5-year OS probabilities show good
agreement between the OS predicted by the column line plots and the actual OS of patients
with squamous lung cancer.
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2.4. Immunological Profile and Tumor Mutational Load Analysis

The findings of the immunological infiltration demonstrated a positive correlation
between Purity and the expression of AGL and ALDOA, and a negative correlation between
Purity and ALDH3B1. Whereas the expression of AGL was positively connected with
CD4+ T cells, macrophages, and neutrophils, the expression of ALDOA was negatively
correlated with B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells. Purity and ADH1B expression were negatively connected, whereas B cell, CD8+ T
cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell expression were positively
correlated (Figure 6).
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Tumor mutation load data revealed a negative correlation between ADH1B expression
and TMB but no correlation between AGL, ALDOA, or ALDH3B1 expression and TMB
(Figure 7).
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2.5. Validation of the Glycolysis-Related Genes in Tissue Samples

To confirm the gene signature’s reliability, we used immunohistochemical data to
detect protein levels in four genes in normal lung tissue samples and lung cancer cell lines.
The results showed that ALDOA, ADH1B, and ALDH3B1 were significantly overexpressed
in tumor samples compared to normal samples (Figure 8).
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3. Materials and Methods
3.1. Data Acquisition

The Cancer Genome Atlas (TCGA), a comprehensive and publicly accessible database,
was utilized as the primary source for gathering data on tumor samples. Specifically,
this research incorporated information from 501 distinct tumor samples, each providing
valuable insights into various cancerous conditions. In addition to the TCGA, this study
also employed data from the Genotype-Tissue Expression (GTEx) database. GTEx is
known for its rich collection of normal tissue profiles, providing a crucial comparison
point for understanding abnormal or disease states. For this research, 578 normal lung
tissue samples from the GTEx database were meticulously analyzed. These samples are
vital for establishing a baseline of normal genetic expression, which, when compared to
the cancerous samples from TCGA, aids in identifying specific genetic alterations and
expressions associated with lung cancer. This comparison is essential for understanding
the genetic basis of cancer and for identifying potential therapeutic targets.

3.2. DEG Identification

To explore differential mRNA expression, the study utilized the Limma package within
the R software (4.0.5 version). Limma, known for its robust statistical methods, facilitated
the identification of significant changes in mRNA levels. The criteria set for discerning
noteworthy differential expression were stringent: only those with a false discovery rate
(FDR) less than 0.05, combined with a log2 fold change greater than 1 or less than −1, were
considered significant. This dual-threshold approach ensured that the findings were both
statistically valid and biologically meaningful.

3.3. Enrichment Analysis

The obtained DEGs with prognostic effects were analyzed for GO and KEGG pathways
using the clusterProfiler package and the ggplot2 package of R software (4.0.5 version)
to explore the cellular localization of these genes in squamous lung cancer and their
involvement in biological processes and signaling regulatory networks.

3.4. Signature Model Construction

Based on RNA-seq information from TCGA and clinical samples, the best model was
chosen by the least absolute shrinkage and selection operator (LASSO) regression algorithm
using 10-fold cross-validation. The correlation between the signature prognostic model’s
RiskScore and various immune cells was analyzed. We used the RiskScore scores obtained
from the model to explore the correlation with immune cells.

3.5. Nomogram Model Construction

Initially, single- and multivariate cox modeling analyses were run, and forestplots
were performed to represent each variable (p-value, HR, and 95% CI) using R’s forestplot
software package (4.0.5 version). Column line plots were created using the RMS software
program (Version 22) according to the results of the multivariate Cox proportional risk
analysis to estimate the overall recurrence rates of patients with squamous lung cancer at
1 year, 3 years, and 5 years. The column line graphs depict these characteristics graphically
and allow the prognosis risk of individual patients to be determined using the points
associated with each risk factor.

3.6. Immune Infiltration and Tumor Mutational Load Analysis

To examine the connection between signature’s genes and the immunological microen-
vironment, we obtained the immune infiltration of these genes from the TIMER database,
and, in addition, we explored their relationship with the tumor mutational load, which we
characterized using Spearman’s correlation analysis and visualized using the ggstatsplot
package of R software (4.0.5 version).
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3.7. Immunohistochemistry

Immunohistochemistry staining results were extracted from the Human Protein Atlas
“https://www.proteinatlas.org/ (accessed on 17 September 2023)”. The expression of
glycolysis-related genes was compared in lung squamous cell carcinoma samples and
normal lung tissue.

4. Discussion

Squamous lung cancer is one of the deadliest malignancies in the world [8]. The
overall prognosis of patients with squamous lung cancer continues to be poor despite recent
improvements in diagnosis and therapy, with one of the primary causes being the absence
of useful prognostic indicators. As a result, it is critical to investigate relevant prognostic
indicators and treatment targets for LUSC. Because of the variability and complexity of
the tumor immune microenvironment, immunotherapy benefits only a tiny percentage
of patients [9–12]. Glycolysis underlies the proliferation and differentiation of malignant
tumors, provides energy for tumor metabolism, and is considered to be an important
factor contributing to tumors [13]. Currently, many studies have been published on the
mechanisms of glycolysis in LUSC, but no application of glycolysis-related genes has
been investigated [14]. In the first step of the study, we used the data in TCGA to screen
for differential genes in squamous lung cancer. We performed GO and KEGG analyses
on these genes, and the results showed that their enrichment results were mainly in the
p53 signaling pathway, skin development, the cGMP-PKG signaling pathway, second-
messenger-mediated signaling, and other processes. After collecting 293 glycolysis-related
genes from the MSigDB database and intersecting them with the previously obtained
differential genes, we enriched the 109 genes obtained again for analysis. These genes
were then used to construct a signature and nomogram model, respectively. Our signature
model included a total of four genes, and the ROC curves of the model had AUC = 0.53
at 1 year, AUC = 0.62 at 3 years, and AUC = 0.66 at 5 years, indicating that the risk model
is a good predictor of squamous lung cancer and has some application. In addition, our
study found a positive correlation between the model and the presence of multiple immune
cells. In our study, we also constructed a nomogram model including AGL, ALDOA,
ADH1B, age, gender, and TNM-stage, which has good performance in predicting the
prognosis of patients with LUSC. To investigate the mechanism of the genes in the model,
we additionally analyzed the effect of AGL, ALDOA, ADH1B, and ALDH3B1 expression on
the level of immune infiltration in LUSC. TMB refers to the number of non-synonymous
mutations in a given genomic region of the somatic cells, usually expressed as the number
of mutations per Mb and, in earlier studies, also directly as the number of mutations. The
expression of ADH1B is negatively correlated with TMB and may be a new target for tumor
immunotherapy. This may give us new ideas to explore how glycolysis-related genes
regulate pathway proteins to influence the level of tumor immune infiltration.

AGL, primarily known for its role in glycogen breakdown, has been identified as a
significant factor in bladder cancer. It is recognized as a biomarker that inhibits tumor
growth in this type of cancer [15]. However, the reduction or silencing of AGL activity has
been observed to facilitate the growth of bladder tumor cells through various pathways.
These include the enhancement of glycine synthesis and the activation of HAS2-driven
hyaluronic acid (HA) production [16]. Moreover, recent research has extended the under-
standing of AGL’s role to NSCLC. In this context, it has been proposed that decreasing
AGL activity similarly accelerates the growth of NSCLC cells, a process also influenced by
HAS2 [17].

ALDOA, when overexpressed, has been associated with increased proliferation and
metastasis in lung cancer cells [18]. Furthermore, research by Zhang et al. indicates
a correlation between heightened ALDOA transcription levels and genes related to the
cell cycle, suggesting ALDOA’s potential role in regulating the progression of non-small
cell lung cancer [19]. Nonetheless, the link between ALDOA expression levels and both

https://www.proteinatlas.org/
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the prognostic outcomes and the extent of immune infiltration in lung adenocarcinoma
remains unexplored.

Several genes belonging to the ADH family exhibited statistically significant differ-
ences in expression between tumors and neighboring normal tissues. The levels of ADH1B
expression exhibited a notable and consistent reduction in tumor tissue. Reduced ADH1B
expression correlated with a poorer overall survival outcome, and the combined impact of
these genes yielded a more significant prognostic value than the cumulative effects of each
gene separately in the TCGA database. The levels of ADH1B transcripts were associated
with the control of metabolism, cell cycle, DNA repair, and pathways related to cancer. A
prognostic risk score model was created to forecast the prognosis of LUAD, demonstrating
effective performance in anticipating overall survival (OS) at 1, 3, and 5 years. In line with
findings from TCGA, our dataset with 111 patients in replication demonstrated that the de-
pression in tumor expression was most notable for ADH1B. Furthermore, lower expression
of ADH1B was correlated with the occurrence of vascular, pleural, and lymphatic invasions.
Moreover, smoking status and/or cumulative smoking history do not provide a direct,
clinically accessible proxy for tumor ADH1B expression.

Studies have validated that the expression of ALDH3B1 is elevated in lung adenocarci-
noma tissues compared to normal tissues. This expression has an important impact on the
prognosis of other cancers, such as lung adenocarcinoma. A widely accepted idea is that the
activity of ALDH3B1 influences the processing of aldehydes, such as acetaldehyde, within
the metabolic system [20]. Aldehydes have stimulatory effects in humans and induce
mutations that lead to cancer [21].

However, there are still many unknowns that limit the clinical application of im-
munotherapy, and despite our comprehensive and systematic analysis of these glycolysis-
associated genes and the construction of the Signature model and nomogram model, there
are still limitations to this study. From a modeling perspective, an AUC of 0.66 is not ideal.
There could be other confounding factors or other genes that could be related. We need
more comprehensive multicenter data on patients with squamous lung cancer to validate
our model with accuracy and improve the credibility of our results.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets supporting the conclusions of this article are available in
the Genotype-Tissue Expression (GTEx) database and the cancer genome atlas (TCGA) database.

Acknowledgments: The authors are thankful to the Deanship of Scientific Research at the University
of Bisha for supporting this work through the Fast-Track Research Support Program.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Travis, W.D.; Dacic, S.; Sholl, L.M.; Wistuba, I.I. Pathologic Assessment of Lung Squamous Cell Carcinoma After Neoadjuvant

Immunotherapy. J. Thorac. Oncol. 2021, 16, e9–e10. [CrossRef]
2. Conti, L.; Gatt, S. Squamous-Cell Carcinoma of the Lung. N. Engl. J. Med. 2018, 379, e17. [CrossRef] [PubMed]
3. Kujtan, L.; Kancha, R.K.; Gustafson, B.; Douglass, L.; Ward, C.R.; Buzard, B.; Subramanian, J. Squamous cell carcinoma of the

lung: Improving the detection and management of immune-related adverse events. Expert Rev. Anticancer Ther. 2022, 22, 203–213.
[CrossRef] [PubMed]

4. Reinfeld, B.I.; Rathmell, W.K.; Kim, T.K.; Rathmell, J.C. The therapeutic implications of immunosuppressive tumor aerobic
glycolysis. Cell. Mol. Immunol. 2022, 19, 46–58. [CrossRef] [PubMed]

5. Paul, S.; Ghosh, S.; Kumar, S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol. 2022, 86 Pt 3, 1216–1230.
[CrossRef]

6. Xie, Y.; Wang, M.; Xia, M.; Guo, Y.; Zu, X.; Zhong, J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci. 2022, 292,
120322. [CrossRef]

7. Li, Y.; Gu, J.; Xu, F.; Zhu, Q.; Ge, D.; Lu, C. Transcriptomic and functional network features of lung squamous cell carcinoma
through integrative analysis of GEO and TCGA data. Sci. Rep. 2018, 8, 15834. [CrossRef]

https://doi.org/10.1016/j.jtho.2020.11.009
https://doi.org/10.1056/NEJMicm1802514
https://www.ncbi.nlm.nih.gov/pubmed/30207918
https://doi.org/10.1080/14737140.2022.2029414
https://www.ncbi.nlm.nih.gov/pubmed/35034561
https://doi.org/10.1038/s41423-021-00727-3
https://www.ncbi.nlm.nih.gov/pubmed/34239083
https://doi.org/10.1016/j.semcancer.2022.09.007
https://doi.org/10.1016/j.lfs.2022.120322
https://doi.org/10.1038/s41598-018-34160-w


Int. J. Mol. Sci. 2024, 25, 1143 10 of 10

8. Yang, L.; Wei, S.; Zhang, J.; Hu, Q.; Hu, W.; Cao, M.; Zhang, L.; Wang, Y.; Wang, P.; Wang, K. Construction of a predictive
model for immunotherapy efficacy in lung squamous cell carcinoma based on the degree of tumor-infiltrating immune cells and
molecular typing. J. Transl. Med. 2022, 20, 364. [CrossRef] [PubMed]

9. Kawai, H.; Saito, Y.; Demura, R.; Odaka, H.; Takahashi, S.; Takahashi, K.; Kurokawa, H.; Enomoto, K. Case of advanced pulmonary
squamous cell carcinoma cured by resection through preoperative induction of immune checkpoint inhibitor. Thorac. Cancer 2018,
9, 495–497. [CrossRef]

10. Qiu, Y.; Li, H.; Xie, J.; Qiao, X.; Wu, J. Identification of ABCC5 among ATP-Binding Cassette Transporter Family as a New
Biomarker for Hepatocellular Carcinoma Based on Bioinformatics Analysis. Int. J. Gen. Med. 2021, 14, 7235–7246. [CrossRef]
[PubMed]

11. Xie, J.; Chen, L.; Sun, Q.; Li, H.; Wei, W.; Wu, D.; Hu, Y.; Zhu, Z.; Shi, J.; Wang, M. An immune subtype-related prognostic
signature of hepatocellular carcinoma based on single-cell sequencing analysis. Aging 2022, 14, 3276–3292. [CrossRef]

12. Xie, J.; Li, H.; Chen, L.; Cao, Y.; Hu, Y.; Zhu, Z.; Wang, M.; Shi, J. A Novel Pyroptosis-Related lncRNA Signature for Predicting the
Prognosis of Skin Cutaneous Melanoma. Int. J. Gen. Med. 2021, 14, 6517–6527. [CrossRef]

13. Chang, Y.C.; Kim, C.H. Molecular Research of Glycolysis. Int. J. Mol. Sci. 2022, 23, 5052. [CrossRef]
14. Chelakkot, C.; Chelakkot, V.S.; Shin, Y.; Song, K. Modulating Glycolysis to Improve Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 2606.

[CrossRef]
15. Guin, S.; Pollard, C.; Ru, Y.; Ritterson Lew, C.; Duex, J.E.; Dancik, G.; Owens, C.; Spencer, A.; Knight, S.; Holemon, H.; et al.

Role in tumor growth of a glycogen debranching enzyme lost in glycogen storage disease. J. Natl. Cancer Inst. 2014, 106, dju062.
[CrossRef] [PubMed]

16. Guin, S.; Ru, Y.; Agarwal, N.; Lew, C.R.; Owens, C.; Comi, G.P.; Theodorescu, D. Loss of Glycogen Debranching Enzyme AGL
Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis. Clin. Cancer Res. 2016, 22, 1274–1283. [CrossRef]
[PubMed]

17. Richmond, C.S.; Oldenburg, D.; Dancik, G.; Meier, D.R.; Weinhaus, B.; Theodorescu, D.; Guin, S. Glycogen debranching enzyme
(AGL) is a novel regulator of non-small cell lung cancer growth. Oncotarget 2018, 9, 16718–16730. [CrossRef]

18. Chang, Y.C.; Chiou, J.; Yang, Y.F.; Su, C.Y.; Lin, Y.F.; Yang, C.N.; Lu, P.-J.; Huang, M.-S.; Yang, C.-J.; Hsiao, M. Therapeutic Targeting
of Aldolase A Interactions Inhibits Lung Cancer Metastasis and Prolongs Survival. Cancer Res. 2019, 79, 4754–4766. [CrossRef]
[PubMed]

19. Zhang, F.; Lin, J.D.; Zuo, X.Y.; Zhuang, Y.X.; Hong, C.Q.; Zhang, G.J.; Cui, X.-J.; Cui, Y.-K. Elevated transcriptional levels of
aldolase A (ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors. BioData Min. 2017,
10, 6. [CrossRef]

20. Sun, H.; Zhang, M.; Li, L.; Huang, Z. ALDH3B1 Is an Independent Prognostic Biomarker of Lung Adenocarcinoma. Technol.
Cancer Res. Treat. 2020, 19, 1–9. [CrossRef]

21. Lindahl, R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 283–335. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12967-022-03565-7
https://www.ncbi.nlm.nih.gov/pubmed/35962453
https://doi.org/10.1111/1759-7714.12592
https://doi.org/10.2147/IJGM.S333904
https://www.ncbi.nlm.nih.gov/pubmed/34737618
https://doi.org/10.18632/aging.204012
https://doi.org/10.2147/IJGM.S335396
https://doi.org/10.3390/ijms23095052
https://doi.org/10.3390/ijms24032606
https://doi.org/10.1093/jnci/dju062
https://www.ncbi.nlm.nih.gov/pubmed/24700805
https://doi.org/10.1158/1078-0432.CCR-15-1706
https://www.ncbi.nlm.nih.gov/pubmed/26490312
https://doi.org/10.18632/oncotarget.24676
https://doi.org/10.1158/0008-5472.CAN-18-4080
https://www.ncbi.nlm.nih.gov/pubmed/31358528
https://doi.org/10.1186/s13040-016-0122-4
https://doi.org/10.1177/1533033820946018
https://doi.org/10.3109/10409239209082565
https://www.ncbi.nlm.nih.gov/pubmed/1521460

	Introduction 
	Results 
	Identification of DEGs with Prognostic Effects 
	Signature Model Construction 
	Construction of a Nomogram Model 
	Immunological Profile and Tumor Mutational Load Analysis 
	Validation of the Glycolysis-Related Genes in Tissue Samples 

	Materials and Methods 
	Data Acquisition 
	DEG Identification 
	Enrichment Analysis 
	Signature Model Construction 
	Nomogram Model Construction 
	Immune Infiltration and Tumor Mutational Load Analysis 
	Immunohistochemistry 

	Discussion 
	References

