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Abstract: The relationship between cesarean section (CS) delivery and intestinal microbiota is
increasingly studied. CS-born infants display distinct gut microbial compositions due to the absence
of maternal birth canal microorganisms. These alterations potentially link to long-term health
implications like immune-related disorders and allergies. This correlation underscores the intricate
connection between birth mode and the establishment of diverse intestinal microbiota. A systematic
literature review was conducted on the PubMed, Scopus, and Web of Science databases by analyzing
the articles and examining the intricate interactions between CS delivery and the infant’s intestinal
microbiota. The analysis, based on a wide-ranging selection of studies, elucidates the multifaceted
dynamics involved in CS-associated shifts in the establishment of fetal microbiota. We also explore
the potential ramifications of these microbial changes on neonatal health and development, providing
a comprehensive overview for clinicians and researchers. By synthesizing current findings, this
review contributes to a deeper understanding of the interplay between delivery mode and early
microbial colonization, paving the way for informed clinical decisions and future investigations in
the field of perinatal medicine.

Keywords: neonatal bacterial assemblages; infant gut microbiota; caesarean delivery; Bacteroides;
delivery mode; transmission of maternal strains; infant oral microbiota

1. Introduction

The intricate interplay between the human gut microbiota (GM) and overall health has
ignited a burgeoning interest in understanding the role of birth mode, particularly cesarean
section (CS) delivery, in shaping the composition and development of the infant’s intestinal
microbial community [1–6].

The microbiota, encompassing a vast array of microorganisms such as bacteria, viruses,
fungi, and archea, plays an indispensable role in numerous physiological processes, ranging
from nutrient absorption to immune system modulation [7–15]. It is believed that archaea
may actively participate in the metabolism of compounds in the gut, thus influencing
the overall composition of the microbial community. Furthermore, some studies suggest
that archaea may play a key role in the degradation of complex compounds, thereby
contributing to the production of substances that could have systemic effects beyond the
intestinal environment [16].
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Consequently, the mode of birth, with its potential to influence the early colonization
of the infant’s gut, has become a focal point of scientific inquiry [17–22].

1.1. Context and Significance

In an era marked by rapid advancements in medical technology, the prevalence of CS
deliveries has witnessed a remarkable escalation [23–31].

Although CSs are often performed for medical reasons, including cases involving
maternal health, fetal distress, or malpresentation, there has been a growing concern about
the potential consequences of this surgical procedure on the neonate’s microbiota [2,32–37].

In various regions worldwide, CS rates have risen to unprecedented levels, leading
researchers to scrutinize the potential ramifications of this trend on infant health. Conse-
quently, understanding the implications of CS delivery on the infant’s GM holds profound
significance for maternal and child health outcomes [38–51].

1.2. Mechanisms Involved

The mechanisms underpinning the impact of CS delivery on the infant’s GM are
multifaceted [41,52–55].

One of the most significant differences between CS and vaginal delivery lies in the
initial microbial exposure of the neonate [56,57].

During a vaginal birth, neonates traverse the birth canal, encountering a diverse array
of maternal microorganisms that confer an early inoculation of the infant’s gut [58–60].

These maternal microbes, ranging from lactobacilli to bifidobacteria, provide a foun-
dation for a healthy microbial community within the neonate [61,62].

In contrast, CS-born neonates miss this crucial exposure as they bypass the birth canal
and are instead exposed to environmental microbes prevalent in the hospital setting and
on the maternal skin. This microbial incongruence can potentially shape the neonate’s GM
composition and diversity in distinct ways [3,63–66].

1.3. Long-Term Health Implications

The importance of early microbial colonization in shaping long-term health outcomes
cannot be overstated [1,9,67–70].

The composition of the infant’s GM during the first critical months of life is believed
to exert a lasting influence on the individual’s health trajectory [18,21,34,71].

Emerging evidence suggests that deviations from the natural process of vaginal birth,
such as through CS delivery, can contribute to alterations in the microbiota that may have
far-reaching consequences [20,72,73].

Disruptions in the establishment of a balanced and diverse microbiota composition
have been implicated in various health conditions, including autoimmune disorders,
metabolic syndrome, and even mental health disorders [18,74–78].

These findings underscore the significance of investigating the potential role of CS
delivery in contributing to such health outcomes [25,36,79,80].

1.4. Study Objectives

Considering the growing concern surrounding the impact of CS delivery on the in-
fant’s GM, the primary objective of this article is to comprehensively dissect and analyze the
intricate relationship between birth mode and the intestinal microbial ecosystem. This inves-
tigation will encompass an exploration of the differences in microbial community structure,
diversity, and the functional potential between CS and vaginal births [81]. Moreover, by
delving into the underlying mechanisms behind these differences, such as microbial expo-
sure and maternal–fetal interactions, this study aims to shed light on the intricate processes
governing the establishment of the infant’s GM in the context of CS deliveries [82].

In summary, this article serves as a comprehensive exploration of the intricate interac-
tions between CS delivery and the infant’s intestinal microbiota (Figure 1). By examining
the mechanisms, consequences, and long-term implications of CS-related microbial alter-
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ations, this study contributes to a deeper understanding of the multifaceted relationship
between birth mode and microbial colonization. This understanding, in turn, could pave
the way for informed decisions and potential interventions that support the establishment
of a healthy GM in infants born through CS.
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Figure 1. Graphic illustration of the purpose of this systematic review, differences between the infant
microbiota in natural or cesarean delivery.

2. Methods
2.1. Protocol and Registration

This systematic review was conducted according to Preferred reporting items for
systematic reviews and meta-analyses (PRISMA) and the protocol was registered at PROS-
PERO under the ID of CDR 469789.

2.2. Search Processing

To locate studies that matched the topic of the influence of precision medicine and
oral health, a search was conducted on PubMed, Scopus, and Web of Science for papers
published between 1 January 2013 and 1 July 2023. The search strategy used the Boolean
keywords of “cesarean delivery” AND (“infant gut microbiota” OR “infant oral microbiota”)
(Table 1).

Table 1. Database search indicators.

Articles screening strategy

KEYWORDS: A: cesarean delivery; B: infant gut
microbiota; C: infant oral microbiota.

Boolean Indicators: A AND (B OR C)

Timespan: 2013–2023

Electronic databases: Pubmed; Scopus; WOS
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2.3. Inclusion Criteria

The following inclusion criteria were considered: (1) open-access studies; (2) studies
that investigated the relationship between the influence of CS delivery and the infant’s GM;
(3) randomized clinical trials, comprising retrospective and observational studies; (4) use of
the English language; and (5) full-text.

Papers that did not match the above criteria were excluded; the review was conducted
using the PICOS criteria as follows:

• Participants: infant patients, both male and female;
• Interventions: applications of C- section delivery;
• Comparisons: infant administration of vaginal microbiota;
• Outcomes: infant’s GM during the first 1000 days of life is critical for preventing

various health issues in later life;
• Study: randomized clinical trials, retrospective and observational studies.

2.4. Exclusion Criteria

The exclusion criteria were as follows: (1) animal studies; (2) in vitro studies; (3) off-
topic studies; (4) reviews, case reports, case series, letters, or comments; (5) no use of the
English language.

2.5. Data Processing

Based on selection criteria, three reviewers (M.G., I.P., and I.T.) independently accessed
the databases to gather the studies and assigned a quality rating. Zotero (v6.0.15) was used
to download the chosen articles. Disagreements amongst the three writers were resolved
through consultation with a senior reviewer (F.I.).

2.6. Quality Assessment

The quality of the included papers was assessed by two reviewers, RF and EI, using
the ROBINS-I tool developed to assess risk of bias in the results of non-randomized studies
that compare the health effects of two or more interventions. Seven points were evaluated
and each was assigned a degree of bias. A third reviewer (FI) was consulted in the event of
a disagreement until an agreement was reached.

3. Results and Discussion
3.1. Study Selection and Characteristics

The electronic database search identified a total of 484 articles (Scopus n = 24, PubMed
n = 226, Web of Science n = 234), and no articles were included through the hand search.

After the deletion of duplicates, 361 studies were screened by evaluating the title
and abstract, focusing on the association between precision medicine, genomics, and their
implications in oral health. There were 319 articles that did not meet the inclusion criteria
(279 off-topic, 27 review, 13 in vitro studies), thus leading to 42 records being selected.
Subsequently, 2 records that were non-retrieved were excluded, and then 28 reports were
excluded because they did not meet the inclusion criteria (26 off-topic, 2 review). After
eligibility, 10 records were selected for qualitative analysis. The selection process and the
summary of selected records are shown in Figure 2 and Table 2, respectively.
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Table 2. Descriptive summary of item selection.

Authors
(Year)

Study
Design

Number of
Patients Materials and Methods Outcomes

K. Korpela
et al., 2018
[83]

Randomized
clinical trial 428 infants

The study conducted an analysis of the
GM composition in 428 infants at 3
months of age using fecal samples and
16S rRNA gene amplicon sequencing.
Mothers were randomized into control
and treatment groups during pregnancy,
with the treatment group receiving a
mixture of specific bacterial strains.
Infants continued to receive these
capsules after birth, and fecal samples
were collected for analysis. Information
on birth mode, breastfeeding, formula
feeding, and antibiotic use was obtained
through questionnaires.

Newborns’ microbiota composition was
significantly influenced by probiotic
supplementation; breastfed newborns
had higher levels of bifidobacteria and
lower levels of proteobacteria and
clostridia. Probiotics reversed or
lessened the effects of antibiotic usage
and birth mode, which were linked to
altered microbiota in the placebo group.
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Table 2. Cont.

Authors
(Year)

Study
Design

Number of
Patients Materials and Methods Outcomes

B. C. Wilson
et al., 2021
[84]

Randomized
clinical trial 47 babies

Healthy babies born through cesarean
delivery were randomly assigned to
receive either sterile water (CS-placebo,
n = 13) or a 3 mL solution of maternal
vaginal microorganisms (CSseeded, n =
12). Neonatal infants born vaginally (VB,
n = 22) served as the reference control.
Clinical evaluations were performed
within the first two hours after birth as
well as at one and three months of age.
Shotgun metagenomic sequencing was
performed on maternal vaginal extracts
and infant stool samples from CS
women. The composition of the GM at
one month of age was the main result.
The functional potential of the gut
microbiome, maternal strain
engraftment, anthropometry, body
composition, and adverse events were
all secondary outcomes.

The results showed that vaginal seeding
had no discernible effect on the
microbiome development of CS-born
infants, particularly with regard to
Bacteroide colonization, regardless of
the dosing technique. Therefore, for
infants born through CS, maternal fecal
microbiota transplantation (FMT) might
be a more successful strategy.
Additionally, it was discovered that
intrapartum antibiotic prophylaxis
(IAP), which is frequently used during
CS, decreased the exposure of newborns
to maternal microbes and might have a
deleterious impact on the survivability
of transplanted microbes. In summary,
this pilot study suggests that the oral
administration of maternal vaginal
microbiota did not significantly affect
the early gut microbiome of CS-born
infants, questioning the utility of this
procedure in reducing disease risk.

K. M. Tonon
et al., 2021
[85]

Cross-
sectional
study

48 infants

This study involved a subset of
mother–infant pairs participating in a
cross-sectional observational study
aimed at identifying factors associated
with human milk oligosaccharide
(HMO) concentrations. The participants
included healthy full-term singleton
infants who were exclusively breastfed
and had not received antibiotics,
probiotics, water, or any other food
besides human milk. Human milk and
infant fecal samples were collected at
one month postpartum and processed
for analysis. Human milk samples were
stored at −20 ◦C for HMOs analysis.
Infant feces were collected from
disposable diapers, preserved in an ASL
buffer, and stored at −20 ◦C for DNA
extraction. The study involved
analyzing the fecal microbiota
composition through 16S rRNA gene
sequencing, and the main bacterial
genera and species were quantified
using a qPCR with specific primers.
Standard curves for quantification were
created using reference gene fragments,
and results were expressed as bacterial
units per gram of feces (U/g of feces).
The detection limit for all organisms
was 1 cell/g.

The researchers found that infants born
through cesarean had lower levels of
Bacteroides, less B. longum, and higher
levels of Akkermansia as well as
Kluyvera in their GM. Despite these
differences, the overall composition of
the microbiota did not differ
significantly between infants born
through cesarean and those born
vaginally, provided they were breastfed
by secretory mothers. In addition, the
study noted an increased presence of
Verrucomicrobia and Akkermansia,
mainly in CSe+ infants. Akkermansia is
a bacterium involved in immune
regulation and promotion of the
intestinal barrier function, which also is
associated with lower risks of obesity
and allergies in infants. Another
distinctive observation was the higher
prevalence of proteobacteria,
particularly Serratia and Kluyvera, in
this group. This differed from previous
studies, probably because of
socioeconomic differences between the
populations.
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Table 2. Cont.

Authors
(Year)

Study
Design

Number of
Patients Materials and Methods Outcomes

C. Mei
Chien et al.,
2017 [86]

Randomized
Clinical Trial 152 babies

Infants were given either a
non-hydrolyzed cow’s milk-based
formula (control formula), a prebiotic
formula supplemented with 0.8 g/100
mL of scGOS/lCFOS, or a synbiotic
formula supplemented with B. breve
M-16V (Morinaga Milk Industry Co.
Ltd.) at a dose of 7.5 108 cfu/100 mL. As
a reference group, vaginally delivered
infants were included. From birth (1–3
days at the latest) until 16 weeks of age
(the intervention phase), and study
formulae were given. At day 3, day day
5, week 2, week 4, week 8, week 12, and
week 22, stool samples were taken.

This study showed that
supplementation with scGOS/lcFOS
and B. breve M-16V contributes to the
early colonization of bifidobacteria in
infants born through CS, reproducing
the physiological conditions of the
intestinal microbiota observed in
vaginally born infants. Positive effects
have also been observed in terms of the
reduction in adverse events such as skin
disorders, particularly eczema/atopic
dermatitis.

Ilias Lagkou-
vardos, 2022
[87]

Randomized
Clinical Trial 540 infants

- Synbiotic intervention formula (IF)
containing Limosilactobacillus
fermentum CECT5716 and
galacto-oligosaccharides.

- Measurement of metabolites (e.g.,
short-chain fatty acids) and milieu
parameters (e.g., pH, humidity,
and IgA) in stool samples.

- Fecal microbiota analysis through
16S rRNA amplicon sequencing at
4, 12, and 24 months of age.

- Significant changes in microbiota
profiles with age.

- Closer overall phylogenetic
profiles of infants receiving IF to
those fed with human milk at
month 4.

- Association of these microbiota
states with higher prevalence of
infants born through CS.

Wenqing
Yang et al.,
2021 [88]

Observational
Cohort
Study

26 neonates

- Neonates divided into four groups
as follows: VD (natural delivery
neonates, n = 3), CD
(cesarean-born neonates, n = 9),
CDL (cesarean-born neonates
supplemented with a probiotic at a
lower dosage, n = 7), CDH
(cesarean-born neonates
supplemented with a probiotic at a
higher dosage, n = 7)

- Sequencing of the V3–V4 region of
the 16S ribosomal ribonucleic acid
gene through next-generation
sequencing technology

- α-diversity of intestinal microbiota
significantly lower in
cesarean-born neonates on the
28th day compared with naturally
delivered neonates (p = 0.005).

- Abundances of Lactobacillus and
Bifidobacterium significantly
increased from the 3rd day of
probiotic supplementation.

- Impact of probiotic
supplementation on the diversity
and function of GM.

Christophe
Lay et al.,
2021 [89]

Double-
blind
randomized
controlled
study

153 infants

Newborns’ microbiota compositions
were significantly influenced by
probiotic supplementation; breastfed
newborns had higher levels of
bifidobacteria and lower levels of
proteobacteria and clostridia. Probiotics
reversed or lessened the effects of
antibiotic usage and birth mode, which
were linked to altered microbiota in the
placebo group.

Babies delivered vaginally had an
environment in their guts that was
hypoxic and acidic, with a higher
concentration of stringent anaerobes
(Bifidobacteriaceae).
Enterobacteriaceae enrichment is a sign
of a damaged microbiome in infants
born after cesarean delivery.
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Table 2. Cont.

Authors
(Year)

Study
Design

Number of
Patients Materials and Methods Outcomes

Joanne E
Sordillo
et al., 2017
[69]

Clinical trial 333 infants

Microbial diversity was calculated using
the Shannon index, and 16S rRNA gene
sequencing was employed for infants’
stool samples.

White race/ethnicity was associated
with lower diversity but higher
Bacteroidetes coabundance scores. CS
birth was associated with higher
diversity but decreased Bacteroidetes
coabundance scores. Infants born
through CS had higher firmicutes scores.
Infants that were breastfed showed
reduced levels of Clostridiales. Vitamin
D in cord blood is associated with a rise
in Lactococcus but a decrease in
lactobacteria.

Pin Li et al.,
2023 [90]

Randomized,
placebo-
controlled
trial

109 infants
Saliva and stool samples collected at
weeks 0, 4, 8, and 12 from infants aged
6–24 months born through CS.

- Fecal pH increase in the control
group (p = 0.003).

- No change in fecal pH in the
experimental group.

- Salivary cortisol decrease in the
experimental group (p = 0.023).

- Little change in cortisol in the
control group.

- No obvious effect on fecal
calprotectin and saliva sIgA.

- Enhancement of Lactobacillus
content.

Thomas
Dierikx
et al., 2022
[91]

Randomized
controlled
trial

CS group (n
= 40);
vaginal
group (n =
23)

Microbiota analyzed through 16S rRNA
gene sequencing and
whole-metagenome shotgun sequencing.
Data collected at 1, 7, and 28 days after
birth and at 3 years.

- Microbial diversity and
composition compared between
CS and vaginal groups in the first
month of life.

- Abundance changes in specific
bacterial genera noted.

- Comparison of microbiome at 3
years of age.

- Confirmation of CS delivery’s
impact on microbiome
colonization.

Yang Liu
MD et al.,
2023 [10]

Randomized
clinical trial

A total of
120
pregnant
women
were
divided into
two groups
as follows: a
“vaginal
seeding”
group (n =
60) and a
control
group (n =
60).

This randomized controlled trial was
conducted at the Liuyang Maternal and
Child Health Care Hospital in China to
investigate differences in GM between
infants born through cesarean delivery
and those born through natural
childbirth. In the “vaginal seeding”
group, sterile gauze soaked in sterile
saline solution was inserted into the
maternal vagina one hour before
delivery and then used to gently swab
the infant’s body after birth. In contrast,
the control group received standard
care.

The results of the study revealed that
there were no significant differences in
the GM between the two groups of
infants. The analyses found that
changes in gut bacterial composition
were similar in both the “vaginal
seeding” group and the control group.
In addition, no significant differences in
BMI (body mass index) or allergy risks
were found between the two groups
during the infants’ first 2 years of life.
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Table 2. Cont.

Authors
(Year)

Study
Design

Number of
Patients Materials and Methods Outcomes

Joanna
Hurkala
et al., 2020
[72]

Randomized
clinical trial

The
recruited
infants (148)
were
divided into
two groups
as follows:
the
intervention
group (71)
and the
control
group (77).

Newborns were divided into two
groups as follows: one group received a
probiotic product with specific strains of
Bifidobacterium and Lactobacillus
shortly after birth, while the other group
served as the control. The study aimed
to investigate the impact of probiotic
supplementation on the early GM of
newborns born through CS. Stool
samples were collected on days 5 or 6
after birth and again after one month.
These samples were analyzed to assess
the presence and quantity of bacterial
genera and species, including beneficial
ones like Lactobacillus and
Bifidobacterium as well as potentially
harmful bacteria.

The intervention group showed a
significant increase in Lactobacillus and
bifidobacteria levels in their fecal
samples compared with the control
group. Lactobacillus levels were high,
while bifidobacteria levels were higher,
indicating the effectiveness of probiotic
supplementation in infants.

3.2. Quality Assessment and Risk of Bias

The risk of bias in the included studies is reported in Figure 3. Bias resulting from
confounding the majority of studies is a high risk form of bias, while that arising from
measurement parameter is a low risk form of bias. Many studies have a low risk of bias
due to bias in the selection of participants. Bias due to post-exposure cannot be calculated
due to high heterogeneity. Bias due to missing data is low in many studies. Bias arising
from measurement of the outcome is low. Bias in the selection of the reported results is
high in most studies. The final results show that five studies have a high risk of bias, two
have a very high risk of bias, and two have a low risk of bias.
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Over time, it has become increasingly evident that the mode of birth, whether it be
cesarean or natural, exerts a profound influence on the composition of an infant’s GM. A
study conducted by K. Korpela et al. [83] offered valuable insights into this matter. Their
comprehensive analysis of the GM in infants unveiled a substantial disparity between those
born through cesarean delivery and those born naturally. Specifically, infants delivered
through CS exhibited a marked decrease in beneficial bacteria such as Bifidobacterium and
Bacteroides, which are pivotal to carbohydrate digestion and bolstering the immune system.
This alteration has been linked to a diminished capacity of the microbiota to metabolize
carbohydrates, including oligosaccharides found in breast milk [92]. Notably, intervention
with a probiotic supplement comprising selected strains of Bifidobacterium and Lactobacil-
lus has been shown to counteract this unfavorable trend. This is particularly significant
for infants born through CS and exposed to antibiotics, as probiotic supplementation has
demonstrated its ability to restore a more balanced and functional microbiota, averting
the loss of bifidobacteria and normalizing crucial microbial functions. These findings
underscore the pivotal role of early GM in children’s health and open avenues for potential
interventions for mitigating the adverse effects of factors such as cesarean delivery and
antibiotic usage on long-term health [83].

Adding a valuable perspective, in the research conducted by B. C. Wilson et al. [84], a
pilot trial was carried out to explore the potential impact of a practice known as “vaginal
seeding” on the gut microbiome of infants born through CS in comparison with those born
vaginally. The primary objective was to investigate whether the oral administration of
maternal vaginal microbiota could reestablish the gut microbiome of cesarean-born infants
in order to resemble that of vaginally born infants. Regrettably, the results indicated that
vaginal seeding did not exert a significant influence on the structure or function of the
gut microbiome in cesarean-born infants at both 1 month and 3 months of age. Despite
rigorous measures to minimize infection risks through maternal pathogen screening, the
procedure did not appear to effectively restore levels of Bacteroides in the infants’ gut
microbiomes, a characteristic feature of vaginally born infants. This study also illuminated
the challenges and constraints of microbiota-based interventions and suggested that alterna-
tive approaches, such as the delayed administration of intrapartum antibiotic prophylaxis
or probiotic formulations, might offer safer and more inclusive options for microbiome
restoration [93]. These findings imply that the utility of vaginal seeding in reducing disease
risks in cesarean-born infants may be limited, prompting further exploration of alternative
strategies to promote healthy microbiome development [84].

The research conducted by Yang Liu MD et al. [10] did not detect significant differences
in BMI or allergy-related risks between the two groups under investigation. While a lower
rate of overweight/obesity was observed in the “vaginal seeding” group at 6 months, the
researchers cautioned against overinterpreting this result due to the possibility of type I
errors stemming from multiple comparisons. Based on its findings, the study’s conclusion is
consequently that “vaginal seeding” does not find support as a practice in clinical settings
for infants born at term through cesarean delivery. The researchers advocate for safer
alternatives, such as breastfeeding, judicious antibiotic use, and probiotic supplementation.
Moreover, the study acknowledges certain limitations, including the absence of bacterial
detection in the maternal vagina and gauze, missing data attributed to the COVID-19
pandemic, and the necessity for further investigation into alternative strategies to mimic
microbiota exposure during vaginal delivery.

K. M. Tonon et al. [85] delved into the distinctions of the GM in infants born through
CS versus natural birth, with a specific emphasis on maternal secretory status and the
composition of her human milk oligosaccharides (HMOs). The researchers determined
maternal secretory status based on the presence of α1-2 fucosylated structures in the breast
milk sample through mass spectrometry (LC-MS). While the overall GM composition and
alpha and beta diversity exhibited no significant differences between infants born through
cesarean delivery and those born naturally who were fed with breast milk containing
the α1-2 fucosylated HMOs, there were notable variations between the two groups. In
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infants born through CS, there was a lower abundance of Bacteroides and B. longum and a
higher abundance of Akkermansia and Kluyvera in comparison with those born naturally.
Furthermore, it was observed that infants born through CS to mothers with a positive
secretory phenotype (producing α1-2 fucosylates) had a higher abundance of Akkermansia
than those born through natural childbirth. Akkermansia has been touted as a possible
candidate for improving gut health and managing conditions such as obesity and metabolic
diseases [94]. The presence of this bacterium has been associated with improved body
weight management, improving insulin sensitivity, and reducing inflammation [95]. Its
beneficial nature has led to Akkermansia being considered as a possible candidate for use
as a probiotic in promoting gut health. However, it is important to note that research on
this front is still ongoing [96].

The study conducted by C. Mei Chien et al. [86] successfully addressed the intriguing
issue of differences in microbiota between infants born through CS and those born naturally.
Consistent with previous research, infants born through CS tend to experience delayed
colonization by beneficial bifidobacteria are critical for immune system development and
long-term health. The supplementation of a synbiotic mixture comprising short-chain
galacto-oligosaccharides (scGOS), long-chain fructo-oligosaccharides (lcFOS), and Bifi-
dobacterium breve M-16V was found to mitigate this discrepancy. This result is noteworthy
as it suggests that a targeted dietary approach can help restore the GM of cesarean-born
infants, bringing it closer to the composition found in naturally born infants. The reduced
presence of Enterobacteriaceae, which are typically associated with pathological conditions,
in infants treated with the synbiotic blend offers further evidence of the effectiveness of this
strategy in fostering a more health-promoting gut environment. These findings offer novel
insights into how targeted dietary modifications can positively influence the microbiota and
potentially reduce the risks associated with cesarean deliveries. However, it is imperative to
continue to explore the long-term effects of these modifications on the health and immunity
of cesarean-born infants.

The colonization of an infant’s gut by microbiota during birth is a critical process,
with the first months of life being pivotal to the establishment of the GM and immune
system maturation. Disturbances in GM can lead to various metabolic and allergic diseases,
including obesity, diabetes, and Crohn’s disease [97]. Prenatal and postnatal factors such as
delivery mode, feeding pattern, and antibiotic usage influence the colonization of intestinal
microorganisms. CS delivery, in particular, can disrupt the balance of intestinal flora with
potential long-term health effects. Human milk is recognized as the gold standard for
infant nutrition due to its prebiotic and probiotic components, particularly beneficial for
the growth of bifidobacteria. In cases where breastfeeding is not feasible, infant formula
should aim to support the development of the intestinal ecosystem.

This study by Ilias Lagkouvardos et al. [87] explored the effects of a synbiotic inter-
vention formula (IF) enriched with L. fermentum CECT5716 and galacto-oligosaccharides
(GOS) on fecal microbiota in infants using 16S rRNA gene amplicon sequencing and the
measurement of milieu parameters. The results showed that the synbiotic intervention
formula, when introduced during the early months of life, led to changes in the infant’s
GM, increasing the relative abundance of bifidobacteria and reducing the richness and pH
levels, thereby resembling some characteristics of breastfed infants.

Moreover, the impact of the intervention was dependent on the natural microbiota
profiles of the infants, highlighting the individualized nature of gut microbiomes. These
findings underscore the potential of synbiotic interventions to influence GM composition
and milieu parameters during early life, with potential implications for disease prevention
and the promotion of infant health, especially in cases of CS births where microbiota
development may differ.

Joanna Hurkala, et al. [72] confirmed that infants born in the hospital by CS are
virtually free of Lactobacillus and Bifidobacteria in their GM until days 5 and 6 after de-
livery, as these bacteria are virtually indistinguishable (below 2 log/g) in control infants.
On the other hand, bacteria considered potential pathogens were present in both control
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and intervention infants. This observation confirmed previous findings that infants born
through CS in hospitals are rapidly colonized by bacteria derived from the hospital envi-
ronment, although it cannot be ruled out that a proportion of these bacteria (particularly
coagulase-negative staphylococci) are transferred from the mother’s skin. One month after
delivery, colonization with potential pathogens was more pronounced, which could reflect
the natural process of acquiring bacteria from the environment, as Gram-negative bacteria,
coagulase-negative staphylococci, and enterococci constituted the majority of this popula-
tion. In conclusion, the study found that providing newborns delivered through CS with a
combination of Lactobacillus rhamnosus and Bifidobacterium brevis immediately after birth
results in increased populations of lactobacilli and bifidobacteria in their gastrointestinal
tract, thus simulating the typical colonization found in newborns. born with natural birth.

The study by Wenqing Yang et al. [88] revealed that delivery mode significantly
influenced neonatal GM composition. While there were no differences in microbial diversity
between cesarean and vaginally born infants on the third day, significant differences
emerged on the seventh and twenty-eighth days. These findings suggest that the delivery
mode can influence neonatal GM.

Furthermore, probiotic supplementation showed varying effects on the composition
of GM. After three days of probiotic supplementation, Bifidobacterium abundance sig-
nificantly increased in cesarean-born infants. Similarly, Lactobacillus abundance was
positively impacted by probiotics in the early neonatal period. Notably, low-dose probiotic
supplementation appeared to have a more pronounced effect. Analysis of the Clusters of
Orthologous Groups of proteins (COG) functions in GM indicated that probiotics could im-
pact the microbiota’s function. The relative abundance of COGs related to basal metabolism,
nucleotide metabolism, transport, and defense mechanisms appeared to change due to
probiotic supplementation.

In conclusion, this study suggests that supplementing probiotics to cesarean-born
neonates can partially restore changes in fecal microbiota composition. Delivery mode
plays a significant role in determining neonatal GM composition.

The first 1000 days of a child’s life represent a critical period for health and devel-
opment. During this time, the composition of the microbiome plays a vital role, and any
disruptions in its establishment can lead to non-communicable diseases later in life. Factors
such as exposure to antibiotics, CS birth, and immune and metabolic health have been
linked to conditions like asthma, eczema, obesity, and type 2 diabetes. A recent study
has even found a connection between CS births and an increased risk of infection-related
hospitalizations in early childhood. Key microorganisms known as keystone colonizers,
including Bifidobacterium and Bacteroides, are crucial for immune programming and
maintaining a healthy symbiosis with the human host. One study suggested a method
of swabbing infants born through CS with vaginal secretions to partially restore the lack
of maternal microbiota transmission. However, concerns about infection risk have been
raised.

In this study by Lay et al. [89], a specific synbiotic intervention, consisting of sc-
GOS/lcFOS and Bifidobacterium breve M-16 V, was administered to infants born through
elective CS. This intervention aimed to restore delayed colonization and potentially re-
duce the incidence of conditions like eczema and atopic dermatitis. The research involved
sequencing and metabolomic analysis of fecal samples from various groups of infants,
including those born through CS and those born vaginally. The results showed that the
mode of delivery had a significant impact on the development of the infant’s GM. CS-born
infants exhibited delayed colonization by keystone colonizers compared with vaginally
born infants alongside an increased abundance of Enterobacteriaceae. Further analysis
revealed that the synbiotic intervention effectively modulated the GM of CS-born infants,
leading to a microbial environment characterized by strict anaerobes, similar to that of
vaginally born infants. Bifidobacterium played a central role in this modulation, producing
organic acids like acetic acid that contributed to the anaerobic environment and improved
epithelial barrier function.
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The study also highlighted the importance of early-life microbiome establishment in
maintaining gut health. The presence of Bifidobacterium in the first days of life appeared
to be critical in modulating the gut’s redox and acidity, providing colonization resistance
and programming the immune system. Delayed colonization by Bifidobacterium was
associated with an increased risk of pediatric allergies.

In conclusion, this research sheds light on the significance of early-life microbiome
modulation in CS-born infants and its potential impact on long-term health. The synbiotic
intervention showed promise in restoring a compromised microbiome, emphasizing the
need for further investigation into its long-term effects on child health.

On the other hand, in the comprehensive study by Joanne E Sordillo et al. [69], the
intricate relationship between an infant’s GM and various prenatal and early life factors
was delved into, striving to shed light on their potential implications for immune system
modulation and the incidence of asthma and allergies in childhood.

The results unveiled several paramount associations. First and foremost, the mode of
delivery exhibited a profound influence on the infant gut microbiome. Infants born through
CS displayed higher microbial diversity, a finding somewhat contrary to previous reports.
However, further exploration revealed that CS-born infants exhibited an enrichment of
proteobacteria, notably Klebsiella and Enterobacteriaceae, while levels of Bacteroides were
reduced. This shift may have significant implications for immune stimulation and microbial
function within the gut.

Breastfeeding emerged as another crucial determinant of an infant’s GM. Exclusive
breastfeeding was linked to a decrease in overall diversity and a reduction in specific
genera of Clostridiales such as Clostridium, Ruminococcus, Coprococcus, and Eubacterium.
These findings underscore the potential role of breast milk components, such as prebiotic
oligosaccharides, in shaping the gut microbiome.

Additionally, they identified racial and ethnic disparities in infants’ GMs. Caucasian
infants exhibited lower microbial diversity but higher levels of Bacteroides, while African
American infants displayed higher levels of Megasphaera and Lactococcus abundance.
These disparities could contribute to variations in asthma incidence among different racial
groups.

Furthermore, cord blood vitamin D levels were associated with specific alterations
in the infant gut microbiome. Higher vitamin D levels were linked to increased Lach-
nospiraceae/U, Clostridiales, and Lachnobacterium as well as decreased Lactococcus.

In conclusion, this research, which was conducted within one of the most extensive
and ethnically diverse infant study populations, provided valuable insights into the factors
shaping the infant gut microbiome. These findings underscore the significance of delivery
mode, breastfeeding practices, race, and vitamin D levels in influencing the composition
of the GM during this critical developmental period. Further investigations are needed to
unravel the precise mechanisms through which these microbiome alterations may impact
immune system function and the risk of asthma and allergic diseases in childhood. Longi-
tudinal studies tracking microbiome changes over time and elucidating their relationship
with health outcomes will be essential in advancing our understanding of the microbiome’s
role in these conditions.

The study by Li et al. [90] investigated the efficacy of Lactobacillus paracasei N1115 (Lp
N1115) as a probiotic in improving gut microbial composition and immunomodulation
among Chinese infants and children born through CS.

As far as gut microbial composition is concerned, Lp N1115 intervention increased the
relative abundance of Lactobacillus in the experimental group compared with the control
group, particularly at week 4 (p = 0.019). In addition, a trend toward a higher detection rate
of Lactobacillus was observed in the experimental group (p = 0.039).

Furthermore positive correlations were found between Lactobacillus abundance and
sIgA levels in the feces of infants as well as a negative correlation between fecal pH and
Lactobacillus abundance in 6- to 12-month-old infants.
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In conclusion, their study shows that Lp N1115 supplementation in Chinese infants
and children born through CS has several beneficial effects, including maintaining fecal pH
levels, reducing stress, increasing fecal sIgA levels, and promoting Lactobacillus prolifera-
tion. These results suggest the potential of Lp N1115 as a probiotic to support healthy gut
development in this specific population. Further research is needed to explore its long-term
impact and optimal intervention strategies.

Moreover, it is essential to consider the role of antibiotics in shaping the infant gut
microbiota. The administration of antibiotics, particularly during and after CS deliveries,
has been identified as a significant factor influencing microbial colonization [98]. A study
conducted by Thomas Dierikx et al. [91] delved into the impact of maternal antibiotic admin-
istration on the microbial colonization process in infants born through CS up to three years
of age. Their findings revealed that CS delivery profoundly affects early-life microbiome
development, with differences in microbial diversity and composition observed in both CS
groups compared with vaginally born infants. Notably, maternal antibiotic administration
prior to CS did not appear to exacerbate this colonization impairment, suggesting that
antenatal antibiotic exposure in CS-born infants does not result in a secondary hit on the
already compromised microbiome. These results have significant implications, especially
given the increasing rates of CS worldwide. They shed light on the microbiota-related
consequences of maternal antibiotic prophylaxis resulting from CS and provide valuable
insights into the long-term health outcomes of CS-born infants. Further research with larger
sample sizes ought to validate these findings and help allay concerns regarding the impact
of antenatal antibiotics on the developing infant microbiome and long-term health.

4. Conclusions

In conclusion, the various studies discussed in this article shed light on the significant
impact of delivery mode, particularly CS, on the early GM in infants and its potential
implications for long-term health. These studies collectively emphasize the importance of
understanding and intervening in this critical period of microbiome development to reduce
the risks associated with disturbances in the GM. The key findings from these studies can
be summarized as follows:

1. CS vs. vaginal birth: Infants born through CS tend to exhibit significant differences
in their GM compared with those born naturally. There is a consistent reduction in
beneficial bacteria, including Bifidobacterium and Bacteroides, in CS-born infants.

2. Probiotic and synbiotic interventions: Some studies suggest that probiotic and synbi-
otic supplements can help mitigate the negative effects of CS deliveries on an infant’s
GM. These interventions promote the colonization of beneficial bacteria and a more
balanced microbiome that is crucial for the infant’s long-term health.

3. Vaginal seeding: The efficacy of vaginal seeding remains a topic of debate. While some
studies did not find significant microbiota changes in CS-born infants after vaginal
seeding, concerns about infection risks have been raised. Alternative strategies, like
probiotics and delayed antibiotic administration, may offer safer options.

4. Breastfeeding: The composition of human milk, particularly the presence of human
milk oligosaccharides (HMOs), can influence the GM in infants. It is essential for the
growth of beneficial bifidobacteria.

5. Prenatal and early life factors: Various factors, including delivery mode, feeding
patterns, and antibiotic usage, influence the colonization of an infant’s GM. Identifying
these factors helps us to understand how they impact the infant’s long-term health.

6. Race and ethnicity: Some studies have shown racial and ethnic disparities in infants’
GMs, which can have implications for variations in disease incidence.

7. Maternal antibiotic use: Maternal antibiotic use during CS delivery does not appear
to exacerbate colonization disturbances in infants, indicating that antenatal antibiotic
exposure may not result in a secondary hit on the infant’s already compromised
microbiome.
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8. Long-term health implications: Early-life microbiome modulation and interventions,
especially in CS-born infants, may have far-reaching implications for long-term health
outcomes, including reducing the risk of diseases like asthma, allergies, obesity, and
diabetes.

In conclusion, understanding and intervening in the establishment of an infant’s GM
during the first 1000 days of life is critical for preventing various health issues in later
life. Further research, with larger sample sizes and longer follow-up periods, is needed to
explore the long-term effects of these interventions and to clarify the intricate relationships
between maternal, prenatal, and postnatal factors and an infant’s GM. This body of research
paves the way for strategies to promote healthy microbiome development and reduce the
risks associated with CS births and other factors that can disrupt the infant’s microbial
ecosystem.
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Abbreviations
CS Caesarean section
CD Cesarean-born neonates
CDL Cesarean-born neonates supplemented with a probiotic at a lower dosage
CDH Cesarean-born neonates supplemented with a probiotic at a higher dosage
COG Clusters of orthologous groups of proteins
FMT Fecal microbiota transplantation
GM Gut microbiota
GOS Galacto-oligosaccharides
sIgA Fecal secreted immunoglobulin A
HMOs Human milk oligosaccharides
IF Intervention formula
Lp N1115 Lactobacillus paracasei N1115
MS Mass spectrometry
scGOS/lcFOS Short-chain galactooligosaccharides and long-chain fructooligosaccharides
PCR Polymerase chain reaction
RCT Randomized clinical trial
VD Natural delivery neonates
VDAART Vitamin D antenatal asthma reduction trial
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