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The extent of both scientific articles and reviews on extracellular vesicles (EVs) has
grown impressively over the last few decades. The publications cover investigations of
various kinds of EVs, from human EVs to animal and plant-derived EVs. A high degree of
effort has been spent in proposing EVs, mostly those of a nanosized (i.e., exosomes), as a
natural source of new disease biomarkers. It is a known fact that both normal and tumor
cells release exosomes; after their paracrine release, exosomes are spilled over into the
blood, thus circulating through the organism, often ending in organs and compartments
far from the site of the original release. The first evidence of this phenomenon is that
exosomes may be detected, characterized and quantified in plasma samples of both healthy
individuals and tumor patients. Due to their size (30–150 nm), exosomes are invisible
particles that may be analyzed through both electron microscopy and other techniques
that hijack the peculiar make-up of these nanovesicles. Exosomes express on the surface
markers of intracellular vesicles (e.g., endosomes, lysosomes, phagosomes) together with
plasma membrane molecules, through which the cellular source of exosomes may be
recognized. This peculiarity is due to the various processes of exosome generation, and
is particularly due to the multivesicular body (MVB) formation, which is a process of
repeated rounds of internal vesicle fusion that involves the plasma membrane as well [1–5].
This process causes exosomes to express an array of molecules (e.g., Tsg101, Alix, CD63,
CD9, CD81, HSP-70, Rab5), rendering these nanovesicles phenotypically recognizable.
In fact, all the above molecules have been exploited to set up immunocapture-based
techniques that have allowed for exosome characterization and quantification [6]. The
first clinical study, performed in 148 individuals, was exclusively based on the use of an
immunocapture-based ELISA test, through which it was shown that melanoma patients
had significantly higher CD63+ plasmatic exosomes compared to healthy individuals, but
significantly higher Cav-1 positive exosomes as well, where Cav-1 is considered a surrogate
tumor biomarker [7]. However, for the first time, this study supported a new finding that
could play a key role in the future clinical management of tumors: melanoma patients
present higher exosome levels in their plasma as compared to healthy individuals. In the
same study, a preclinical investigation showed that higher plasmatic levels of exosomes
correlated with the tumor mass [7]. The in vivo study was also supported by a series of
reports showing that the microenvironmental acidity of tumors could exert a key role in
determining an increased tumor exosome spill over into the blood stream inasmuch as,
in vitro, a low pH condition induces an extensive exosome release by human tumor cells,
independently from their histologies [8,9]. The increased low pH-dependent exosome
release was consistent with both an increased expression of known tumor biomarkers
(e.g., PSA) and a reduced exosome size [8]. In the same study, it was shown that the
increased exosome release in acidic conditions correlated to the high plasmatic exosome
levels as compared to controls [8]. It appears conceivable that the pH-dependent increase in
exosome release may be dependent on one of the functions of the EVs, that is, to scavenge
potentially toxic molecules as it has been shown for chemotherapeutics in tumor cells [10]
and gold nanoparticles in human normal macrophages [11]. An interesting observation
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is that both chemical molecules and nanoparticles are released into the exosomes in their
native/active form, further supporting the natural ability of exosomes to deliver functional
molecules [10,11]. This advantage also includes the ability to deliver functional molecules
with a full enzymatic function [12] and a cargo of protons [13]. A fascinating new issue
is that exosomes deliver the pathologic prion protein (PrPC) as well [14], which is a
glycoprotein anchored to the cell surface by glycosylphosphatidylinositol (GPI). Recent
findings have shown the ectopic expression of PrPC in various cancers, including gastric,
melanoma, breast, colorectal, pancreatic as well as rare cancers, where PrPC promotes
cellular migration and invasion, tumor growth and metastasis [15]. Another topic of
interest is that PrPC is delivered by exosomes in a model of prion-infected rodents and
PrPC-associated exosomes can be purified in the plasma of the infected animals [15],
suggesting that, in general, the identification of PrPC-associated proteins in the plasma of
either tumor patients or patients with neurodegenerative diseases may represent a new
valuable disease marker.

However, in the last decade, a new technique called nanoparticle tracking analysis
(NTA), which is used to determine exosome number and size in samples from both cell cul-
ture supernatants and body fluids, has come to support data obtained with immunocapture-
based ELISA [16,17]. The NTA analyzes particles ranging from 30 nm to 400–500 nm, thus
allowing for the distinguishing of nanovesicles from microvesicles. To date, NTA remains
to be considered as the most reliable technique to analyze a mixed population of sub-
microscopical vesicles in human body fluids. A previous study compared the results
obtained from NTA, immunocapture-based ELISA, and nanoscale flow cytometry in exo-
some preparations obtained from either cell culture supernatants or plasma samples [8].
The results clearly revealed a complete overlapping between the three techniques; how-
ever, the immunocapture-based ELISA was incapable of providing information on the
EVs’ size, while the nanoscale flow cytometry allowed for the gating of EVs ranging from
100 to 300 nm. Nonetheless, the implementation of these techniques provided valuable
information on the number, size, distribution and the phenotyping of EVs from a plasma
sample of both tumor patients and either healthy or disease controls. On the basis of these
preliminary results, the NTA was performed in plasma samples of patients with prostate
cancer and were compared to healthy donors. The results clearly showed that prostate
cancer patients had significantly higher exosome levels compared to healthy donors [16],
thus strongly supporting the data obtained in the preliminary study [9]. An independent
study performed in patients with glioblastoma reported comparable results in displaying
higher exosome levels in the plasma of glioblastoma patients [17]. More recently, a longitu-
dinal study performed using the NTA in patients with oral cancers has shown that high
plasmatic levels of exosomes may be predictive of a recurrence after surgical treatment [18],
supporting a previous investigation which revealed different exosome counts before and
after surgical treatment [19].

The importance of these findings is increased by the growing evidence that
EVs—particularly exosomes—have not been shown to deliver molecules with a tumor
specificity despite being a potential source of disease biomarkers. Glypican-1 is a clear
example; in fact, while it has been proposed to be a specific marker of pancreatic cancer,
it has displayed a high level of expression in exosome samples obtained in plasma from
patients with other cancers [20]. Nonetheless, it may be of some help when performed in
combination with well-known tumor biomarkers [21,22]. It has in fact been demonstrated
that plasmatic exosomes express high levels of acknowledged tumor markers such as PSA,
which distinguishes prostate cancer from both healthy and inflammatory states [23]. Com-
parable studies should also be performed for other acknowledged tumor markers that have
been demonstrated to be delivered by plasmatic exosomes (e.g., CEA) [24]. However, the
increased exosome plasmatic levels have a double importance in clinical oncology. In fact,
growing scientific evidence supports a key role of exosomes in tumor metastasis, [25–27];
on the other hand, the involvement in tumor metastasis increases the importance of ex-
osome count in the plasma of tumor patients in further refining a prognostic evaluation.
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The circulating mass of tumor exosomes may represent a real danger for the patients’ body
with regard to their potential to generate metastasis. However, it has been proposed that
exosomes may shape the tumor microenvironment with different underlying mechanisms,
depending on the exosome cargo [28]. Exosomes may be secreted within a tissue and can be
found in the plasma, but they can also be released in many other biological fluids [29–35]. This
means that the same approach of establishing differences in exosome counts between healthy
individuals and those inflicted with a disease may be investigated using other body fluids.

There is also evidence that exosomes may actively contribute to the continuous genome
remodeling during our lifetime. In fact, it has been shown that exosomes containing a
reporter gene are released in vivo, circulating through blood and transferring the sperma-
tozoa into the gonads, with a possible transfer of the acquired gene to the progeny [36].

The fact is that exosomes are considered a natural source of disease biomarkers [37–63].
The future goal of translational oncology is and will be to define the molecules’ cargo of
body fluid-derived exosomes in tumor patients, also based on the evidence that tumor-
released exosomes are involved in both tumor progression and metastasis [25–29,64]. How-
ever, to date, the data supporting the use of exosomes to identify new and valuable disease
biomarkers have been below par. Several unexpected but interesting findings propose the
simple measurement of exosome plasmatic levels as a key prognostic value [65–67]. The
data also suggest that the increased exosome blood count is a hallmark of tumor patients
as it is a common finding, regardless of tissue specificity [7,16–19].

Conclusions

An intriguing paper has introduced a new term “Vesiclemia” [68], which means the
presence of measurable plasmatic levels of extracellular vesicles in tumor patients. This
paper adds further support to a new strategy in the follow-up of cancer patients that will
take into careful account the plasmatic EV cargo, rather than the potential biomarkers’
cargo. However, the extracellular vesicle count appears to have potential significance in
disease conditions other than tumors. In fact, recently, extracellular vesicle count has been
proposed as a valuable new tool in infectious diseases [69]. Similar findings were reported
in postmenopausal women taking hormonal replacement therapy [70]. Of course, the other
disease conditions need clinical validation at least comparable to what we have to date
for tumor patients. This editorial has emphasized a bulk of clinical results supporting
the use of a “plasmatic exosome count” as a new valuable tool in the follow-up of tumor
patients [7,17–20]. The plasmatic exosome count may be implemented by analyzing other
components, including: (i) the exosome size (that has been proven to be smaller in tumor
patients than in controls) [16,67]; (ii) the expression of known tumor markers [23–25] and
(iii) the intraluminal pH of circulating exosomes [13].

Multicenter clinical studies are of course mandatory in order to validate the existing
data in higher patient numbers. However, to perform longitudinal studies in patients
undergoing either surgical or/and medical treatment is also mandatory [18], with the
aim to use the plasmatic exosome count as a new tool in the clinical follow-up of cancer
patients. Another important point is to extend the exosome count to other body fluids,
with the purpose to limit unnecessary invasive procedures and reduce public health costs.
The existing data on urine and other body fluids are very promising [29–35], but with
limited data on the exosome count. A key series of data has shown that a major cause
of the increased exosome release from tumors is the microenvironmental acidity [71].
Additionally, considering and deliberating on new anti-tumor therapies targeted to the
tumor microenvironment rather than tumor cells [72] may lead to a reduced exosome
release with a reduced risk of tumor metastasis [24–27].
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