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Abstract: Idiopathic granulomatous mastitis (IGM) is a rare condition characterised by chronic
inflammation and granuloma formation in the breast. The aetiology of IGM is unclear. By focusing on
the protein-coding regions of the genome, where most disease-related mutations often occur, whole-
exome sequencing (WES) is a powerful approach for investigating rare and complex conditions, like
IGM. We report WES results on paired blood and tissue samples from eight IGM patients. Samples
were processed using standard genomic protocols. Somatic variants were called with two analytical
pipelines: nf-core/sarek with Strelka2 and GATK4 with Mutect2. Our WES study of eight patients did
not find evidence supporting a clear genetic component. The discrepancies between variant calling
algorithms, along with the considerable genetic heterogeneity observed amongst the eight IGM cases,
indicate that common genetic drivers are not readily identifiable. With only three genes, CHIT1,
CEP170, and CTR9, recurrently altering in multiple cases, the genetic basis of IGM remains uncertain.
The absence of validation for somatic variants by Sanger sequencing raises further questions about
the role of genetic mutations in the disease. Other potential contributors to the disease should
be explored.
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1. Introduction

Idiopathic granulomatous mastitis (IGM) poses a significant clinical challenge [1,2].
It is characterised by chronic inflammation and granuloma formation in the breast, with the
precise molecular mechanisms driving its pathogenesis remaining ambiguous [3–5]. IGM is
typically reported in women of childbearing age, who are not pregnant or
lactating [6–8]. Unlike other forms of mastitis with known risk factors of breastfeed-
ing, infection, or autoimmunity, IGM perplexes clinicians and researchers alike due to its
elusive aetiology and diverse clinical presentation [5,9–11].

The rarity of IGM complicates both its diagnosis and treatment [2,12]. Specific preva-
lence and incidence rates are not well established in the literature due to their rarity and
the diagnosis being one of exclusion [13]. The epidemiology of IGM is not well defined
as precise numbers are not widely available. However, some studies do indicate that the
incidence may be higher in certain geographic regions and populations in Central Asia
and Southeast Asia, suggesting potential environmental or genetic predisposition [2,14].
Pathologically, IGM is characterised by lobulocentric granulomas and may be associated
with fistulae, abscesses, and, in some cases, significant breast deformity [12,15,16]. The
clinical course of IGM can be variable, with some patients experiencing spontaneous reso-
lution, while others may suffer from recurrent or persistent disease requiring long-term
management [12,17]. Treatment options are diverse, ranging from corticosteroids and
immunosuppressants to surgical intervention, but no consensus exists on the optimal
approach [2,18]. Prognosis is equally varied depending on the severity and response to
treatment [12,19]. With its low incidence rate and heterogeneous clinical manifestations,
establishing standardised diagnostic criteria and therapeutic guidelines proves challeng-
ing [2,8,14]. The lack of consensus regarding management also underscores the pressing
need for a deeper understanding of the disease’s molecular underpinnings [13].

Advancements in genomic technologies have heralded a new era in unravelling the
genetic basis of complex diseases. Whole-exome sequencing (WES) has emerged as a pow-
erful tool for comprehensively interrogating the coding regions of the genome, offering a
promising avenue to explore the genetic landscape of rare disorders like IGM [20]. Studying
IGM-related somatic mutations enhances our understanding of the molecular mechanisms
underlying the disease’s pathogenesis. Such insights can lead to improved diagnostics
through biomarker identification, enabling quicker and more accurate differentiation from
other breast diseases [21]. In this study, we embark on a first-of-its-kind endeavour to
identify somatic mutations associated with IGM by employing WES on matched blood and
tissue samples from IGM patients.

2. Results
2.1. Patient Demographics and Clinical Characteristics

Paired blood and breast tissue samples donated by eight women diagnosed with IGM
were processed for WES. The patient demographic and clinical characteristics are shown in
Table 1.

Table 1. Description of demographic and clinical parameters of idiopathic granulomatous mastitis
(IGM) patients.

Demographic and Clinical Parameters IGM
n = 8

Demographics
Median age at diagnosis (years, IQR) 33.0 (27.3–34.5)

Ethnicity (n, %)
Chinese 4 (50)
Malay 3 (38)
Others 1 (12)

Body mass index (kg/m2, IQR) 27.770 (23.460–33.454)
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Table 1. Cont.

Demographic and Clinical Parameters IGM
n = 8

Education level (n, %)
Up to secondary school 3 (38)

Secondary school to pre-university 3 (38)
Tertiary education 2 (25)

Patient characteristics
Parity (n, %)

Yes 6 (75)
No 2 (25)

Number of children (n, %)
No children 2 (25)
1–2 children 5 (62)

More than 2 children 1 (12)

Smoking (n, %)
Yes 2 (25)
No 6 (75)

Chronic illness 1 diagnosis (n, %)
Yes 2 (25)
No 6 (75)

Family history 2 of breast cancer (n, %)
Yes 1 (12)
No 7 (88)

1 Chronic illness: Heart attack, stroke, or high blood pressure. 2 First-degree family history: Breast cancer in a
parent, sibling, or child.

The women have a median age of 33 (interquartile range 27.3–34.5) (Table 1). The
other demographic variables reported were ethnicity, body mass index, and education
level (Table 1). Clinical characteristics reported were parity, number of children, smoking,
chronic illness diagnosis, and first-degree family history of breast cancer (Table 1). All
patients reported no alcohol consumption; no previous or existing diagnosis of autoimmune
conditions (coeliac disease, type 1 diabetes mellitus, Graves’ disease, inflammatory bowel
disease, multiple sclerosis, psoriasis, rheumatoid arthritis, or lupus erythematosus); and no
previous or existing cancer diagnosis.

2.2. DNA Quality and Sequencing Metrics

Genomic DNA extraction yielded mean DNA concentration from blood samples at
12.5 ng/µL and from tissue samples at 10.7 ng/µL (Supplementary Table S1, Supplementary
Figure S1). WES libraries prepared had typical fragment size distributions with a peak range
of 320–337 bp for the blood samples and 315–332 bp for the tissue samples (Supplementary
Table S2). An average of almost 91 million reads per sample was obtained (Supplementary
Table S3). The reads were aligned to the human GRCh38 reference genome using BWA, with
a mean mapping rate of 100.0% (Supplementary Table S3). The average duplication rate was
17.2%, ensuring efficient use of sequencing capacity (Supplementary Table S3). The average
coverage depth across target exonic regions was 37.5× (range 26.66–53.51×), ensuring high
sensitivity for variant detection (Supplementary Table S3). Of the target regions, 100%
were covered at least 20×, indicating uniform coverage across the exome (Supplementary
Table S3). The GC content of the reads was within the expected range for human exonic
sequences (range 42.3–43.7%) (Supplementary Table S3). Other summary statistics for
sequencing performance, coverage metrics, and sequencing read quality control values are
displayed in Supplementary Table S3.
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2.3. Somatic Variants Identified from WES

Variant calling by Strelka2 in nf-core/sarek pipeline and Mutect2 in GATK4 Best
Practices workflow, yielded

• Variants called from blood samples: variants identified in blood samples (Supplemen-
tary Table S4);

• Variants called from paired blood/tissue samples: variants identified in the tissue
sample that were not present in the corresponding blood sample (Table 2).

Table 2. Somatic variants identified from WES of paired blood/tissue samples through Strelka2 and
Mutect2 variant calling.

Case
Somatic Variants SNVs 1 Indels 2 PTVs 3 Pathogenic 4 Pathogenic/Likely

Pathogenic 4
Likely

Pathogenic 4

Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2

1 57 224 56 219 1 1 1 13 0 0 0 0 0 0
2 50 46 48 38 2 7 0 5 0 0 0 0 0 0
3 57 72 56 69 1 2 1 4 0 0 0 0 0 0
4 53 52 51 48 2 4 3 5 0 0 0 0 0 0
5 56 33 54 28 2 5 2 6 0 0 0 0 0 0
6 80 35 79 26 1 8 0 4 0 0 0 0 0 0
7 65 39 65 32 0 6 0 5 0 0 0 0 0 0
8 53 52 52 39 1 11 0 8 0 0 0 0 0 0

Median
(range)

56.5
(50–80)

49
(23–224)

55
(48–79)

38.5
(26–219)

1
(0–2)

5.5
(1–11)

0.5
(0–3)

5
(4–13)

0
(0–0)

0
(0–0)

0
(0–0)

0
(0–0)

0
(0–0)

0
(0–0)

1 Single-nucleotide variants. 2 Insertions and deletions. 3 Protein-truncating variants. These correspond to variants
annotated as nonsense mutations or frameshift insertions or deletions by GATK4 Funcotator. 4 ClinVar annotation
of pathogenicity within GATK4 Funcotator variant annotation.

Supplementary Table S4 and 2 show the number of somatic variants, single-nucleotide
variants (SNVs), insertions and deletions (indels) called by the two variant callers for blood
samples, and blood/tissue paired samples, respectively, for the eight cases. Variants anno-
tated as “Nonsense_Mutation”, “Frame_Shift_Ins”, and “Frame_Shift_Del” with Funcotator
were labelled protein-truncating variants (PTVs). Table 2 also shows the number of PTVs
and ClinVar pathogenicity annotations for the eight cases.

In paired blood/tissue samples, Strelka2 called more variants than Mutect2 (Table 2,
Figure 1a). The medians of all variants called were 56.5.5 (range 50–80) for Strelka2 and
49 (range 23–224) for Mutect2 (Table 2). Strelka2 and Mutect2 also called more SNVs than
indels (Table 2, Figure 1a).

Amongst non-synonymous mutations annotated with Funcotator, missense mutations
were annotated the most (Figure 2a).

More non-synonymous mutations and more types of non-synonymous mutations
were annotated from the variants called by Mutect2 than by Strelka2 (Figure 2a). The median
mutations annotated per sample was 49 for variants called by Mutect2 vs. 11.5 for variants
called by Strelka2, shown by the red-dotted line in Figure 2a. Variants called by Strelka2
were annotated as missense mutations, splice sites, and nonsense mutations; variants called
by Mutect2 were annotated as those already mentioned as well as frameshift insertions and
deletions, in-frame insertion and deletions, and non-stop mutations (Figure 2a). None of the
variants called in matched blood/tissue comparisons were pathogenic or likely pathogenic,
as per ClinVar annotation (Table 2). Fewer variants called in matched blood/tissue samples
were annotated as PTVs in Strelka2 variant calling (median 0.5, range 0–3) compared to
those of Mutect2 (median 5, range 4–13), despite the opposite comparison for the total
number of variants called (Table 2, Figure 1a,b).

Further examination of PTVs from the matched blood/tissue Strelka2 and Mutect2
variant calling found 53 genes altered across the eight cases (Figure 3).
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Figure 1. Single-nucleotide variants (SNVs) and insertion and deletion variants (indels) called by 
Strelka2 and Mutect2, from (a) matched blood/tissue samples and (b) blood samples. 

Amongst non-synonymous mutations annotated with Funcotator, missense muta-
tions were annotated the most (Figure 2a). 
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Figure 1. Single-nucleotide variants (SNVs) and insertion and deletion variants (indels) called by
Strelka2 and Mutect2, from (a) matched blood/tissue samples and (b) blood samples.
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Figure 2. Mutations annotated by Funcotator from variants called with Strelka2 and Mutect2 matched 
blood/tissue samples. (a) All non-synonymous mutations annotated from Strelka2 and Mutect2 var-
iant calls. Red-dotted line represents median of 11.5 and 49 variants per sample annotated, respec-
tively.; (b) Protein-truncating variants (nonsense mutations and frameshift insertions and deletions) 
annotated from Strelka2 and Mutect 2 variant calls. 

More non-synonymous mutations and more types of non-synonymous mutations 
were annotated from the variants called by Mutect2 than by Strelka2 (Figure 2a). The me-
dian mutations annotated per sample was 49 for variants called by Mutect2 vs. 11.5 for 
variants called by Strelka2, shown by the red-dotted line in Figure 2a. Variants called by 
Strelka2 were annotated as missense mutations, splice sites, and nonsense mutations; var-
iants called by Mutect2 were annotated as those already mentioned as well as frameshift 
insertions and deletions, in-frame insertion and deletions, and non-stop mutations (Figure 
2a). None of the variants called in matched blood/tissue comparisons were pathogenic or 

Strelka2 variants called annotated Mutect2 variants called annotated

Mutect2 variants annotated as PTVsStrelka2 variants annotated as PTVs

Figure 2. Mutations annotated by Funcotator from variants called with Strelka2 and Mutect2 matched
blood/tissue samples. (a) All non-synonymous mutations annotated from Strelka2 and Mutect2
variant calls. Red-dotted line represents median of 11.5 and 49 variants per sample annotated,
respectively. (b) Protein-truncating variants (nonsense mutations and frameshift insertions and
deletions) annotated from Strelka2 and Mutect 2 variant calls.



Int. J. Mol. Sci. 2024, 25, 9058 7 of 17

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 18 
 

 

likely pathogenic, as per ClinVar annotation (Table 2). Fewer variants called in matched 
blood/tissue samples were annotated as PTVs in Strelka2 variant calling (median 0.5, range 
0–3) compared to those of Mutect2 (median 5, range 4–13), despite the opposite compari-
son for the total number of variants called (Table 2, Figure 1a, Figure 2b). 

Further examination of PTVs from the matched blood/tissue Strelka2 and Mutect2 
variant calling found 53 genes altered across the eight cases (Figure 3). 

 
Figure 3. Altered genes in PTVs from Strelka2 and Mutect2 matched blood/tissue variant calling. 

49 genes altered were identified from variants called by Mutect2, and the remaining 
4 genes were identified from variants called by Strelka2 (Figure 3). Only 3 out of the 53 
genes were altered in more than 1 case (Figure 3): 
• CHIT1, altered in Cases 3, 4 and 5, nonsense mutations; 
• CEP170, altered in Cases 4 and 5, nonsense mutations; 
• CTR9, altered in Cases 7 and 8, nonsense mutation and frameshift deletion, respec-

tively. 
The remaining genes were only altered in single cases (Figure 3). 
Functional enrichment analysis of the altered genes with enrichR did not reveal any 

statistically significant (p < 0.05) pathways enriched (Supplementary Table S5 and Figure 
S2). Pathways with the lowest p-values identified include terpenoid backbone biosynthe-
sis (p = 0.0526, adjusted p = 0.481), protein export (p = 0.0549, adjusted p = 0.481), and pro-
tein processing in the endoplasmic reticulum (p = 0.0618, adjusted p = 0.481) (Supplemen-
tary Table S5 and Figure S2). The genes IDI2, SEC62, DNAJB12, and DNAH1 were impli-
cated in these pathways (Supplementary Table S5). 

A median of 2 [range 1–3] overlapping variants per sample were called by both var-
iant callers from paired blood/tissue samples (Table 3). 

C
ou

nt

G
en

es

87654321Case

Number of cases

Genes altered in protein-truncating variants (PTVs) from Strelka2 and Mutect2 matched blood-tissue variant calling

Nonsense mutation

Frameshift insertion

Frameshift deletion

Variants called by Strelka2

Figure 3. Altered genes in PTVs from Strelka2 and Mutect2 matched blood/tissue variant calling.

49 genes altered were identified from variants called by Mutect2, and the remaining
4 genes were identified from variants called by Strelka2 (Figure 3). Only 3 out of the
53 genes were altered in more than 1 case (Figure 3):

• CHIT1, altered in Cases 3, 4 and 5, nonsense mutations;
• CEP170, altered in Cases 4 and 5, nonsense mutations;
• CTR9, altered in Cases 7 and 8, nonsense mutation and frameshift deletion, respectively.

The remaining genes were only altered in single cases (Figure 3).
Functional enrichment analysis of the altered genes with enrichR did not reveal

any statistically significant (p < 0.05) pathways enriched (Supplementary Table S5 and
Figure S2). Pathways with the lowest p-values identified include terpenoid backbone
biosynthesis (p = 0.0526, adjusted p = 0.481), protein export (p = 0.0549, adjusted p = 0.481),
and protein processing in the endoplasmic reticulum (p = 0.0618, adjusted p = 0.481) (Sup-
plementary Table S5 and Figure S2). The genes IDI2, SEC62, DNAJB12, and DNAH1 were
implicated in these pathways (Supplementary Table S5).

A median of 2 [range 1–3] overlapping variants per sample were called by both variant
callers from paired blood/tissue samples (Table 3).

All overlapping variants are single-nucleotide variants, none of which were annotated
as PTVs or pathogenic or likely pathogenic (Table 3). Only one variant from Patient 4
(missense mutation) and one variant from Patient 8 (splice site) were annotated as non-
synonymous mutations.

Supplementary Table S4 and Figure 1b show the variants and their categorisations for
the Strelka2 and Mutect2 variant calling in only the blood samples. Supplementary Table S6
details the overlapping variants per sample called by both variant callers in only the
blood samples.
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Table 3. Somatic variants identified from WES of paired blood/tissue samples that overlap in Strelka2
and Mutect2 variant calling.

Case Somatic
Variants SNVs 1 Indels 2 PTVs 3 Pathogenic 4 Pathogenic/Likely

Pathogenic 4
Likely

Pathogenic 4

1 3 3 0 0 0 0 0
2 2 2 0 0 0 0 0
3 1 1 0 0 0 0 0
4 1 1 0 0 0 0 0
5 2 2 0 0 0 0 0
6 2 2 0 0 0 0 0
7 3 3 0 0 0 0 0
8 2 2 0 0 0 0 0

Median
(range) 2 (1–3) 2 (1–3) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

1 Single-nucleotide variants. 2 Insertions and deletions. 3 Protein-truncating variants. These correspond to variants
annotated as nonsense mutations or frameshift insertions or deletions by GATK4 Funcotator. 4 ClinVar annotation
of pathogenicity within GATK4 Funcotator variant annotation.

2.4. Validation of Somatic Variants with Sanger Sequencing

A subset of variants was selected for validation using Sanger sequencing (Supplemen-
tary Table S7). None of the selected variants were validated through Sanger sequencing
(Supplementary Table S7).

3. Discussion

This study presents somatic variants identified through WES in paired blood and
breast tissue samples from eight women diagnosed with IGM. WES libraries exhibited
typical fragment size distributions, high mapping rates, and sufficient coverage depth
across exonic regions. Somatic variant calling revealed more variants by Strelka2 compared
to Mutect2 in paired samples. This flips when variants called by Mutect2 are annotated to
more non-synonymous mutations and PTVs than those called by Strelka2. However, none
of the variants were pathogenic per ClinVar annotation. Further examination identified
53 altered genes, with the CHIT1, CEP170, and CTR9 genes altered in more than one case.
Functional enrichment analysis did not show statistically significant pathways, although
terpenoid backbone biosynthesis, protein export, and protein processing in the endoplasmic
reticulum were implicated. Validation of variants through Sanger sequencing did not yield
any validated variants.

Differences in the variability of sensitivity and specificity between different variant-
calling algorithms have been extensively discussed [22–26]. Their differences in the algo-
rithm and focus of the variant caller underscores this discrepancy between Strelka2 and
Mutect2 in terms of the number of variants identified and their limited overlap. Strelka2
uses a probabilistic model leveraging local assembly and realignment to call variants for
more sensitivity in identifying low-frequency somatic mutations, especially in matched
tumour–normal pairs, by using Bayesian methods to model both the tumour and normal
samples [27]. Contrastingly, the haplotype-based approach in Mutect2 employs a sophisti-
cated filtering process that incorporates various sources of evidence to distinguish between
true mutations and sequencing artefacts [28]. Designed to balance sensitivity and specificity,
Mutect2 minimises false positives by implementing additional artefact filters for oxidative
artefacts and strand bias, on top of the standard filtering preprocessing [28]. Furthermore,
nf-core/sarek Strelka2’s use of hard filters based on fixed thresholds vs. GATK4 Mutect2’s
use of machine learning to filter variants could provide an additional explanation for the
large discrepancy in called variants [27–29].

Both algorithms identified more SNVs than indels, which is consistent with typi-
cal findings in WES studies [30–32]. Despite the larger number of variants identified
by Strelka2, the fewer non-synonymous mutations and PTV annotation in Funcotator
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contrasted with Mutect2 variant calls in matched blood/tissue samples emphasises the
need for the multiple-variant-caller approach for capturing the full spectrum of genetic
alterations [33,34]. The limited overlap across the different categorisations of the variants in
both the matched blood/tissue calls and the blood-only calls signals that further optimisa-
tion of the variant-calling pipelines and validating identified variants through independent
methods are necessary.

From the PTVs from the matched blood/tissue Strelka2 and Mutect2 variant calling, it
was observed that CHIT1, CEP170, and CTR9 were altered in more than one case. CHIT1
has been implicated in both granulomatous and non-granulomatous inflammatory con-
ditions, including multiple sclerosis, sarcoidosis, inflammatory bowel disease, and a few
fibrotic interstitial lung diseases (tuberculosis, idiopathic pulmonary fibrosis, scleroderma-
associated interstitial lung diseases, and chronic obstructive pulmonary diseases) [35–39].
Song and Shao (2024) have also proposed CHIT1 as 1 of 12 genes in an immune-mediated
genetic prognostic risk score model when administering immunotherapy in triple nega-
tive breast cancer [40]. CEP170 and CTR9 are involved in cell cycle processes, in which
dysregulation has been described to result in the secretion of inflammatory factors, impair
immune-mediated processes, and increase inflammation [41–45]. Potentially, the alterations
in CHIT1, CEP170, and CTR9 may individually or collectively contribute to granuloma
formation and chronic inflammation in the breast tissue in IGM.

Unfortunately, there is considerable genetic heterogeneity amongst the eight IGM cases
since the remaining 50 genes are each altered in single cases. This variability complicates
efforts to pinpoint common genetic drivers of the disease and could suggest IGM may
arise from multiple genetic pathways. Such heterogeneity is consistent with the clinical
diversity observed in IGM, where patients present with a wide range of symptoms and
disease severities [4,13,46]. However, the lack of statistically significant pathways identified
from functional enrichment analysis of the 53 genes, with all pathways identified enriched
by only one to two genes, suggests there may not be identifiable genetic drivers for IGM
among these eight patients.

Both pipelines rely on rigorous variant calling and annotation processes to maximise
the reliability and validity of the identified somatic variants. However, the discrepancies
observed between these two pipelines identifies a significant limitation: the potential
variability introduced by different analytical methods. While employing multiple pipelines
can enhance the robustness of variant detection, it also raises concerns that some of the
identified variants may be artifacts unique to the algorithms rather than true genetic
mutations [47,48]. Standardised variant-calling practices need to be specified for studies
investigating rare diseases like IGM, where the small sample size can exacerbate the effect
of such analytical discrepancies [49–52]. This variability cautions interpretation of the
results and demands validation of detected variants to confirm their authenticity.

Unfortunately, none of the selected variants identified from WES were validated with
Sanger sequencing. Despite achieving high coverage depth across all exome-targeted
regions, WES is prone to inaccuracies, due to sequencing artefacts or accurately identifying
variants in regions of genomic instability [53]. False positives can arise in short-read
technology, particularly in regions with high GC content or repetitive sequences [54].
Sanger sequencing, with its ability to provide uniform coverage and longer read lengths, is a
valuable orthogonal validation tool [55]. Other studies have also described somatic variants
identified from WES that were not found in Sanger sequencing [31,32,56,57]. Discrepancies
between WES and Sanger sequencing results can be attributed to their inherent differences
in their error profiles or limitations in detecting variants present at low allele frequencies,
especially in heterogeneous samples like those from IGM patients [58–60].

It must be recognised that the application of WES to the study of IGM presents its
own unique set of challenges. WES mainly targets the exonic regions of the genome and is
not as effective in identifying large structural variations, including deletions, duplications,
inversions, and translocations [61]. Additionally, the rarity of IGM limits access to large
patient cohorts. Not only does this inherently restrict the generalisability of the findings
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from this study with a sample size of eight patients, but potential genetic patterns that
could be more apparent in a larger cohort may also be obscured. A larger cohort is needed
for comprehensive genomic analysis with sufficient power to detect smaller effect sizes
and lower impact somatic mutations [62]. Given our sample size of eight patients with
matched blood and tissue samples, this study has low statistical power (0.230) to detect a
significant difference in somatic mutations between the paired samples if such a difference
truly exists [63]. The ideal power of at least 0.80 requires an odds ratio of approximately
7.25 to detect a statistically significant difference in somatic mutations between the paired
blood and tissue samples [63]. Genetic variations relevant to IGM, with smaller effect sizes,
might have been overlooked, highlighting the need for future studies with larger cohorts
to validate and expand upon these findings.

Another difficulty lies in the disease’s inherent heterogeneity [2,4,11,13]. With a broad
spectrum of clinical features, ranging from localised breast masses to diffuse inflammatory
changes, identifying consistent genetic signatures associated with IGM is challenging [46].
Moreover, the multifactorial and inflammatory nature of IGM adds another layer of com-
plexity to the study of its aetiology [11,64]. While this study examines the genetic factors,
it is important to recognise that IGM likely results from a combination of genetic and
non-genetic influences [12,65,66]. Various hypotheses, including immune dysregulation, in-
fectious triggers, and hormonal influences, have been proposed, but the precise interplay of
genetic and environmental factors remains poorly understood [11,14]. Understanding these
complex interactions is key to determining the underlying causes of IGM. A multifaceted
approach incorporating genetic studies with investigations into environmental factors,
immunological responses, and hormonal profiles is needed to explore these interactions in
a comprehensive manner.

This study pioneers the investigation into somatic variants in IGM patients. While the
matched blood/tissue WES variant calls did not identify any ClinVar annotated pathogenic
variants, the detection of variants in multiple genes suggests that IGM may involve a
variety of molecular mechanisms. Larger studies with more comprehensive datasets are
needed to uncover significant genomic drivers and biological pathways associated with
IGM. Furthermore, larger scale studies could also unearth possible associations between
different variants and the clinical manifestations and severity of IGM [2,13]. Future studies
should also integrate additional omics data, such as transcriptomics, proteomics, and epige-
nomics. This will broaden the scope of research across both genetic and non-genetic factors
by exploring gene expression changes, protein-level modifications and interactions, and
regulatory mechanisms like DNA methylation and histone modifications [67]. Capturing
data from the various biological layers will provide a more comprehensive understanding
of how the genetic, environmental, hormonal, immune-mediated, and other potential un-
covered factors converge to influence IGM’s pathogenesis. This comprehensive perspective
will clarify the interplay between different molecular pathways involved in the disease.

The challenges in validating somatic variants underscore the need for improved
methodologies and protocols for variant validation. Addressing these challenges requires
a multifaceted approach, including refining bioinformatics pipelines to mitigate false
positives, and an integrated orthogonal validation approach to ensure the accuracy of
variant calls.

4. Materials and Methods
4.1. Patient Recruitment

The study population and patient recruitment have been previously described [11].
In brief, adult female patients with IGM were recruited from five participating hospitals
in Singapore between 2018 and 2020. IGM diagnoses were based on breast core biopsy
histopathology for non-caseating granulomatous inflammation and absence of malignancy.
Patients were also negative for Mycobacterium tuberculosis infection (acid-fast bacillus
stain) and fungal infection (Grocott’s (methenamine) silver stain or periodic acid–Schiff
stain). Study coordinators sought written informed consent from potential IGM patients
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identified by clinicians and physicians. All studies were performed in accordance with
the Declaration of Helsinki. This study was approved by the National Healthcare Group
Domain Specific Review Board (reference number: 2017/01057) and the Agency for Science,
Technology and Research Institutional Review Board (reference number: 2020–152).

4.2. Sample Collection

A subset of eight IGM patients who donated paired blood and core tissue biopsy
samples for research use were included in our study (Figure 4).
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Figure 4. Patient recruitment, inclusion, and exclusion flowchart.

Fresh blood samples were collected with DNA/RNA Shield Blood Collection tubes
(catalogue number R1150; Zymo Research, Irvine, CA, USA). Fresh tissue samples were
obtained with ultrasound-guided core tissue biopsies from three different regions of the
affected breast area. Tissue cores were collected in 2 mL collection tubes with 300 µL
DNA/RNA Shield without breads (catalogue number R1100-250; Zymo Research, Irvine,
CA, USA).

4.3. DNA Extraction and Sequencing

Genomic DNA was extracted from the collected whole blood and fresh tissue samples,
and the WES library was prepared with standard protocols. Briefly, DNA extraction was
performed with Quick-DNA Miniprep Plus Kit (catalogue number D4069; Zymo Research,
Irvine, CA, USA) according to the manufacturer’s instructions. The WES library was
prepared with NEBNext® Ultra™ II DNA Library Prep Modules for Illumina® (catalogue
number E7645L; New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s
instructions. Exome capture was performed with NimbleGen SeqCap EZ Exome Library
Kit v3.0 (catalogue number 06465692001; Roche, Basel, Switzerland). DNA concentrations
and quality were measured after extraction, shearing, pre-exome capture, and post-exome
capture for quality control. Libraries were sequenced with 2 × 150 bp paired-end reads on
HiSeq4000.
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4.4. Quality Control and Somatic Variant Calling

Two analytical pipelines were used to identify somatic variants in the paired blood
and tissue samples. The nf-core/sarek pipeline (version 3.3.0) was executed for identi-
fying somatic mutations with singularity [68–73]. Raw sequencing reads were aligned
to human GRCh38 reference genome (version from 22 July 2016, textls[-5]Broad Insti-
tute, from https://console.cloud.google.com/storage/browser/genomics-public-data/
resources/broad/hg38/v0;tab=objects?prefix=&forceOnObjectsSortingFiltering=false, ac-
cessed on 19 October 2023) with BWA [74]. GATK4 was applied according to GATK Best
Practices recommendations parameters for hard filtering and score recalibration for remov-
ing duplicates and base quality score recalibration [28,75,76]. Strelka2 was used for matched
tissue–normal pair variant calling [27].

Another analytical pipeline, also applying GATK4 according to the GATK Best Prac-
tices workflow, was also used to identify somatic mutations [28,75,76]. Preprocessing
sequencing reads followed the same parameters as above, but the different processes were
applied individually in the same sequence, without the wrapped container. Briefly, the
raw sequencing reads were also aligned to the human GRCh38 reference genome using
BWA [74]. Picard tools were utilised to mark and remove duplicates [28], and GATK4
BaseRecalibrator and GATK4 ApplyBQSR were utilised for base quality score recalibration,
consistent with GATK Best Practices [28,75,76]. Matched tissue–normal pair somatic variant
calling was executed using GATK4 Mutect2 [28]. The called variants underwent filtering
with GATK FilterMutectCalls before variant annotation [28].

Variants called with Strelka2 in the nf-core/sarek pipeline and variants called with
Mutect2 in the GATK Best Practices workflow were annotated with GATK4 Funcotator [28].
Variant annotation was performed against Funcotator data sources v1.7.20200521s (GRCh38),
encompassing the following databases:

• Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC)
(data source dated 15 March 2012) [77];

• National Center for Biotechnology Information (NCBI) ClinVar (data source dated 29
April 2018) [78,79]; also used to perform clinical pathogenicity annotation;

• NCBI dbSNP (data source dated 18 April 2018) [80];
• Human DNA repair genes (data source dated 24 May 2018) [81];
• The Familial Cancer Database (FaCD) [82,83];
• GENCODE (v34) [84];
• Genome Aggregation Database (gnomAD) (v3.1.2) [85];
• Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC)

Database (data source dated 30 November 2017) [86].

4.5. Validating Called Variants with Sanger Sequencing

A subset of somatic variants identified through WES and visualised with Integra-
tive Genomics Viewer (IGV, version 2.17.0) was validated with Sanger sequencing [87].
Primers for PCR amplification of the regions containing the variants were designed using
Primer3web (version 4.1.0) [88–90]. The PCR products were purified using AMPure XP
beads (product number A63882; Beckman Coulter Life Sciences, Indianapolis, IN, USA) in
a ratio of 1:1 sample-to-bead volume. Purified PCR products were Sanger-sequenced. The
sequencing data were analysed using the CLC Main Workbench (version 7.7.3, QIAGEN,
Hilden, Germany) to confirm the presence or absence of the variants. The validity of
somatic variants identified was determined based on sequence quality, allele frequency,
and variant presence in the corresponding matched blood samples.

4.6. Gene Set Analysis

Functional enrichment analysis of gene sets of somatic variants identified was per-
formed with enrichR (version 3.2) using the 2019 version of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) knowledge base [91–95]; comprehensive analysis and visualisation
of the somatic variants identified were performed with maftools (version 2.6.05) [95]; and

https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0;tab=objects?prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0;tab=objects?prefix=&forceOnObjectsSortingFiltering=false
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other data visualisation was performed with ggplot2 (version 3.4.4) [96]. All analyses and
visualisations were performed in R (version 4.0.4) unless otherwise stated.

4.7. Data and Sample Availability Statement

The datasets used and analysed in the current study are available from the correspond-
ing author on reasonable request, within limitations of this study’s Institutional Review
Board (IRB).

5. Conclusions

The absence of clear genetic drivers suggests that IGM may be influenced by non-
genetic factors. Other potential contributors to the disease should be explored.
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