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Abstract: This study asked whether the P2X7 receptor was necessary and sufficient to trigger
astrocyte polarization into neuroinflammatory activation states. Intravitreal injection of agonist
BzATP increased gene expression of pan-astrocyte activation markers Gfap, Steap4, and Vim and
Al-type astrocyte activation markers C3, Serpingl, and H2T23, but also the Cd14 and Ptx3 genes
usually associated with the A2-type astrocyte activation state and Tnfa, IL1a, and Clga, assumed to
be upstream of astrocyte activation in microglia. Correlation analysis of gene expression suggested
the P2X7 receptor induced a mixed Al/A2-astrocyte activation state, although Al-state genes like
C3 increased the most. A similar pattern of mixed glial activation genes occurred one day after
intraocular pressure (IOP) was elevated in wild-type mice, but not in P2X7"/~ mice, suggesting the
P2X7 receptor is necessary for the glial activation that accompanies IOP elevation. In summary, this
study suggests stimulation of the P2X7R is necessary and sufficient to trigger the astrocyte activation
in the retina following IOP elevation, with a rise in markers for pan-, Al-, and A2-type astrocyte
activation. The P2X7 receptor is expressed on microglia, optic nerve head astrocytes, and retinal
ganglion cells (RGCs) in the retina, and can be stimulated by the mechanosensitive release of ATP
that accompanies IOP elevation. Whether the P2X7 receptor connects this mechanosensitive ATP
release to microglial and astrocyte polarization in glaucoma remains to be determined.

Keywords: neuroinflammation; neurotoxic astrocyte polarization; microglia; P2X7; retinal ganglion
cells; C3; glaucoma

1. Introduction

Astrocytes can adopt a range of phenotypes and expression profiles in response to
neural injury, with classifications distinguished by their distinct patterns of transcriptional
alterations [1,2]. The Al- and A2-type forms of astrocyte activation states are associated
with neurotoxicity and neuroprotection, respectively, and may contribute to neurode-
generation [3,4]. For example, Al-type astrocytes are implicated in Alzheimer’s disease,
Parkinson’s disease, glaucoma, and parasitic infection in the brain [5-7]. Astrocyte polariza-
tion is also associated with the loss of retinal ganglion cells (RGCs) following the elevation
of intraocular pressure (IOP) [3,4,8-10]. While distinction between the neurotoxic Al and
neuroprotective A2 astrocytes has received considerable attention, detailed studies suggest
astrocyte activation, like microglial activation, is not always binary, and that the particular
combination of behaviors and markers is the most accurate way to describe changes in
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glial inflammation [11-14]. To limit the pathological consequences for neurons, a better
understanding of these inflammatory changes in glial cells and their upstream triggers
is required.

The signaling pathways that link astrocyte activation to neuronal damage are emerging.
Released lipoparticles containing APOE and APO]J from Al-type-activated astrocytes were
found to mediate the downstream effects on neuron health [15]. Signals leading to astrocyte
polarization have also been identified, with exposure to cytokines IL-1x, C1q, and TNF«
implicated in the activation of neurotoxic astrocytes; neurons were protected and the
polarization response induced by IOP elevation was blunted in mice missing I/1a, Tnfa,
and Clga [3,4,8]. However, the upstream mediators initiating the neurotoxic response of
increased Il1a, Tnfa, and Clga, and thus glial activation, following IOP elevation remain
largely unknown.

Extracellular ATP is proposed here as a prime candidate responsible for initiating po-
larized glial activation in many pathological situations involving tissue stretch or swelling,
including the elevation of IOP. Mechanical strain releases ATP from many tissues [16],
and this released ATP can stimulate the ionotropic P2X7 receptor (P2X7R) to mediate
inflammatory responses [17-19]. Stimulation of the P2X7 receptor is frequently associated
with activation of the NLRP3 inflammasome and the resulting release of cytokines like
IL-1p3 [19-22], although receptor stimulation also induces release of other inflammatory
signals [23]. The P2X7 receptor is expressed on RGCs, optic nerve head astrocytes, and
retinal microglia, and elevation of IOP can trigger a mechanosensitive ATP release and stim-
ulation of the receptor [24]. Whether the P2X7 receptor can lead to astrocyte polarization is
unknown, however.

This study tests whether the P2X7 receptor can increase the expression of genes
associated with the pan-, Al-, or A2-astrocyte activation state in the retina. Intravitreal
administration of P2X7 receptor agonist BZATP upregulated expression of Tnfa, C1qa and
Il1a, as well as genes associated with Al- and A2-specific astrocyte polarization. A parallel
response was induced by IOP elevation in wild-type, but not P2X77/~, mice, suggesting the
receptor was also necessary for early transcriptional changes. Overall, this identifies a key
role for the P2X7 receptor in the astrocyte activation patterns linked to neurotoxicity.

2. Results
2.1. Injection of P2X7 Receptor Agonist BzATP Increases Expression of Genes Associated with
A1-Type Astrocyte Inflammation

To test the hypothesis that P2X7 receptor stimulation was upstream from astrocyte
activation, initial experiments examined whether direct stimulation of the P2X7 receptor
with agonist BZATP was sufficient to increase the expression of genes associated with
astrocyte activation states in the retina. BZATP (250 uM) was injected intravitreally with
saline injected into the contralateral eye, and retinas were removed 24 h later [25]. As genes
associated with the differential astrocyte activation states have already been identified [8],
gene expression was compared with qPCR.

BzATP injection significantly upregulated expression of genes associated with pan-
reactive astrocytes (Gfap, Steap4, Vim, SerpinA3N, and Aspg) as compared to saline-injected
eyes (Figure 1A). BZATP injection also elevated expression of the Al-activation-state genes
C3, Serpingl, H2T23, and H2D1 (Figure 1B). Levels of C3 increased the most, corresponding
to a 20-fold rise following drug injection when converted to relative expression. The rise
in CD14 and Ptx3, genes associated with the A2 activation state, was small but significant
(Figure 1C). BzATP did not significantly change the expression of other genes associated
with the A1l (Amigo2, Fblnb, Fkbp5) or A2 activation state (Clcf1, Emp1, Slc10a6). Overall,
the pattern of gene expression found after intravitreal injection of BZATP was consistent
with astrocyte activation, with genes associated with pan-, Al-, and, to a smaller extent,
A2-astrocyte activation states.
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Figure 1. P2X7 agonist BZATP upregulates mixed astrocyte activation markers. Expression of mRNA
associated with astrocyte activation states in C57Bl/6] mouse retinas extracted 24 h after intravitreal
injection of BZATP (Bz; 250 uM) or saline controls (C). (A) Expression of mRNA for pan-astrocyte
activation markers Gfap, Steap4, Vim, Aspg, and SerpinA3N was increased. Throughout the Figure,
data were analyzed with a one-way ANOVA with the Sidak multiple comparisons test; * = p < 0.05,
** =p <0.01, *** = p <0.001, and ns = not significant; n = 7 pairs. Throughout the manuscript,
mRNA expression is expressed as AACT and normalized to the mean value for control eyes. Box
and whisker plots were generated based on Tukey analysis, where the box indicates median + 25th
and 75th percentile, and dots show outliers. (B) BzATP injection also increased the expression of
genes associated with the Al activation state C3, Serping1, H2T23, and H2D1. (C) The rise in genes
associated with the A2 activation state Ptx3 and Cd14 was significant but small.

2.2. P2X7 Receptor Agonist BzATP Increases the Expression of Genes Upstream of
Astrocyte Inflammation

As cytokines TNF-«, IL-1, and Clqa are implicated in promoting Al-type neurotoxic
astrocyte inflammation [8,26], the effect of BZATP injection on the expression of Tnfa, Il1a,
and Clga was also examined (Figure 2A). Intravitreal injections of BZATP increased the
expression of Tnfa, [l1a and C1ga as compared to saline-injected eyes. When combined with
the results from Figure 1, these results suggest stimulation of the P2X7 receptor with BZATP
may be sufficient to increase the expression of multiple glial activation markers.
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Figure 2. Correlation of gene changes induced by BzATP. Expression of mRNA message in C57Bl1/6]
mouse retinas extracted 24 h after intravitreal injection of BzATP (Bz, 250 uM) or saline controls
(C). (A) Expression of mRNA for Tnfa, Il1a, and C1qa was increased in eyes injected with BzZATP as
compared to the contralateral eyes injected with equal volumes of saline. One-way ANOVA with
Sidak multiple comparisons test, n = 7 pairs; * = p < 0.05, ** = p < 0.01. (B) Spearman’s correlation
between changes in all genes induced by injection of BZATP as compared to levels in the contralateral
control retinas. Blue squares indicate a positive correlation and red a negative correlation, with
the intensity of color an index of the correlation magnitude. Genes named in black are associated
with microglia, green with pan-, red with Al-, and blue with A2-associated activation markers.
Correlations with p < 0.05 are marked with a thick cube.

The overall pattern of changes in all 21 genes induced by BzATP injection was exam-
ined by analyzing the relationships between them with a Spearman’s correlation (Figure 2B).
The analysis showed that BZATP led to substantial changes in the expression of many genes
associated with glial activation that were significantly correlated with one another. Some of
the correlations were expected, such as the significant correlation between the expression
of Vim and Il1a, Gfap, and Aspg. However, the Al-associated marker H2T23 was signifi-
cantly correlated with the expression of Ptx3 and Cd14 genes linked to A2-type astrocyte
polarization. Changes in Il1a expression correlated well with changes in the pan-astrocyte
activation genes and several of the Al-associated and A2-associated genes, but not other
Al- and A2-associated genes. A similar pattern was found for the correlation with multiple
genes including Aspg, Steap, and Lnc2. In total, the correlation analysis strengthens the
link between the P2X7 receptor and upregulation of multiple genes associated with glial
activation, while suggesting either the response or the markers are not as polarized as
often assumed.
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2.3. P2X7 Receptor Contributes to Neurotoxic Astrocyte Activation after IOP Elevation

Elevation of IOP is a major risk factor for vision loss and retinal ganglion cell injury
in glaucoma, and a rise in IOP has been associated with an increase in the expression of
neurotoxic astrocyte markers and RGC loss in models of glaucoma [3,4]. To separate the
initial effects of tissue stretch from the downstream cascades associated with cell death, a
non-ischemic elevation of IOP was induced for 4 h, and gene expression analyzed from
retinal tissue was obtained 22-24 h later. Sham injections did not change gene expression
(Figure S1). The three genes associated with each state showing the largest response above
were selected for analysis. A significant rise in the expression of pan-reactive astrocyte
transcripts Gfap, Steap4, and Vim was detected in the retinas from C57Bl/6] mice exposed
to the transient IOP elevation (Figure 3A). The expression of C3, Serpingl, and H2T23,
transcripts associated with the Al-astrocyte activation state, were also elevated (Figure 3B).
An increase in the expression of Cd14, Ptx3, and Clcfl genes usually associated with the A2
state was also detected (Figure 3C). Spearman’s correlation analysis of the changes in the
glial activation genes induced following IOP elevation suggests groupings similar to those
found after BzATP injection (Figure S2).
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Figure 3. A rise in mixed-astrocyte activation markers accompanied IOP elevation in C57Bl/6] mice. (A)
Transient elevation of IOP in C57B16/] mice (IOP) increased expression of mRNA for genes associated
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with pan-astrocyte activation, Gfap, Steap4, and Vim, as compared to the unpressurized contralateral
control eye (C). mRNA for genes associated with Al-astrocyte activation, C3*, Serping1*, and H2T23,
(B) and with the A2-astrocyte activation state, Ptx3, Cd14, and Clcf1, (C) were also increased by
IOP elevation. One-way ANOVA with Siddk multiple comparisons test, n = 7 pairs; * = p < 0.05,
**=p <0.01, ** = p <0.001, *** = p <0.0001.

2.4. P2X7 Receptor Is Necessary for the Increased Expression of Tnfa and Il1a Following IOP
Elevation

To determine whether the P2X7 receptor contributed to the IOP response, transient
IOP was performed in P2X7-/~ mice. IOP elevation in P2X7-/~ mice did not lead to a
significant rise in any of the astrocyte activation markers that were affected in the retina
of wild-type mice, whether associated with pan-astrocyte activation, Al activation, or the
A2 activation state, with the exception of Clcfl (Figure S3). The ability of IOP elevation to
increase retinal expression of Tnfa, Il1a, and C1ga was compared directly in C57B1/6] and
P2X7-/~ mice to examine whether the receptor was required for these genes thought to be
upstream of astrocyte activation. Comparative analysis suggested transient IOP elevation
increased the expression of Tnfa and Il1a in the retinas from C57Bl/6] mice, but not in
P2X7"/- mice (Figure 4A). Direct comparison of the change in astrocyte gene expression
between C57Bl/6] and P2X7-/~ mice provided similar results; the expression of Gfap, C3,
and Ptx3 was significantly increased following IOP elevation in retinas from C57Bl/6] mice
but not P2X7-/~ mice (Figure 4B).
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Figure 4. P2X7R is required for the rise in many glial activation markers after IOP elevation. (A)
Expression of Tnfa and Il1a increased in retinas from C57Bl/6] mice (C57) but not in P2X77/~ mice
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exposed to a transient IOP elevation (IOP; red for C57, blue for P2X7-/~ mice). Expression normalized
to normotensive control eye. (B) IOP elevation increased Gfap, C3, and Ptx3 expression in retinas from
C57B1/6] mice, but not in P2X7/~ mice. One-way ANOVA with Sidak multiple comparisons test, 1 =
6 pairs. * =p < 0.05, ** = p < 0.01, *** = p < 0.001, *** = p < 0.0001, ns = not significant. (C) Spearman’s
correlation analysis calculated for changes in mean expression of Tnfa, Il1a, Clga, Gfap, Steap, Vim, C3,
Serpingl H2T23, Ptx3, Cd14, and Clcf1 following BzATP injection; transient IOP elevation in C57Bl/6]
mice (IOP C57) or P2X7/~ mice (IOP P2X7KO). The Spearman’s coefficient is given in boxes; darker
blue indicates a closer correlation. Data indicate that the patterns of gene expression changes with
BzATP and IOP elevation in C57 mice were closely correlated with each other (p = 0.00015), but not
with changes in P2X7-/- mice following IOP elevation. The correlation was based on the mean values
for each gene from 7, 6, and 6 mice for BZATP, IOP C57, and IOP P2X7KO conditions, respectively, as
compared to the contralateral control retinas.

While the elevation of IOP did raise markers for pan-, A1, A2, and microglial activation,
the reduced expression in mice missing the P2X7 receptor strongly suggested the P2X7
receptor was required for the response. This was similar to the response induced by
the P2X7 receptor agonist BZATP. To determine whether the expression changes found
following BzATP injection and IOP elevation were similar, a Spearman’s correlation analysis
was performed, using the mean expression changes for 12 glial markers: Tnfa, Il1a and
Clga; Gfap, Steap4, and Vim; C3, Serping1, and H2T23; and Cd14, Ptx3, and Clcf1. There was
a close correlation between the pattern of gene changes induced by BzZATP injection and
IOP elevation (p = 0.00015, correlation coefficient = 0.902). However, the response in P2X7/~
mice exposed to IOP elevation was not correlated with the expression changes found in
either BZATP-treated eyes (p = 0.480, correlation coefficient = 0.224) or wild-type mice with
IOP elevation (p = 0.299, correlation coefficient = 0.326). Together the correlation analysis,
provides powerful statistical backing for the hypothesis that the rise in glial activation
genes in response to IOP elevation is largely dependent upon the P2X7 receptor.

3. Discussion

Glial cells are increasingly recognized for their roles in neurodegeneration, with
inflammatory neurotoxic astrocytes implicated in the response to multiple stresses [8,26,27].
The signaling pathways that initiate these events and coordinate the pathological responses
are less well understood, however. The data above implicate the P2X7 receptor in the
upregulation of the genes associated with astrocyte activation, and of the genes Tnfa and
Il1a, presumed to be upstream of this astrocyte activation [8]. The ability of P2X7 receptor
agonist BZATP to increase gene expression suggests receptor stimulation is itself sufficient to
activate transcription, while the reduced response in P2X7-/~ mice exposed to IOP elevation
as compared to wild-type mice suggests the receptor is also necessary for the increased
glial activation that accompanies elevated IOP. Given the documented links between IOP
elevation and the release of the P2X7 receptor agonist ATP [28,29], these results may provide
a broader context to explain these pathological neural/glial interactions.

3.1. The P2X7 Receptor Is Sufficient and Necessary for Glial Activation

The response to intravitreal injection of BZATP supports the role of the P2X7 receptor in
astrocyte activation. The P2X7 receptor agonist upregulated the expression of complement
component genes C3 and Serping1, as well as Major Histocompatibility Complex 1 (MHC
I) genes H2T23 and H2D1. However, genes associated with the A2-astrocyte state were
also elevated. Transcription of glial activation genes was increased in a similar pattern
after IOP elevation in wild-type, but not P2X7/~, mice. The correlation in the degree of
change in the 12 genes in response to both BzZATP injection and IOP elevation supports this,
particularly as the pattern of gene change in P2X7~/~ mice exposed to IOP elevation was
not significantly correlated with either group (Figure 4C). Together, this strongly suggests



Int. J. Mol. Sci. 2024, 25, 8784

8 of 14

that the P2X7 receptor is both sufficient (with BzZATP) and necessary (in contrast with the
knockout) for the rise in these glial activation markers.

It should be noted that although BzATP is frequently used as a P2X7 receptor agonist,
it can also act at P2X1, P2X2, and P2X3 receptors and the heteromeric P2X2/P2X3 recep-
tors [30]. Involvement of these receptors in the response to BZATP cannot be ruled out, and
their increased sensitivity to lower ATP levels may lead to activation at more moderate
concentrations. However, the reduced elevation of Gfap, C3, Tnfa, and Il1a following IOP
elevation in P2X7~/~ mice in Figure 4 (and Figure S3) supports a specific contribution of the
P2X7 receptor. The effects of P2X7 receptor stimulation following IOP elevation have been
confirmed with specific antagonists by multiple investigators [31-35], further supporting a
role for the receptor.

3.2. Astrocyte Activation States: Mixed States or Mixed-Up Markers?

Direct stimulation of the P2X7 receptor with BzZATP significantly increased expression
of five markers associated with the pan-astrocyte activation state (Gfap, Steap4, Vim, Aspg,
SerpinA3N), four out of seven of the genes associated with the Al-astrocyte activation state
(C3, Serpingl, H2T32, H2D1), and two of five genes associated with the A2 activation state
(Ptx3 and Cd14). The examination of the responses using a Spearman’s correlation analysis
enabled the pattern of linked changes to be evaluated; this pattern suggests that either
the P2X7 receptor initiates both Al- and A2-type activation states in retinal astrocytes,
or that the assignment of “marker” genes is not as predictive as often assumed. The
strict classification of Al- and A2-astrocyte activation states is unlikely to apply in most
neural systems, with the pattern of astrocyte polarization being contextual and no longer
considered binary [12,36]. Whether the data reflect activation of a mixed activation state,
or of markers that are not completely binary, is hard to predict with certainty, however.
For example, the rise in the Cd14, Ptx3, and Clcf1 genes associated with the A2 activation
state could reflect an involvement of the A2 state in the early response to IOP elevation, or
just a misclassification of the markers. Regardless of the chosen definition, the pattern of
gene upregulation is most consistent with the P2X7 receptor leading to a clear rise in the
astrocyte activation state. It should be noted that the comparison of data for 21 genes from
all seven sets of saline versus BzATP-injected retinas adds rigor to the correlation; unlike
RNAseq data, the results have already been confirmed with PCR.

3.3. The P2X7 Receptor Is Sufficient and Necessary for Activation of Tnfa and Il1a

The analysis clearly supports a role for the P2X7 receptor in the elevation of Tnfa and
Il1a, with an increase following both BzATP injection and IOP elevation. Levels of Clqa
were significantly increased following BzATP injection, although the smaller rise following
transient IOP elevation was not significant.. As these genes are considered to be upstream
from the Al-astrocyte activation [8], this supports a model where stimulation of the P2X7
receptor could initiate the overall glial activation response (see Graphical Abstract).

While the role of the P2X7 receptor in the upregulation of Tnfa and Il1a is clear, the
cellular location of this response is uncertain. Microglial cells were thought to be the
primary source of these released inflammatory signals; in vitro polarization of microglia
with lipopolysaccharide led to the release of TNF-, IL-1, and C1q, and this secretome in
turn polarized cultured astrocytes into an A1 neurotoxic phenotype [8]. However, ablation
of microglia with PLX5622 and subsequent application of the optic nerve crush model did
not rescue the neuronal loss, suggesting a role for cells in addition to microglia [8]. This
agrees with preliminary data suggesting that only some of the IL-1 and TNFo expression
is associated with microglia. Previous reports suggest the rise in TNF« protein expression
accompanying IOP elevation is detected in RGCs [37].The rise in neural TNF« protein
expression following BzATP injection is currently being investigated, but it does engender
caution about attributing the TNFo source.
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3.4. Physiological Implications

The observations above implicate the P2X7 receptor in the activation of Tnfa, Il1a, and
multiple astrocyte activation markers. The P2X7 receptor may have particular importance
in conditions associated with tissue stretch such as IOP elevation, and increased ATP levels
are associated with chronic ocular hypertension models in rats, mice, and non-human
primates, and in humans with chronic glaucoma [24,28]. While the transient model of IOP
elevation used in this study does not emulate the chronic condition, it does enable specific
examination of an early response to IOP elevation, before the inflammation and cell death
produce secondary responses. The analysis of transcriptional changes provides a snapshot
of the initial responses to IOP elevation in vivo. The early timepoint also minimizes the
likelihood of infiltration of peripheral monocytes into the retina. The findings are supported
by reports using more chronic models of ocular hypertension that identify a contribution
of inflammatory genes [38,39].

The development of neurotoxic astrocytes is increasingly recognized in neuroinflam-
matory events; astrocyte reactivity is implicated in glaucoma, while astrocyte polariza-
tion following microglial activation is emerging as a pivotal component of this reactiv-
ity [3,4,8,10,40,41]. The development of astrocyte activation in the contralateral retina was
recently shown to require pannexin 1 [42]; as pannexin 1 is a conduit for mechanosensitive
ATP release, this supports a role for extracellular ATP in the pathological developments.

Complement factor 3 (C3) is recognized as a key marker for neuroinflammation
in many neurodegenerative diseases [43—45], and has recently been implicated in glau-
coma [46—49]. In the present study, C3 expression rose more than any other astrocyte
activation marker in response to either BZATP injection or IOP elevation. While IOP el-
evation increased C3 levels in wild-type mice, there was no response in P2X7-/~ mice,
implicating the receptor in rising C3 levels. The rise in C3 expression following BzATP
injections was significantly correlated with C1ga, Serpl, and Clcf1, while preliminary im-
munohistochemistry indicated that the retinal localization was clearly astrocytic. The
development of neurotoxic astrocytes and the expression of C3 in the injured optic nerve
was recently linked to soluble adenylate cyclase [49]. Future studies will determine whether
stimulation of the P2X7 receptor activates soluble adenylate cyclase in the retina and optic
nerve, but a connection is feasible given that the opening of the pore in the ionotropic P2X7
receptor channel leads to a rapid influx of Ca?* [50], and Ca?* increases activity of soluble
adenylate cyclase [51,52].

While the ability of polarized neurotoxic astrocytes to kill retinal ganglion cells in
experimental models has been established [4,8,15], the overall effect of P2X7 receptor
stimulation on retinal health may well be context-dependent. The receptor was originally
referred to as the “death receptor” [53], but its expression on healthy, long-lived cells such
as retinal neurons suggests it does far more than just kill cells [54]. The P2X7 receptor can
act as a protective scavenger receptor in the absence of agonists [55], while stimulation of
isolated RGCs triggers the release of many cytokines including IL-3, with IL-3 itself being
protective [56]. Whether glial activation inducted by the P2X7 receptor leads directly to
neuronal death, or whether the consequences are more nuanced, remains to be determined.

3.5. Summary

In summary, this study suggests the retinal P2X7 receptor leads to activation of mi-
croglia and astrocytes. Receptor stimulation increased the expression of genes associated
with pan-, Al-, and A2-type astrocyte activation. Correlation analysis has identified a
parallel rise in some, but not all, genes associated with the astrocyte activation states.
Elevation of IOP in wild-type but not P2X7~/~ mice induced a similar change in retinal
gene expression, indicating a role for the receptor in the neuroinflammatory response. As
excessive ATP is released with IOP elevation, the P2X7 receptor may provide an upstream
trigger, linking increased pressure with neurotoxic astrocyte activation.
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4. Materials and Methods
4.1. Animal Care and Use

All procedures were performed in strict accordance with the National Research Coun-
cil’s “Guide for the Care and Use of Laboratory Animals” and were approved by the
University of Pennsylvania Institutional Animal Care and Use Committee (IACUC, proto-
col #803584). All animals were housed on a 12:12 light:dark cycle in temperature-controlled
rooms with food and water ad libitum. Mice (C57Bl/6] wild-type and P2XR7~/~) were
obtained from Jackson Laboratories, Bar Harbor, ME, using strains #000664 and #005576,
respectively. Mice were genotyped regularly to confirm the knockout (Figure S3D).

4.2. Intravitreal Injections

Intravitreal injections were performed as previously described [57]. In brief, C57B1/6]
mice were anesthetized with 1.5% isofluorane and subsequently injected under a dissecting
microscope using a micropipette attached to a microsyringe (Drummond Scientific Co.,
Broomall, PA, USA). Injections consisted of sterile Balanced Saline Solution (Teknova,
Hollister, CA, USA) as a control or with Benzoylbenzoyl-ATP (BzATP, #B6396, Sigma
Aldrich, St. Louis, MO, USA, 200-250 uM). A total of 1.5 pL was injected approximately
0.5 mm posterior to the limbus into the superior nasal region of the vitreous cavity. Retinas
were isolated 24 h later for RN Aextraction. The concentration of BZATP was chosen
based upon previous trials [25,33]. Eyes were carefully inspected and any mouse showing
evidence of lens damage was removed from the study.

4.3. Transient Elevation of IOP

Transient elevation of IOP was performed in adult mice of both sexes using modifica-
tions of the controlled elevation of IOP procedure developed by the Morrison group [58], as
previously described [25]. Briefly, mice were anesthetized with 1.5% isoflurane after receiv-
ing 2 mg/kg meloxicam. Proparacaine (0.5%) and tropicamide (0.5-1%) were administered,
then the anterior chamber of one eye was cannulated with a 33-gauge needle attached
to polyethylene tubing (PE 50; Becton Dickinson, Franklin Lakes, NJ, USA) connected
to a 20 mL syringe filled with sterile PBS. The reservoir was elevated to the appropriate
height to increase IOP to 57.0 &= 3 mmHg. Inspection indicated that retinal blood flow was
maintained throughout, avoiding acute ischemia, although some reduction in blood flow
cannot be ruled out. IOP was returned to baseline after 4 h and 0.5% erythromycin was
applied to the cornea. The contralateral eye without cannulation served as a normotensive
control. Sham injection did not induce an inflammatory response. Retinal tissues were
isolated 22-24 h after elevation of IOP, as previous studies have pointed to robust gene
expression at this time point [25].

4.4. Quantitative PCR

Evaluation of RNA expression utilizing qPCR was based on published methods [33].
In brief, the retina was homogenized in TRIzol reagent (#15596018, Invitrogen, Waltham,
MA, USA); RNA was purified with an RNeasy mini kit (#79254, Qiagen, Inc., Germantown,
MD, USA) and converted to cDNA using the High Capacity cDNA Reverse Transcription
Kit (#4368814, Applied Biosystems Corp., Foster City, CA, USA). Gene expression was
assayed using PowerUp Sybr Green (#A25742, Applied Biosystems Corp.) on the Quant
Studio 3 Real-Time PCR system (Applied Biosystems Corp.). Primers are listed in Table 1.
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Table 1. Primers used for qPCR.

Gene Name fcir;::;;l; Primer (F: 5-3'; R: 3'-5') Size (bp)
T NM_013693.3 R GTCACTCGAATTTTGAGAAGATGATC 7
i NM_010554.4 R AMGGTGCIGATCIGOGTIOE 126
Clan NVL007572.2 R CAAGCGTCATIGEGTTOTGC s
Gy NML_001131020.1 R AAAGGTGTCCCTGAAATGCG 216
stapd NM_054098.3 R GGCCTGAGTAATGGITGCAT 262
vin \ML0117014 R TTGAGTGOGTGTCAACCAGAG 146
Lan2 NM_008491.1 R CACACTCACCACCCATTCAG 206

SerpinA3N NM_009252.2 e vt N 127
Ao NML001081169:1 R GTGOGCCTGTGCATACTCTT 133
s NM_009778.3 R CTCCAGCCGTAGGACATIGG 127
serpng] NM_009776.3 R GGATGCTCTCCAAGTTGCTC 299
H2D1 NML0103503 R ACAGGGCAGTGCAGEGATAG. | 201
H2T23 NM_010398.3 R GCACCTCAGUGTOACTICAT 212
Anigo? NM_1781144 R GCATCCAACAGTCCOATTCT 263
Fitps \M_0102204 R CAGCCTTCCAGGTGGACTTT 194
Fbin5 NM_001361987.1 RF Egégig?é%gﬁéigéég?& 281
o NM_009841.4 R GCTTCAGCCCAGTGAAAGAC 22
pxs \M_008987.3 R TCCCAAATGGAACATTGGAT 147
Cie NM_0199525 R TACGTCGGAGTICACCTOTG 176
Enpt NM_010128.4 R TAAAAGGCAAGGGAATGCAC 183
sic1ont \M_0204152 R CCACAGOCTTTTCTGGTGAT 27
GAPDH NM_017008 F: TCACCACCATGGAGAAGGC 169

R: GCTAAGCAGTTGGTGGTGCA
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4.5. Data Analysis and Materials

All materials were obtained from Sigma Aldrich Corp. (St. Louis, MO, USA) unless
otherwise noted. Data are displayed as mean =+ standard deviation. Statistical analysis
was performed using GraphPad Prism software version 9.0.0 (GraphPad Software, Inc.
San Diego, CA, USA). Significant differences were assessed with a one-way ANOVA
followed by a Siddk multiple comparisons test. Data are expressed with box and whisker
plots based upon the Tukey analysis approach. Results returning p < 0.05 were considered
significant. All 88 data sets were tested for normality using both the Shapiro-Wilk and
Kolmogorov-Smirnov tests, and all but 6 passed. While all ANOVA tests were significant,
Gaussian distribution was not assumed; the nonparametric Spearman’s analysis was thus
chosen to evaluate correlation between gene changes across samples, or to compare patterns
of expression change induced by BzATP and IOP elevation.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms25168784/s1.
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