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Abstract: Over the last few decades, metabolic syndrome coexisting with cardiovascular disease
has evolved into a pandemic, making the need for more food-oriented therapeutic approaches and
a redefinition of lifestyle imperative, with the Mediterranean diet being the linchpin of this effort.
Extra virgin olive oil (EVOO), the key pillar of the Mediterranean diet and one of the most notorious
edible oils worldwide, owes its popularity not only to its characteristic aromas and taste but mainly
to a series of beneficial health attributes including anti-diabetic, hypolipidemic, anti-hypertensive
and anti-obesity actions. In this narrative review, we aimed to illustrate and enlighten EVOO’s
metabolic properties through a pathogenetic approach, investigating its potential role in metabolic
and cardiovascular health.
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1. Introduction

Beyond being the cradle of civilization, the Mediterranean basin brought to light the
value of the Mediterranean diet (MedDiet). The MedDiet, one of the most popular and
studied dietary patterns worldwide, is mostly oriented towards the consumption of fruits,
vegetables, nuts and whole grain cereals, with moderate consumption of fish and poultry
and meager intakes of meat, sweets and eggs [1]. The key nutritional component of the
MedDiet, as well as the main source of fat, is olive oil, and specifically extra virgin olive
oil (EVOO) [2]. Olive oil (OO) is a liquid fat and is essentially the juice of Olea europaea.
While other dietary oils demand chemical processing and extraction, OO is acquired by
physical processes, by pressing the olive fruit, preserving its valuable ingredients [3]. OO
can be characterized as EVOO only if it meets strict and specific criteria as established by
the International Olive Council (IOC) [4].

EVOO’s organoleptic characteristics and biological properties can be ascribed to an
amalgamation of different components (Table 1), with monounsaturated fatty acids (MU-
FAs) and especially oleic acid (OA) being the main ingredient [5,6]. Other minor but notable
components like phytosterols, tocopherols, squalene and phenolics constitute a small part
of the overall composition of EVOO, but they also enhance its flavor and taste as well as its
health benefits [7]. The phenolic fraction of EVOO is characterized by great heterogeneity
with no less than 36 different phenolic compounds being part of its synthesis [8]. The
heterogeneity in its chemical composition is an outcome of different cultivars, various
extraction, production and storage techniques and diverse environmental conditions which
constitute elementary factors for its quality [9–12]. This peculiar composition and the anti-
inflammatory and antioxidant activities of its components have turned EVOO into a key
nutritional factor against neurodegenerating diseases, malignancies, metabolic syndrome
and chronic diseases [9].

In this narrative review, we summarize the plethora of findings and the rising evidence
regarding EVOO’s valuable properties and endeavor to elucidate their association with
metabolic disorders.
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Table 1. Components of EVOO.

Major Components (98–99%)

Component Concentration (%) References

Oleic acid 63–83% [6,10,11]

Linoleic acid 3.5–21% [6,10,11]

Palmitic acid 7.5–20% [6,10,11]

Stearic acid 0.5–5% [6,10]

Linolenic acid 0–1.5% [6,10]

Minor Components (1–2%)

Component Concentration (mg/kg) References

Sterols 100–250/100 gr [6,13]

Hydrocarbons (squalene) 200–8260 [5,6]

Polyphenols

(1) Sacoiridoids (Oleuropein aglycone,
Deacetoxy oleuropein, Oleocanthal
and oleacin, Ligstroside aglycone)
(2) Phenolics (Hydroxytyrosol, Tyrosol)
(3) Phenolic acids (Gallic acid, Ferulic
acid, Cinnamic acid, Vanillic acid.
Caffeic acid, Syringic acid,
Protocatechuic acid,
p-Hydroxybenzoic acid, p- and
o-coumaric acid
(4) Flavonoids (Luteolin,
Apigenin)
(5) Hydroxy-isocromans
(6) Lignans (Pinoresinol,
Acetoxypinoresinol)

213–450 [5–7]

Tocopherols:
α-tocopherol
β-tocopherol
γ-tocopherol

150–250 mg/kg
15–20% (of the total amount of tocopherols)
7–23% (of the total amount of tocopherols)

[6,13]

Colored pigments: [6]
Chlorophylls 2.41–38.7 [12]

2. EVOO and Relevant Pathogenic Pathways

EVOO’s nutritional value seems to rely on a conjugation of different pathogenic
pathways, including inflammation, oxidative stress, endothelial function, coagulation, as
well as influence on gut microbiota (Figure 1).

There is abundant evidence supporting the concept that EVOO, enriched as it is in
polyphenols and other minority nutrients, exerts a considerable anti-inflammatory effect. In
particular, the ingestion of olive oil phenolic compounds has been associated with a decrease
in levels of interleukin-6 (IL-6) and C-reactive protein (CRP) in patients with stable coronary
heart disease and it is proposed as a supplementary intervention to the pharmacological
agenda [14]. Systemic inflammation and increased levels of CRP and IL-6 can be correlated
to increased levels of saturated fatty acids of cell membranes. It is widely known that
the ratio between the chains of saturated fatty acids and monosaturated fatty acids of
phospholipids can directly affect the physical properties of cell membranes. Specifically,
an augmentation in saturated fatty acids composition leads to reduced membrane fluidity,
as the phospholipids are able to pack tightly together [15]. In their study, Pacetti et al.
proved that EVOO can lower the relative ratio of saturated and monounsaturated species of
phosphatidylethanolamine (the metabolism of which is essential for cardiovascular health)
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in erythrocytes’ membranes, ameliorate the levels of polyunsaturated ones, resulting in a
general increase in the level of unsaturated phosphatidylethanolamine and subsequently
lower the risk of developing cardiovascular disease [15].
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Other characteristic inflammatory markers, Thromboxane B2 (TXB2) and Leukotriene
B4 (LTB4), seem to be reduced postprandially due to EVOO’s consumption compared to
consumption of olive oil or corn oil [16]. Oleocanthal, one of the compounds that gives
EVOO its characteristic intense taste, has an action similar to ibuprofen by inhibiting
cyclooxygenases 1 and 2 (COX1-COX2) [17]. In addition, other phenolic compounds
(tyrosol and B-sitosterol), hamper the cascade of arachidonic acid (AA) by regulating the
release of reactive oxygen species (ROS), indicating a possible role of EVOO in prevention
of atherosclerosis [18]. Even ligstroside aglycon, a barely known polyphenol of EVOO,
impedes the activation of a nucleotide-binding (NOD)-like receptor (NLRP3) inflammasome
and decreases the overexpression of COX2 and microsomal prostaglandin E synthase-1
(mPGEs-1) by interfering and inhibiting the signaling pathways of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), MAP kinases (MAPKs) and janus kinase
2/signal transducer and activator of transcription 3 (JAK2/STAT3) [19]. It is known
that MAPKs and NF-κB, activated by tumor necrosis factor-α (TNF-α), reduce insulin
signaling, arouse inflammatory responses and interfere with peroxisome proliferator-
activated receptor gamma (PPAR-γ) activity, leading to insulin resistance and adipose
dysfunction [20]. Scoditti et al. were the first to demonstrate that OA and hydroxytyrosol
(HTyr) attenuated TNF-α-mediated suppression of adiponectin secretion, as well as the
TNF-α downregulation of PPAR-γ in inflamed human adipocytes [20]. Regarding the
inflammatory processes that take place in vascular endothelium, Zoubdane et al. showed
that a high phenolic intake is correlated to reduced arterial inflammation and atherosclerotic
lesion microcalcification (markers of plaque fragility) in healthy, elderly patients [21].

Except for its anti-inflammatory properties, EVOO has been established as an anti-
oxidant based on its chain-breaking, scavenging and chelating actions [22]. The over-
production of ROS, the glycoxidation and other oxidative mechanisms can modify low-
density lipoprotein (LDL) into oxidized LDL (oxLDL), a known instigator of atherosclerotic
events [23]. Phenols in EVOO can bind to LDL particles, mitigating the extent of LDL
oxidation in vivo [24]. A MedDiet enriched with high-quality EVOO reduced the levels
of 8-hydroxy-2-deoxyguanosine (known marker of oxidative DNA stress), inhibited lipid
peroxidation, decreased the levels of IL-6, TNF-α and myeloperoxidase and increased the
levels of adiponectin and IL-10 both in obese and normal-weighted adult subjects [25].
In accordance with these findings, several studies have revealed the post-prandial an-
tioxidant activity of EVOO based on the reduction in lipid peroxides in plasma after
meals [26–28]. In their study, Carnevale et al. not only detected the decrease in diverse
oxidative stress biomarkers, but also demonstrated the beneficial role of EVOO in the



Int. J. Mol. Sci. 2024, 25, 8117 4 of 15

maintenance of endothelial function by preserving normal levels of soluble vascular cell
adhesion molecule-1(sVCAM-1) and sE-selectin (indicators of endothelial impairment), via
downregulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [29].
Additionally, hypercholesterolemic patients who followed a MedDiet boosted by EVOO
for 4 weeks, showed an improvement in endothelial function compared to patients who
followed a saturated fat-enriched diet [30]. Santiago-Fernandez et al. depicted a different
protective role of EVOO in endothelial health and atherosclerosis, by examining the im-
pact of triglyceride-rich lipoproteins (TRLs) (which can incorporate EVOO’s components
such as tocopherols or carotenoids) on miRNA expression in endothelial cells [31]. In
particular, they compared the effect of TRLs isolated from the blood of subjects after a
high-fat meal enriched with EVOO or sunflower oil, proving that EVOO-derived TRLs
upregulated a set of miRNAs involved in endothelial cell proliferation and angiogenesis
regulation such as miR-126-5p [31]. Last but not least, even more processed products such
as chocolate enriched by EVOO can play an essential role in endothelial dysfunction by
upregulating endothelial progenitor cells (EPCs), molecules known for their pivotal role in
vascular integrity [32].

EVOO seems to play an important part in the coagulation process as well. Regular
consumption of it appears to restrain platelet adhesion and coagulation cascade by lowering
levels of factor VII [33], factor von Willebrand and plasminogen activator inhibitor-1
(PAI-1) [13].

The emerging study of intestinal microbiota over the last two decades has revealed a
possible correlation with metabolic disorders [34], with the role of EVOO in this interplay
being also researched. Tenorio et al., in their study, supported the idea that the beneficial
health effects of EVOO on metabolic diseases and specifically on arterial hypertension
may be associated with analogous alterations of the gut microbiota and especially the
possible association with the hormone ghrelin [35]. In rats, a diet supplemented with
EVOO reformed gut microbiota profile by increasing β-diversity of their composition
and subsequently improved metabolic parameters such as insulin resistance and body
weight [36]. Moreover, tyrosol, one of the key components of EVOO, provoked weight loss
in mice by modulating gut microbiota and by triggering adipose thermogenesis through
increased thermogenic gene expression such as elevated expression of uncoupling protein
1 (UCP1) [37].

3. EVOO and Diabetes Mellitus

Diabetes mellitus (DM) is considered a challenging public health problem and one
of the most common metabolic disorders, affecting millions of patients throughout the
world [38]. The role of EVOO in preventing and confronting DM has been thoroughly
investigated. In the Prevención con Dieta Mediterránea (PREDIMED) study, one of the
largest dietary intervention trials, participants at high cardiovascular risk were randomly
assigned to three groups: those who followed a MedDiet enriched with EVOO, those who
followed a MedDiet enriched with nuts and those who consumed a control low-fat diet.
The incidence of major cardiovascular events was lower for the first and second group
compared to the third one, revealing a possible role of MedDiet in reducing cardiovascular
risk [39]. A nested substudy of the PREDIMED trial, exhibited after a median follow-up of
4 years, a 51% reduction in diabetes type 2 (T2D) rates in subjects who followed a MedDiet
enriched with EVOO compared to a low-fat diet, suggesting a possible role of EVOO in
diabetes prevention [40]. In a different substudy of PREDIMED, the MedDiet enriched
with EVOO delayed the addition of new-onset glucose-lowering medications and reduced
the rate of insulin initiation in patients with T2D by 12% [41]. Moreover, the substitution of
carbohydrates with MUFAs as a main dietary pattern in patients with T2D ameliorated
their metabolic profile with a reduction in fasting plasma glucose (FPG) [42,43]. Santangelo
et al. were the first to notice that the consumption of polyphenol-rich EVOO on a daily
basis is correlated with reduction in FPG as well as glycated hemoglobin (HbA1c), probably
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due to decrease in visfatin levels, an adipose tissue-derived hormone characterized as a
proinflammatory cytokine with a key role in impaired glucose metabolism [44].

Numerous studies support the impact of EVOO’s phenolic compounds on beta-cell
health through various pathogenic mechanisms. Oleuropein one of the most abundant
polyphenols in EVOO, fostering beta-cell insulin secretion and suppressed cytotoxicity
generated by amylin amyloids, the aggregation of which correlates with β-cell dysfunc-
tion [45,46]. Another known phenolic compound, tyrosol, hindered endoplasmic reticulum
stress-induced apoptosis in beta-cells, by interfering with the Jun N-terminal kinase (JNK)
signaling pathway [47]. Furthermore, polyphenolic extracts from Olea Europea impeded
cytokine-induced oxidative stress and apoptosis in beta-cells and thus preserved redox
homeostasis [48]. Marrano et al. were the first to show that olive oil polyphenols and
specifically hydroxytyrosol, tyrosol and apigenin promote beta-cell well-being by stimu-
lating proliferation and insulin biosynthesis and by increasing glucose-stimulated insulin
secretion (GSIS) [49]. Beyond their effect on pancreatic beta-cells, the phenolic compounds
of EVOO contribute to the inhibition of α-amylase and α-glucosidase and consequently to
the control of postprandial hyperglycemia as they delay carbohydrate absorption [50–52].
Postprandial hyperglycemia and the accompanying production of ROS are also regulated
through a different mechanism. Carnevale et al. exhibited that oleuropein ameliorated
postprandial glycemic status by interfering with soluble NADPH oxidase-derived peptide
activity (sNox2-dp). Postprandial Nox2 activation leads to elevated levels of ROS which are
key regulators of the incretin phenomenon. As a result, oleuropein and subsequently EVOO
may act as dipeptidyl-peptidase 4 (DPP-4) inhibitors by hampering DPP-4 production and
by enhancing glucagon-like-peptide-1(GLP-1) activity [53]. Bozzetto et al. came to the same
conclusions, as they proved that the postprandial glycemic peak after a meal with a high
glycemic index in patients with diabetes type 1 (T1D) can be restrained after the addition
of EVOO, compared to a similar low-fat meal or a meal supplemented with butter [54],
based on EVOO’s capacity to influence gastric emptying and enhance GLP-1 secretion [55].
Bartimoccia et al. indicated that EVOO ameliorates postprandial glucose levels, insulin
secretion and GLP-1 levels based on a different pathogenic background. They proved that
the addition of EVOO to a MedDiet or chocolate altered gut permeability and consequently
metabolic endotoxemia by reducing circulating lipopolysaccharides (LPS) and zonulin
(a protein that increases the permeability of tight intestinal junctions), whose levels are
inversely associated with levels of GLP-1 [56]. With the exception of T2D and TID patients,
EVOO improved postprandial glycemic status for patients with prediabetes [57]. Another
study based on an ex vivo human model showed that oleuropein presented an additional
antidiabetic action, residing in glucose transporter 2 (GLUT-2) inhibition [58].

The protective role of EVOO is not only limited to the development and control of DM,
but also to the prevention of its complications. A post hoc analysis of a cohort of patients
with T2D participating in the PREDIMED study revealed that the MedDiet supplemented
with EVOO can decrease diabetic retinopathy incidence while the incidence of diabetic
nephropathy is reduced insignificantly [59]. On the other hand, a recent randomized
controlled trial proved that the EVOO-supplemented MedDiet inhibited the estimated
glomerular filtration rate (eGFR) reduction and maintained kidney function compared
to a low-fat diet in patients with T2D and coronary heart disease (CHD). Remarkably,
patients with mildly impaired eGFR seemed to benefit more from the MedDiet [60]. In an
experimental model of T1D performed in rats, 3′,4′-dihydroxyphenylglycol, a phenolic
compound of EVOO, showed nephroprotective action with a decrease in urinary protein
excretion and glomerular morphological changes, based on its antioxidant properties [61].
In addition to its nephroprotective role, 3′,4′-dihydroxyphenylglycol shielded the retina and
brain slices of rats against hypoxia-reoxygeneration in a similar experimental model [62].

Apart from T1D and T2D, EVOO appears to contribute to preventing and managing
gestational diabetes mellitus (GDM) too. The St. Carlos GDM prevention study revealed
that a prompt dietary intervention in the early stages of pregnancy based on a MedDiet
supplemented with EVOO and pistachios can reduce the incidence of GDM, the number
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of patients who finally require insulin therapy and it can inhibit a plethora of maternal
and neonatal complications such as prematurity and emergency caesarean section [63]. A
sub-analysis of the above study, exclusively limited to normoglycemic pregnant women,
came to confirm the aforementioned results [64], while another prospective universal
study proposed the adoption of the MedDiet in the early stages of pregnancy as a first
line therapy [65]. The above dietary pattern based on EVOO and nuts seemed to defend
women from abnormal glucose regulation and metabolic syndrome (MetS), even 3 years
post partum [66]. It is known that in GDM pregnancies, placental levels and expression of
PPARs are decreased. An EVOO-enriched diet administrated to women with gestational
diabetes led to reduced levels of triglycerides, body weight and pro-inflammatory markers
(TNF-α, IL-1β), based on the capacity of MUFAs to act as PPAR ligands which can be
transported through the placenta to the fetus, act as PPAR activators and regulate metabolic
and anti-inflammatory pathways [67].

4. EVOO and Lipid Disorders

The crucial role of the EVOO-enriched MedDiet on the primary prevention of cardio-
vascular events in high-risk patients as it was represented in the PREDIMED trial [39], can
be ascribed to an amelioration of LDL particles size, cytotoxicity and resistance against
oxidative stress according to a subsequent sub-analysis [68]. Another PREDIMED report,
examining the effect of an EVOO-focused MedDiet on apolipoproteins at three months of
intervention, did not manage to prove any change in LDL-cholesterol (LDL-C) levels, but
demonstrated notable reductions in plasma ApoB, ApoB/ApoA-I ratio, with an increase in
plasma ApoA-I indicating the role of EVOO in ameliorating cardiovascular risk [69].

EVOO’s lipid-lowering effects and eventually its cardiovascular safeguarding role is
a combination of distinct biological pathways. One of the main hypolipidemic actions of
EVOO is based on its capacity to shield HDL-c from oxidation and to promote cholesterol
efflux, which is the first step of reverse cholesterol transport. Through reverse cholesterol
transport, cholesterol in peripheral tissues is effluxed into HDL particles and is rerouted
back to the liver for excretion, making this procedure one of the key HDL cardioprotective
mechanisms. Not only has EVOO protected HDL from oxidative impairment, but it also
enhanced ABCA1and ABCG1 protein expression, main factors in cholesterol efflux and
HDL genesis [70,71]. This result was enhanced by Otrante et al. who also emphasized
that EVOO supports cholesterol efflux through protecting HDL functionality against age-
related damage [72]. Moreover, when enhanced with green tea polyphenols, EVOO can
increase HDL-cholesterol (HDL-C) levels and reduce the size of atherosclerotic lesions in
mice by 20% [73]. In this regard, when compared to a diet based on saturated fats (butter),
adherence to an EVOO-enriched diet was correlated with increased levels of HDL-C and
decrease in cardiovascular risk in postmenopausal women [74]. On the other hand, in a
recent cross-over, randomized controlled trial, EVOO ameliorated HDL-C fraction but not
the contribution of HDL to cholesterol efflux [75].

Except for HDL oxidation, EVOO appeared to inhibit LDL oxidation by eliminating
the expression of proatherogenic CD40-ligand and its downstream products, compared to
olive oil with low phenolic ratio [76]. Perrone et al. exhibited that post-prandial hydroxy-
tyrosol decreased oxidized LDL, triglycerides, malondialdehyde and interfered with the
stimulation of catalase, superoxide dismutase 1 and transcription factor 1, genes that are
involved in lipid metabolism [77].

Another hypocholesterolemic action of EVOO rests on its phenols’ capacity to impede
in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a
dose-related way by increasing its phosphorylation through adenosine monophosphate-
activated protein kinase (AMPK) pathways. Furthermore, they managed to augment the
LDL receptor protein levels in hepatic human cells and, as a consequence, the uptake of
LDL extracellular molecules exerting an hypolipidemic effect [78]. In their study, Ródenas
et al. proved that the dietary replacement of an olive oil and sunflower oil blend by EVOO
resulted in a decrease in total cholesterol (TC), apo- AII, apo-B, VLDL and all fractions of
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LDL levels in post-menopausal women, as well as the estimated 10-year cardiovascular
risk, implicating again the anti-atherogenic ability of EVOO [79]. For patients undergoing
a coronary angiography, consumption of EVOO rich in polyphenols slightly decreased
levels of LDL-C and enhanced the LDL-C-induced production of Interleukin 10 (IL-10) [80].
The accumulated evidence of different studies also identified the anti-atherosclerotic and
LDL-lowering effects of EVOO in different patient groups and with different combinations
of dietary interventions [81–84].

5. EVOO and Blood Pressure

The interplay between EVOO and hypertension is another point worth mentioning.
The anti-hypertensive actions of EVOO and specifically of EVOO’s micronutrients seem to
be based on nutrigenomic properties. Martín-Peláez et al. in their trial demonstrated that
daily ingestion of EVOO rich in phenolic compounds reduced systolic blood pressure (SBP)
by inhibiting the expression of genes associated with the renin–angiotensin–aldosterone
system such as angiotensin-converting enzyme (ACE) and nuclear receptor subfamily
1 group H member 2 (NR1H2) genes [85]. Loizzo et al., in their paper, proved that phenolic
compounds found in EVOO could inhibit ACE’s action [51] and proposed as a possible
mechanism the ability of flavonoids to engender chelate complexes with zinc ions within the
active center of ACE [86]. Furthermore, another substudy of the milestone interventional
PREDIMED trial exhibited that patients who enrolled in both MedDiets, enriched either
with EVOO or with nuts, presented lower levels of systolic and diastolic blood pressure
(DBP) and higher levels of nitric oxide (NO), a strong vasodilator, indicating another possi-
ble anti-hypertensive property of EVOO [87]. Storniolo et al. came to the same conclusions
and stated that the blood pressure-lowering effects of EVOO relied on the upregulation of
NO and downregulation of caveolin 2 in hypertensive women [88]. Except for increased
production of NO, EVOO’s polyphenols appeared also to shield endothelial function and
subsequently blood pressure (BP) by attenuating endothelin-1 (ET-1), a known vasocon-
strictor peptide [89]. In addition, polyphenol-rich olive oil reduced BP and encountered a
series of culprits in endothelial dysfunction such as serum asymmetric dimethylarginine
(ADMA), ox-LDL, plasma C-reactive protein, while in parallel, it augmented hyperemic
areas after ischemia [90]. On the contrary, in a previous sub-analysis of PREDIMED, the
anti-hypertensive effects of a MedDiet supplemented with EVOO or nuts were exerted
only in DBP, with levels of SBP showing no difference among the three diets [91]. An-
other anti-hypertensive mechanism was proposed by D’Agostino et al. who showed that
EVOO’s phenols could vasodilate mesenteric arteries in rats by stimulating BKca channels
via an augmentation of local intracellular Ca2+ level as a consequence of inflow through
plasma membrane and release from sarcoplasmic reticulum Ca2+ storage [92]. Hidalgo
et al. implied in their paper that EVOO’s induced alternations in the gut microbiota of
hypertensive rats and especially the increase in specific bacteria was related to a decrease in
SBP [93]. Two more randomized clinical trials, emphasized the anti-hypertensive properties
of EVOO and its simultaneous metabolic action by reducing weight [94], fasting glucose
and total cholesterol respectively [95]. Lastly, Njike et al., in their study concerning patients
at risk for T2D, compared the effects of EVOO and refined olive oil without polyphenols on
endothelial function and BP and came to different conclusions demonstrating that EVOO’s
beneficial action was limited only to endothelial function without a difference in BP levels
between the two interventions [96].

6. EVOO and Body Weight

As obesity develops into a pandemic, the need to embrace a healthy lifestyle becomes
more and more intense, with the MedDiet and specifically EVOO appearing as the nutri-
tional keys to this effort [97]. The EPIC-PANACEA study showed that a high adherence
to a Mediterranean diet including EVOO reduced the 5-year risk of becoming overweight
or obese [98]. Additionally, a secondary analysis of the PREDIMED trial, showed that
after 3 years of intervention, patients who followed a MedDiet supplemented with EVOO
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obtained higher levels of plasma antioxidant capacity which is correlated with a decrease
in body weight [99], while another sub-analysis of the specific study did not demonstrate
weight gain; on the contrary, it demonstrated weight loss after increasing dietary energy
density based on the MedDiet [100]. Another categorization of obesity has been given
by Barrea et al. who dichotomized obese patients into two main categories, metaboli-
cally healthy and metabolically unhealthy, and tried to clarify the role of the MedDiet
in determining these two phenotypes while using it as a screening tool. They found out
that the adoption of a MedDiet, and especially EVOO consumption, protected against the
development of a metabolically unhealthy phenotype and could serve as an indicator of
patients at high cardiovascular risk [101]. A different category of patients, obese breast
cancer survivors, appear to benefit from an olive oil supplemented diet due to weight loss
and subsequently lower risk of recurrence [102]. Moreover, Cândido et al. were the first to
prove that EVOO’s ingestion reduces body fat due to an energy-restricted program without
following a Mediterranean diet pattern [94].

A variety of molecular mechanisms have been implicated with regard to EVOO’s anti-
obesity properties, with the phenolic fraction claiming the lion’s share. Olive polyphenols
appear to regulate weight gain via a plethora of signaling pathways and biochemical
procedures including promotion of lipolysis, inhibition of lipogenesis, suppression of
pre-adipocyte differentiation and induction of adiponectin secretion through control of
genes expression [103]. Polyphenols can also trigger brown adipose tissue and exert
thermogenic actions through different molecular pathways including AMPK, peroxisome
proliferator-activated receptor c coactivator-1a (PGC1a) or sirtuin 1 (Sirt1) [104]. Oleuropein
augmented UCP-1 expression in brown adipose tissue and reduced levels of visceral fat
mass in obese rats functioning as an agonist for transient receptor potential ankyrin subtype
1 (TRPA1) and transient receptor vanilloid potential subtype 1 (TRPV1) which are related
to weight control, thermogenesis and hormonal changes [105]. Tyrosol may function as a
ligand that interacts with the nuclear hormone receptor peroxisome proliferator-activated
receptor alpha (PPAR-α). Downstream genes of PPAR-α, which are associated with the
thermogenic activity of fat cells, such as UCP1, iodothyronine deiodinase 2 (DIO2), PGC1a,
and PR domain containing 16 (PRDM16), were markedly elevated in both brown adipose
tissue and inguinal white adipose tissue of mice following tyrosol administration [37].
Scoditti et al. proved that hydroxytyrosol could reduce chronic inflammation of adipose
tissue and subsequently obesity-induced diseases by impeding NF-κB activation, inhibiting
the expression of genes stimulated by TNF-a and decreasing the production of ROS [20].
Adipocyte differentiation and proliferation could also be prevented by Tyrosol through
converting white adipose tissue to brown adipose tissue and regulating PPARγ-related
mechanisms [106].

Except for weight gain, EVOO seems to interact with one of the main obesity-related
disorders, the non-alcoholic fatty liver disease (NAFLD). The mechanisms responsible for
NAFLD are not fully comprehended yet. The localization of lipopolysaccharides (which
constitute the outer membrane of gut microbiota) within the liver cells of patients with
NAFLD indicates gut-derived endotoxinemia as one possible cause. In the case of gut
dysbiosis, lipopolysaccharides enter the bloodstream and localize within the liver cells,
where they interact with Toll-Like Receptor 4 and stimulate liver inflammation. Oleuropein
appears to decrease liver inflammation and steatosis by blocking intestinal and liver Toll-
like Receptor 4 macrophages and suppressing lipopolysaccharides localization [107]. In
patients with NAFLD, a low-calorie diet enriched with EVOO resulted in weight loss and a
significant decrease in hepatic enzymes, Alanine Aminotransferase (ALT) and Aspartate
Aminotransferase (AST), compared to a diet with typical consumption of olive oil [108].
Furthermore, daily consumption of EVOO with high concentration of oleocanthal for two
months in patients with MetS and hepatic steatosis, led to a decrease in body weight, waist
circumference and body mass index (BMI) as well as in ALT and fatty liver index, amelio-
rated abdominal fat distribution and regulated a number of inflammatory cytokines [109].
A more recent study demonstrated that high consumption of EVOO is correlated with
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a lower prevalence of NAFLD, especially for patients who are already dealing with
weight disorders [110].

7. Conclusions

Either alone, or as a component of the MedDiet, it has been proven that EVOO presents
a multitude of healthy properties and acts as a key parameter of clinical nutrition. This
cornerstone of the MedDiet appears to afford protection from a plethora of metabolic
disorders including diabetes mellitus, hypertension, obesity and lipid abnormalities and
subsequently fortifies cardiovascular health. In this narrative review we present the current
data regarding EVOO and its metabolic actions by delineating diverse nutrigenomic studies
and by shedding light on signaling pathways and molecular mechanisms.

Perceiving the precise role of EVOO and its components in metabolic health can be an
additional useful tool in clinicians’ hands guiding them to more food-based therapeutic
decisions. Although there is growing evidence of EVOO’s beneficial properties, consid-
erable fields of research still remain unexplored or unclear. More clinical studies should
ai towards pointing out the nutrients of EVOO that interfere with metabolic pathways,
leading perhaps to more nutrition-oriented therapeutic approaches and reducing the need
for pharmaceutical interventions.
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Abbreviations

AA Arachidonic acid
ACE Angiotensin-converting enzyme
ADMA Asymmetric dimethylarginine
ALT Alanine Aminotransferase
AMPK Adenosine monophosphate-activated protein kinase
AST Aspartate Aminotransferase
BMI Body mass index
BP Blood pressure
CHD Coronary heart disease
COX1-COX2 Cyclooxygenases 1 and 2
CRP C-reactive protein
DBP Diastolic blood pressure
DM Diabetes mellitus
DIO2 Iodothyronine deiodinase 2
DPP-4 Dipeptidyl-peptidase 4
EFSA European Food Safety Authority
eGFR Estimated glomerular filtration rate
EPCs Endothelial progenitor cells
ET-1 Endothelin-1
EVOO Extra virgin olive oil
FPG Fasting Plasma Glucose
GDM Gestational diabetes mellitus
GLP-1 Glucagon-like-peptide-1
GLUT-2 Glucose transporter-2
GSIS Glucose-stimulated insulin secretion
HbA1c Glycated Hemoglobin A1C
HDL-c High density lipoprotein-cholesterol
HMGCoAR 3-hydroxy-3-methylglutaryl co-enzyme A reductase
HTyr Hydroxytyrosol
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IL-10 Interleukin-10
IL-6 Interleukin-6
IOC International Olive Council
JAK2/STAT3 Janus kinase 2/signal transducer and activator of transcription 3
JNK Jun N-terminal kinase
LDL Low density lipoprotein
LDL-c Low density lipoprotein-cholesterol
LPS Lipopolysaccharides
LTB4 Leukotriene B4
MAPK MAP kinases
MedDiet Mediterranean Diet
MetS Metabolic syndrome
MUFAs Monounsaturated fatty acids
NAFLD Non-alcoholic fatty liver disease
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRP3 Nucleotide-binding (NOD)-like receptor
NO Nitric oxide
NR1H2 Nuclear receptor subfamily 1 group H member 2
OA Oleic acid
OO Olive oil
oxLDL Oxidized LDL
PAI-1 Plasminogen activator inhibitor-1
PGC1a Peroxisome proliferator-activated receptor c coactivator-1a
PPAR-α Peroxisome proliferator-activated receptor alpha
PPAR-γ peroxisome proliferator-activated receptor gamma
ROS Reactive oxygen species
SBP Systolic blood pressure
Sirt1 Sirtuin 1
sVCAM-1 Soluble vascular cell adhesion molecule-1
T1D Diabetes type 1
T2D Diabetes type 2
TC Total Cholesterol
TNF-α Tumor necrosis factor-α
TRLs Triglyceride-rich lipoproteins
TRPA1 Transient receptor potential ankyrin subtype 1
TRPV1 Transient receptor vanilloid potential subtype 1
TXB2 Thromboxane B2
UCP1 Uncoupling protein 1
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