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Abstract: Birth weight is a complex multifactorial trait relevant to health states and disease risks in
later life. The placenta is essential for proper fetal growth and facilitates gas, nutrient, and waste
exchange between the mother and developing fetus. How changes in placental DNA methylation
affect fetal birth weight remains to be fully elucidated. In this study, we used whole-genome
bisulfite sequencing and RNA sequencing to reveal a global map of DNA methylation and gene
expression changes between the placentas of highest birth weight and lowest birth weight piglets
in the same litters. The transcriptome analysis identified 1682 differential expressed genes and
revealed key transcriptional properties in distinct placentas. We also identified key transcription
factors that may drive the differences in DNA methylome patterns between placentas. The decrease
in DNA methylation level in the promoter was associated with the transcriptional activation of genes
associated with angiogenesis, extracellular matrix remodeling, and transmembrane transport. Our
results revealed the regulatory role of DNA methylation in gene transcription activity leading to the
differences in placental morphological structures and birth weights of piglets. These results could
provide novel clues to clarify the underlying regulatory mechanisms of placental development and
fetal growth.

Keywords: pigs; DNA methylation; placental development; birth weight

1. Introduction

The birth weight of newborns reflects not only the development of the fetus in the
maternal environment but also the nutritional and metabolic status of the mother [1]. For
survival, the fetus may slow down its metabolism and growth to adapt to the intrauter-
ine environment, which would cause changes in physiology, structure, and metabolism,
resulting in long-term negative consequences [2]. Previous studies have shown that low
birth weight is consistently associated with higher blood pressure, insulin resistance, type
2 diabetes, and cardiovascular disease [3–7]. It is also commonly recognized that a low
birth weight is associated with a low survival rate, poor growth performance, and poor
meat quality in pigs [8,9]. Thus, clarifying the regulatory mechanisms of birth weight is
important to reduce the risk of disease in later life and for improved animal production.

The placenta, having endocrine and material transport functions, is an essential tran-
sient organ at the maternal–fetal interface, providing nutrition for fetal growth. Placental
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development is greatly associated with the parturition process, a reproductive trait of
sows [10,11]. Appropriate nutrient provision to the fetus, via the placental blood, is es-
sential for optimal fetal growth [12]. Increased placental efficiency contributes to a large
litter size in sows [13]. Having a high-weight placenta could cause adverse perinatal out-
comes, such as fetal respiratory distress syndrome and death, while having a low-weight
placenta is related to maternal complications and low birth weight [14]. There are various
factors that determine the ability of the placenta to transport nutrition to the fetus [15,16].
DNA methylation mainly occurs via DNA methyltransferases (DNMTs) transferring a
methyl group to the fifth carbon position of the cytosine in the CpG dinucleotide [17] and
inhibits gene expression by preventing transcription factors or recruiting methyl-binding
proteins [18]. It has been demonstrated that DNA methylation regulates the trophoblast
invasion and placental development that is important for fetal growth [19,20], but how
DNA methylation functions in shaping placental morphological structures and controlling
the birth weight of piglets remains largely unknown.

Our previous study revealed DNA methylome profiling in placentas from pig fetuses
at 21, 28, and 35 days post-coitus [21]. In this study, we first integrated RNA sequencing
(RNA-seq) and whole-genome bisulfite sequencing (WGBS) to provide a comprehensive
analysis of gene expression and DNA methylation patterns in placentas from piglets
with different birth weights in the same litters. We highlighted the critical role of DNA
methylation in shaping transcription programs in distinct placentas. This study could
provide novel insights into the involvement of DNA methylation in the regulation of
placental development and the birth weight of piglets.

2. Results
2.1. Morphology and Gene Expression Changes between the HBW and LBW Placentas

In this study, we collected placenta samples from piglets with the highest birth weight
(HBW) and lowest birth weight (LBW) in the same litter (Supplementary Table S1). The
HBW and LBW placentas were both from female fetuses to avoid the effects of gender
differences. The morphological characteristics of porcine placental tissues were microscop-
ically compared via hematoxylin–eosin (H–E) staining (Figure 1A). The HBW placenta
showed increased nucleated red blood cells within the vessels and intervillous space than
the LBW placenta (Figure 1B). We found a positive correlation between the birth weight and
placenta weight, suggesting the importance of the placenta size in fetal growth (Figure 1C).
We then performed RNA-seq to reveal the transcriptome dynamics in HBW and LBW
placentas. Approximately 171 million reads with a unique mapped rate of above 89%
were obtained (Supplementary Table S2). The principal component analysis (PCA) results
showed a closed clustering of biological replicates, indicating the high reproductivity of
the biological samples (Figure 1D). We found higher expression rates of DNA methylases
(DNMTs) and DNA demethylases (dMTases) on the HBW placenta than on the LBW pla-
centa, which was consistent with the changes in the expression of Ki67, the proliferation
marker protein in trophoblast cells (Figure 1E). These results suggested that the process
of DNA methylation might have been more activated in the HBW placenta than the LBW
placenta. In total, we identified 1020 up-regulated differentially expressed genes (DEGs)
and 662 down-regulated DEGs when comparing the HBW placenta to the LBW placenta
(Figure 1F) (Supplementary Table S3). The hierarchical clustering with heatmaps showed
similar expression patterns between the placentas from the same group (Figure 1G). The
alluvial diagram was generated to show the degrees of differences in the expression of
DEGs (Figure 1H). There were seven DEGs with dramatic changes in expression, such
as the leading imprinted gene PEG3, which was significantly up-regulated in the HBW
placenta. This result was consistent with a previous study that showed that the disruption
of PEG3 contributed to small placentas and embryos with asymmetric intrauterine growth
restrictions [22]. Collectively, we revealed the differences in morphological characteristics
and gene expression patterns in the HBW and LBW placentas.
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Figure 1. Morphology and gene expression changes between the HBW and LBW placenta. (A) H–E 
staining, morphological changes in HBW and LBW placentas with the placenta seen in 5× 
magnification and in further detail at 20× magnification (upper-right panels). The green arrows 
indicate the placental vessels. Scale bar, 200 µm and 50 µm (upper-right panels). (B) Histograms 
indicating placental vascular density in each group. *** p < 0.001. (C) Scatter plot showing the 
positive correlation between birth weight and placenta weight (n = 13). The blue line represented 
the fitted linear regression model to each sample. The gray highlight indicated the 95% confidence 
interval. (D) The results of PCA on gene expression data in each sample. (E) The heatmap of RNA-
seq-based expression levels of DNMTs and dMTases. Different colored circles indicated the 95% 
confidence interval. (F) The overlapping of up-regulated DEGs or down-regulated DEGs between 
the LBW group and HBW groups. (G) The hierarchical clustering heatmap of DEGs. (H) The alluvial 
diagram of DEGs. High (TPM ≥ upper quartile); medium (lower quartile < TPM < upper quartile); 
low (TPM ≤ lower quartile). 

2.2. Functional Enrichment Analysis of Differentially Expressed Genes  
To explore the function of DEGs, we subjected the DEGs to gene ontology (GO) and 
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Figure 1. Morphology and gene expression changes between the HBW and LBW placenta. (A) H–E
staining, morphological changes in HBW and LBW placentas with the placenta seen in 5× magni-
fication and in further detail at 20× magnification (upper-right panels). The green arrows indicate
the placental vessels. Scale bar, 200 µm and 50 µm (upper-right panels). (B) Histograms indicat-
ing placental vascular density in each group. *** p < 0.001. (C) Scatter plot showing the positive
correlation between birth weight and placenta weight (n = 13). The blue line represented the fitted
linear regression model to each sample. The gray highlight indicated the 95% confidence interval.
(D) The results of PCA on gene expression data in each sample. (E) The heatmap of RNA-seq-based
expression levels of DNMTs and dMTases. Different colored circles indicated the 95% confidence
interval. (F) The overlapping of up-regulated DEGs or down-regulated DEGs between the LBW
group and HBW groups. (G) The hierarchical clustering heatmap of DEGs. (H) The alluvial diagram
of DEGs. High (TPM ≥ upper quartile); medium (lower quartile < TPM < upper quartile); low (TPM
≤ lower quartile).

2.2. Functional Enrichment Analysis of Differentially Expressed Genes

To explore the function of DEGs, we subjected the DEGs to gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genome (KEGG) pathways analysis (Supplementary
Table S4). GO analysis indicated the significant enrichment of blood development-related
and chemotaxis-related processes in DEGs (Figure 2A). KEGG enrichment analysis showed
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the enrichment of metabolism-related pathways, such as MAPK signaling and oxidative
phosphorylation; and oxygen homeostasis-related pathways, such as PI3K/Akt and HIF-1
signaling pathways (Figure 2B). Gene set enrichment analysis (GSEA) was performed
to investigate differences in biological processes associated with placental development
between the HBW and LBW placentas. Our results showed that the processes of placenta
development, blood development, extracellular matrix (ECM), and transport activity were
more activated in the HBW placenta (Figure 2C). In summary, these results revealed the
dynamic differences in transcriptome properties in the HBW and LBW placentas.

Figure 2. Functional enrichment analysis of differentially expressed genes. (A) The GO enrichment
analysis of the DEGs. (B) The KEGG pathway analysis of DEGs. (C) GSEA plot of genes involved in
various processes.
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2.3. Characteristics of DNA Methylome in the HBW and LBW Placentas

Next, we performed WGBS to characterize the DNA methylation profiles in the HBW
and LBW placentas. We obtained approximately 1.22 billion paired-end reads. The average
mapping rate of clean reads mapping to the Sscrofa 11.1 reference genome was 81.35%
(range 80.79% to 81.81%) (Supplementary Table S2). As the methylated cytosine sites across
different samples predominantly occurred in a CpG sequence context (approximately 80%)
(Figure 3A), we focused on CpG methylation in the further analysis. All the samples
had similar CpG methylation levels (approximately 60%), and most CpGs were heavily
methylated (Figure 3B). The PCA results revealed a clear separation of the HBW and LBW
groups, and two samples from each group were clustered (Figure 3C). We compared the
methylation levels in different genomic features between the HBW and LBW placentas. The
methylation level of CpGs was notably low in the promoter and 5′ untranslated regions
(UTR), while heavily methylated CpGs were found in the CGI shore 3′ UTR and exon
(Figure 3D,E). These results showed the characteristics of DNA methylation in HBW and
LBW placentas.
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Figure 3. Characteristics of DNA methylome in the HBW and LBW placentas. (A) The proportion of
methylated cytosine sites in CHG, CHH and CpG (where H = A, C, or T). (B) Fraction of total CpGs
with different methylation levels in distinct placentas. The (methylated CpG)/(all CpG) ratio, from
left to right, 0.492708, 0.525829, 0.505327, 0.502685. (C) The results of PCA on CpG methylation in
each sample. (D,E) The average methylation level of CpGs in different genomic features between the
HBW and LBW placentas.

2.4. Dynamic Changes in DNA Methylation Landscape in the HBW and LBW Placentas

To explore the function and regulatory mechanism of DNA methylation in placenta
development, we identified differentially methylated regions (DMRs) and transcription
factors between the HBW and LBW placentas (Supplementary Table S5). We obtained
34,641 hypermethylated DMRs (referred to as hyper-DMRs) and 24,517 hypomethylated
DMRs (referred to as hypo-DMRs) compared to the HBW placenta and the LBW pla-
centa, respectively. As a result, we observed that DMR regions were mainly located in the
distal region and intron and identified about 9.18% of all DMR regions occurring in the
gene promoter (Figure 4A). A Circos plot was used to examine the distribution of DMRs
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in the genome. We found that the DMRs were present on all chromosomes (Figure 4B).
To identify the key transcription factor that is associated with DNA methylation levels,
we used Homer software (version 4.10) to perform motif analysis for DMRs in the pro-
moter (promoter-DMRs). The results showed that promoter-DMRs were significantly
enriched in the binding motifs of placenta-related transcription factors (TFs), including
TFA2PAC and EGR1 (Figure 4C). GO analysis revealed that the genes with hypermethylated
promoter-DMRs in the promoter were enriched in the regulation of anatomical structure
size, transport, metabolism, and signal transduction (Figure 4D), while the genes with
hypomethylated promoter-DMRs were associated with the processes of transmembrane
transport, localization, and circulatory system development (Figure 4E). These results
suggested the important role of DNA methylation in regulating the transcription activity
of genes in distinct placentas and identified a set of placenta-related TFs.
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Figure 4. Dynamic changes in DNA methylation landscape in the HBW and LBW placentas. (A) The
proportion of DMRs on different genomic features. (B) Circos analysis of the methylation distribution
on all chromosomes. From outermost ring to innermost ring: (1) Gene density. (2) CpG island.
(3) Mean methylation level of the HBW placenta. (4) Mean methylation level of the LBW placenta.
(5) Hyper-methylated DMRs. (6) Hypo-methylated DMRs. (7) Mean methylation level of HBW
placenta. (8) Mean methylation level of LBW placenta. (C) TF enrichment analysis of DMRs in the
promoter. (D,E) GO analysis of hyper- and hypo-aaDMRs across the promoter.

2.5. Association between DNA Methylation and Gene Expression in the HBW and LBW Placentas

As a well-known epigenetics factor, the dynamic changes in DNA methylation are
closely related to gene repression [18]. To examine the relationship between DNA methy-
lation and gene expression level, we divided all expressed genes into four classes based
on the expression levels (high, medium, low, and non-expressed) (Figure 5A). The en-
richment profile results showed that the gene expression and methylation levels of the
gene promoter were negatively correlated (Figure 5B). Thus, we combined the analysis
results of the DNA methylome and transcriptome to identify DEGs that were regulated
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by DNA methylation. As a result, we obtained 330 DEGs with at least a promoter-DMR,
among which 104 DEGs were denoted as promoter-negative genes (PNGs), including
47 down-regulated DEGs with hypermethylated DMRs and 58 up-regulated DEGs with
hypomethylated DMRs. GO and KEGG analysis revealed that these PNGs were enriched
in placental development-related pathways, including chemokines signaling, extracellular
matrix organization, integrin-mediated signaling, oxidative phosphorylation, and Rap1
signaling (Figure 5C; Supplementary Table S6). Differential expression levels and DNA
methylation patterns of ITGB1 and IL1R2 in HBW and LBW placentas were shown by the
Integrative Genomics Viewer (IGV) (Figure 5D). Methylation-specific PCR (MSP) experi-
ments were performed to further validate the differential methylation levels of ITGB1 and
IL1R2 in the HBW and LBW placentas (Figure 5E). To investigate the effect of DNA methy-
lation on PNGs, porcine trophoblast cells (PTr2) were treated with 5-Aza-2′-deoxycytidine
(5-Aza), a DNMTs inhibitor that causes alterations in DNA methylation [16]. The results
showed that the mRNA expression level of selected PNGs was significantly upregulated
following 5-Aza-induced demethylation (Figure 5F). Collectively, our study identified a
set of placental development-related genes that are regulated by DNA methylation. DNA
methylation could regulate placental development by mediating gene repression, which
might ultimately lead to the differences in piglets’ birth weight.
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expression levels (high, medium, low, and non-expressed). High (TPM ≥ upper quartile; medium
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different colors. (C) The GO and KEGG enrichment analysis of PNGs. Blue: KEGG pathway;
Red: GO biological process. (D) IGV visualization of the tracks of WGBS and RNA-seq between
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(E) MSP analysis of the promoter of ITGB1 and IL1R2 in HBW and LBW placentas. M: methylated
alleles. U: unmethylated alleles. (F) The mRNA expression changes in selected PNGs following
5-Aza-induced demethylation in PTr2 cells. * p < 0.05 *** p < 0.001.
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3. Discussion

The insufficiency of placental metabolic and endocrine function caused by disturbances
of placental gene expression contributes to low fetal birth weight and poor growth, which
severely affects normal fetal development and homeostasis and leads to increased fetal
morbidity, slower growth rates, and greater mortality [23,24]. Previous studies have
revealed that DNA methylation plays critical roles in the expression patterns of genes
associated with placenta formation and function [19–21], but it has not been connected
to fetal development. In this study, we compared the microstructural structure and DNA
methylome pattern of the HBW and LBW placentas and analyzed the corresponding
transcriptome characteristics.

The normal development of placental vessels is essential to ensure the exchange of
oxygen and nutrients needed for fetal growth [25]; thus, placental vascular dysplasia
results in fetal developmental defects and even intrauterine embryonic mortality [26]. In
this study, H–E staining results showed great differences in the placental vessel structure
between the HBW and LBW placentas. Specifically, we found that the HBW placentas
showed more nucleated red blood cells within the vessels and intervillous space than the
LBW placenta, suggesting the greater ability to exchange oxygen and nutrients necessary
for fetal growth in HBW piglets. Consistent with this finding, the functional enrichment
analysis of DEGs was enriched in the pathways related to vasculature development, such
as blood vessel morphogenesis and the VEGF signaling pathway. Moreover, GSEA showed
that the process of blood development is more activated on the HBW placentas than on
the LBW placentas. Particularly, the expression levels of vascular endothelial growth
factor A (VEGFA) and receptor 2 (VEGFR-2) were higher in the HBW placentas than the
LBW placentas, suggesting activated angiogenesis and vascular permeability in the HBW
placenta [27]. These results highlighted the differences in blood development between the
HBW and LBW placentas, which might be an important factor that causes the different
birth weights of piglets.

The DNA methylome in the HBW and LBW placentas was compared to further inves-
tigate the function of DNA methylation in shaping tissue-specific transcription patterns.
Our results suggested that DMRs widely existed in HBW and LBW placentas and were
closely associated with the altered expression of placental development-related genes. We
found that several reported placenta development-related TFs were enriched in the DMRs
and potentially modulate DNA methylation levels in placentas, such as TFAP2C, which
was required for trophoblast stem cell maintenance and embryonic implantation [28]. It
was consistent with a previous finding, which reported that TFAP2C can regulate DNA
methylation levels in porcine early embryonic development [29]. Collectively, our results
identified a set of candidate placental development-related TFs, which have important
implications for elucidating differences in placental DNA methylation between the HBW
and LBW fetuses.

DNA methylation is important to repress gene expression by altering chromatin
accessibility and affecting the occupation of transcription factors. In this study, we found
that DNA methylation exhibited a significantly negative correlation with gene expression
in the corresponding promoter at the global level. We finally identified 104 PNGs that
were enriched in the process of placental development, such as cytokine–cytokine receptor
interaction, RAP1 signaling pathway, and ECM organization. The cell-to-ECM interactions
are essential for proper placental development [30]. The Collagen type I alpha 2 chain
(COL1A2) and Collagen type VII alpha 1 chain (COL7A1) are the crucial components of
the ECM, which were up-regulated with decreased DNA methylation in HBW compared
to LBW placenta. Rap1 signaling can promote vasculogenesis and angiogenesis [31]. Our
results showed that some genes involved in the RAP1 signaling pathway were repressed by
DNA methylation, including VAV1, ITGB3, and ITGB1. Cytokines can activate the transport
of intracellular signals and induce epigenetic modification in fetuses, which can affect
metabolic properties and the health state of offspring [32]. A previous study indicated
that cytokines released from placentas may activate particular inflammatory pathways
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and promote maternal insulin resistance, which is essential for a normal pregnancy [32].
Cytokine IL-32 is silenced by DNA methylation in H3K293 cells [33]. In this study, we
extended this finding and demonstrated that the expression of genes encoding the cytokines
IL-1R2 and IL-6ST was repressed by DNA methylation during placental development.
Collectively, we identified a set of candidate genes regulated by DNA methylation. Our
results indicated that DNA methylation is crucial for the formation of transcriptome
patterns in the HBW and LBW placentas, primarily regulating the processes of ECM
organization, blood development, and cytokine production.

The birth weight is greatly influenced by the expression of imprinted genes, such as
the IGF2 and PHLDA2 genes [34,35]. Thus, the gender differences in fetuses might also
affect fetal birth weight. In this study, we collected six HBW or LBW placentas in total from
different litters. Our results showed that there was no obvious gender preference in the
HBW and LBW fetuses. To decrease the effect of gender differences and litter size, we only
chose two litters with similar size where the number of female and male fetuses was close,
and both LBW and HBW fetuses were female fetuses for sequencing. The competition
among fetuses is also the main cause of differences in birth weight. Taken together, it will
be necessary to control the same size and gender distribution of litters and increase the
number of sequencing samples in further studies.

The pigs with a low birth weight exhibited a decreased percentage of muscle and
an increased percentage of body fat at slaughter [36], which will cause great economic
loss for the swine producer. Increasing the feed intake of sows in late gestation has been
evidenced to increase piglet birth weight [37], while some studies have observed that
maternal over-nutrition may harm fetal growth [38]. An alternative approach to reducing
low-birth-weight offspring is genetic selection. Previous studies have identified some easily
classified fitness traits that are suitable for direct selection, such as offspring vitality or
vigor [39]. In this study, we found a positive correlation between birth weight and placenta
weight. Thus, it will be a possible approach to use the information of placenta weight to
apply in genetics selection for reducing low-birth-weight piglets.

4. Conclusions

Our study analyzed the genome-wide DNA methylation profiles of placentas cor-
responding with different birth weight piglets. The regulation of DNA methylation in
gene transcription activity was associated with the differences in placental morphological
structures and birth weight of piglets. These results could shed new light on clarifying the
potential regulatory mechanisms of DNA methylation in placental development and fetal
growth.

5. Materials and Methods
5.1. Sample Collection

All third-parity Duroc sows were managed in the same environmental conditions
and fed the same standard diet. The sows used for sequencing were half-siblings and
mated naturally with the same boar after estrus. The piglets with the heaviest and low-
est birth weight in the same litter were selected and defined as HBW and LBW piglets,
respectively. Placenta samples of HBW or LBW piglets were excised from the maternal side
of the placenta, 2 cm from the umbilical cord insertion site and free of maternal decidua
corresponding to the chorioallantoic placenta [21]. The collected placental tissues were
rapidly placed in liquid nitrogen.

5.2. Cell Culture and 5-Aza Treatment

PTr2 cells were isolated from early embryos of sows at day 12 of pregnancy and culture
with 5% CO2 at 37 ◦C as reported in previous study [40]. DMEM/F12 basic medium (Gibco,
Grand Island, NY, USA) supplemented with 10% fetal bovine serum (Gibco, Grand Island,
NY, USA), 0.5% insulin (YEASEN, Shanghai, China), and 1% penicillin-streptomycin (Gibco,
Grand Island, NY, USA) was used for PTr2 cells culture. For DNA methylation inhibition,
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PTr2 cells were treated with 5, 10, and 20 µmol/L (µM) 5-Aza (Sigma-Aldrich, Saint Louis,
MO, USA) for 5 days. The medium was replaced every 24 h.

5.3. Whole Genome Bisulfite Sequencing and Data Analysis

The genomic DNA was extracted from placenta samples and then was fragmented
to 200–300 bp by using Covaris S220 (Covaris, Woburn, MA, USA). After purification, the
DNA fragments were added with adenosine in the 3′ ends and connected with an adaptor.
Adaptor-ligated DNA fragments were treated with bisulfite and contrasted to a sequencing
library according to the manufacturer’s instructions. The library was finally sequenced on
the Illumina Novaseq platform (150 bp paired-end) (Illumina, San Diego, CA, USA). The
adapter in reads and low-quality reads of raw data were trimmed to generate clean data by
using trim_galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
accessed on 3 February 2024). The clean reads were mapped to pig reference genome by
using Bismark (version 0.19.0) with default parameters [41]. The number of methylated
cytosine divided by the sum of methylated cytosine and unmethylated cytosine at each
CpG site was defined as DNA methylation level. DMR regions were identified by R
package MethyKit [42]. The annotation of DMR regions was performed by the R package
ChIPseeker [43]. IGV software (version 2.10) was used to visualize the DNA methylation
and expression patterns in selected regions [44].

5.4. RNA-Seq and Data Analysis

Total RNA was extracted from placenta samples by using TRIzol reagent (Gibco, Grand
Island, CA, USA). The purified RNA was then subjected to library construction by using
NEBNext R UltraTM RNA Library Prep Kit for Illumina R (New England BioLabs, Ipswich,
MA, USA). The prepared library was sequenced on the Illumina NovaSeq 6000 platform
(150 bp paired-end). Fastq (version 0.23.1) was used to remove adapter and low-quality
reads of raw sequencing [45]. Hisat2 (version 2.2.1) was used to build genome index and
mapped clean reads to the reference genome of pig (susScr11) [46]. The mapped reads count
of genes were quantified by using featureCounts (version 2.0.1) [47]. The raw genes count
was normalized to the transcripts per kilobase million (TPM) by using custom scripts. The R
package DESeq2 was used to perform differential gene expression analysis with the criteria
log2 fold-change > 1 and FDR < 0.05 [48]. GO analysis was performed in PANTHER [49].
KEGG pathway analyses were carried out in KOBAS-i [50]. GSEA were implemented and
visualized using the R package GseaVis (https://github.com/junjunlab/GseaVis accessed
on 3 February 2024). The circos plot of DMRs was generated by Circos software (version
0.67) [51].

5.5. Real-Time Quantitative PCR (qPCR)

Total RNA was extracted and then reverse transcribed into cDNA by using Evo M-MLV
RT Kit (AG, Changsha, China). qPCR experiment was performed by using PowerUpTM

SYBRTM Green Master Mix (Thermo Fisher Scientific, Waltham, MA, USA). The relative
gene expression level was calculated using the Ct (2−∆∆Ct) method. All primers used for
qPCR were shown in Supplementary Table S7.

5.6. Methylation-Specific PCR (MSP)

The genomic DNA of the HBW and LBW placentas was extracted and bisulfite-treated
by using EZ DNA Methylation-Direct kit (Zymo Research, Irvine, CA, USA). The specific
MSP primers designed by MethPrimer [52] were shown in Supplementary Table S7. The
PCR products were subjected to 3% TAE agarose gel electrophoresis.

5.7. Statistical Analysis

The statistical analysis for the results of qPCR was performed by SPSS 20.0 software
(IBM, Armonk, NY, USA) with an independent sample Student’s t-test. Experimental
results were presented as the mean ± standard error of mean (SEM).

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/junjunlab/GseaVis
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