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Abstract: Juvenile Dermatomyositis (JDM) is the most common inflammatory myopathy in pediatrics.
This study evaluates the role of Natural Killer (NK) cells in Juvenile Dermatomyositis (JDM) patho-
physiology. The study included 133 untreated JDM children with an NK cell count evaluation before
treatment. NK cell subsets (CD56'°W/dim yg CD 56Pri8ht) were examined in 9 untreated children.
CD56 and perforin were evaluated in situ in six untreated JDM and three orthopedic, pediatric
controls. 56% of treatment-naive JDM had reduced circulating NK cell counts, designated “low NK
cell”. This low NK group had more active muscle disease compared to the normal NK cell group.
The percentage of circulating CD56!°W/dim NK cells was significantly lower in the NK low group
than in controls (0.55% vs. 4.6% p < 0.001). Examination of the untreated JDM diagnostic muscle
biopsy documented an increased infiltration of CD56 and perforin-positive cells (p = 0.023, p = 0.038,
respectively). Treatment-naive JDM with reduced circulating NK cell counts exhibited more muscle
weakness and higher levels of serum muscle enzymes. Muscle biopsies from treatment-naive JDM
displayed increased NK cell infiltration, with increased CD56 and perforin-positive cells.

Keywords: natural killer cell; juvenile dermatomyositis; disease activity scores; perforin expression

1. Introduction

Juvenile Dermatomyositis (JDM) is a systemic autoimmune disease characterized by
proximal weakness and skin inflammation [1]. JDM is the most common inflammatory
myopathy in pediatrics, with an estimated annual incidence of 2.7-3.4 cases per million [2].
Although the exact pathophysiology of JDM is not clear, the prevailing theory is that the
symptoms result from a combination of genetic susceptibility and environmental triggers such
as viral infection, exposure to pollution, or ultraviolet light [3-5]. Approximately 50% of JDM
children have a family history of autoimmune diseases such as systemic lupus erythematosus
(SLE) and/or type 1 diabetes, suggesting a shared genetic predisposition [6,7]. Furthermore,
JDM children with a family history of SLE exhibit greater interferon-alpha (IFN-«) activity
than children without this familial predisposition [6].

The involvement of both the adaptive and the innate immune systems is well docu-
mented in JDM pathophysiology [8,9]. For example, myositis-specific antibodies (MSA)
are present in more than 50% of JDM patients, and different MSAs are associated with

Int. . Mol. Sci. 2024, 25, 7126. https:/ /doi.org/10.3390/ijms25137126

https:/ /www.mdpi.com/journal/ijms


https://doi.org/10.3390/ijms25137126
https://doi.org/10.3390/ijms25137126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3357-4863
https://orcid.org/0000-0001-8117-574X
https://orcid.org/0009-0005-1787-899X
https://orcid.org/0000-0002-4058-7112
https://orcid.org/0000-0001-6853-4007
https://doi.org/10.3390/ijms25137126
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25137126?type=check_update&version=1

Int. J. Mol. Sci. 2024, 25,7126

2 of 15

distinct disease phenotypes [1,10]. There is also increased lymphocyte, macrophage, and
plasmacytoid dendritic cell infiltration in muscle biopsies of children with JDM [1,11-13].
Plasmacytoid dendritic cells are one of the major sources of type 1 interferon (IFN-« and
IFN-f3) [14], which leads to the increased expression of interferon-regulated genes. Addi-
tionally, there is increased production of neopterin, a macrophage-produced metabolite,
upon IFN-y stimulation, which is observed in most untreated JDM patients [15-17]. Subse-
quently, type 1 interferons enhance Natural Killer (NK) cell degranulation and inflammatory
cytokine production [9,18,19].

There is growing recognition of the role that NK cell dysregulation plays in the patho-
physiology of autoimmune diseases [20,21]. For example, SLE patients have been shown to
have decreased peripheral NK cell counts [22]. Furthermore, NK cells display heightened
cytotoxicity and a pro-inflammatory profile, which correlates with the downregulation of
CD3¢ expression [23]. Similarly, patients with rheumatoid arthritis were found to have
decreased peripheral NK cell count [24] with infiltration of the NK cells in the synovial
tissue [25,26]. In other conditions, such as recurrent miscarriage, elevated peripheral NK
cell counts have been linked with an increased risk of pregnancy loss [27,28].

Decreased circulating NK cell count is associated with orbital myositis disease activ-
ity [29]. Furthermore, there is evidence of abnormal NK cell phospholipase Cy2 signaling
and decreased calcium flux in untreated JDM [30]. Despite the increasing evidence, using
the NK cell count as a valid indicator of disease activity in JDM is not widely accepted.
To attain this goal, this study will examine both the NK cell count in a large cohort of
untreated JDM as well as its association with a panel of serologic indicators of JDM disease
activity. We also evaluated the reduction of the circulating NK cell subset (CD56!0/dim
vs. CD56P8M) in untreated children with JDM as well as its association with muscle tissue
infiltration by NK cells.

2. Results

One hundred and thirty-three untreated JDM patients are included in this study; 56%
of the children with JDM had a low NK cell count (low NK group), and 44% had a normal
NK cell count (normal NK groups). The low NK cell group was younger at diagnosis, while
no significant differences were observed in terms of sex, race, ethnicity, and myositis-specific
antibodies (MSAs) when compared to the normal NK cell group (Table 1).

The low NK cell group had more active disease compared to the normal NK cell
group with mean DAS-total 11.6 vs. 9.6 (p = 0.001), DAS-muscle 5.8 vs. 3.9 (p < 0.001),
and neopterin levels 22.1 vs. 15.5 (p = 0.003). However, the mean DAS-skin was similar
between the low vs. normal NK group (5.8 vs. 5.7, p = 0.565) (Table 2). Furthermore, the
absolute NK count was negatively associated with DAS-total, DAS-muscle, and neopterin
but not DAS-skin (Pearson correlation coefficient of —0.32, —0.33, and —0.32, respectively)
(Figure 1). The CMAS was highly influenced by the patient’s age [31]. Of note, the low
NK group was significantly younger than the normal NK group. For the CMAS analysis,
patients were divided into two groups based on subjects” age (age <4 years and >4 years).
The CMAS for children > 4 years old was significantly lower (p = 0.01) in the low NK group
than in the normal NK group [31], documenting that there was more muscle weakness in
the low NK group. Consistent with these findings, the muscle enzymes were higher in the
low NK than in the normal NK group as follows: CPK 2730 U/L vs. 465 U/L (p = 0.02),
AST 146 IU/L vs. 55 IU/L (p = 0.003), LDH 491 IU/L vs. 355 IU/L (p = 0.007), aldolase
24U/Lvs. 11 U/L (p =0.01).

A review of the different MSA groups documented that the anti-MJ+ children had the
lowest mean NK cell count at 127 + 73 cells/mm?, while the Anti-TIF1-y group has the
highest level at 195 & 160 cells/mm? but related to the small sample size, the difference in
NK cell count among the different MSA groups was not statistically significant (Figure 1).
With respect to impaired muscle function, the Anti-NXP-2 group has the highest mean
DAS-muscle score (6.8 + 3.4) compared to 4.5 & 2.6 for the Anti-TIF1-y group (p = 0.001).
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Table 1. NK cell levels in 133 untreated children with JDM: Demographic characteristics.

Low NK Cell Normal NK Cell
p-Value
Group Group
Number of subjects 75 58
Age at diagnosis (years), mean + SD 59+33 7.6 +39 0.009
Duration of untreated disease
(months), mean - SD 75+ 84 10.0 £ 114 0.140
Sex, n (%)
Female 59 (79%) 41 (71%) 0.291
Male 16 (21%) 17 (29%)
Race and Ethnicity, 1 (%)
White, non-Hispanic 57 (76%) 40 (69%) 0.562
White, Hispanic 13 (17%) 12 (21%)
African American 2 (3%) 2 (3%)
Asian 2 (3%) 2 (3%)
Other 1 (1%) 2 (3%)
Myositis Specific Antibodies, 1 (%)
Anti-TIF1-y 18 (24%) 21 (36%) 0.566
Anti-NXP-2 3 (4%) 4 (7%)
Anti-Mi2 7 (9%) 4 (7%)
Anti-MDA5 2 (3%) 1 (2%)
Multiple MSAs 6 (8%) 3 (5%)
Negative 26 (34%) 13 (22%)
Not done 12 (16%) 12 (21%)

Table 2. NK cell levels in 133 children with untreated JDM: Disease activity markers and flow
cytometry data.

Reference Low NK Cell Normal NK Cell Val

Range Group Group p-vaiue
Clinical disease activity indicator
DAS-total 0 11.6 +3.3 9.6 £3.1 <0.001
DAS-skin 0 58+16 57+1.0 0.565
DAS-muscle 0 58 +28 40+26 <0.001
CMAS for age < 4 years (n = 22) 52 26.1 £12.6 29.6 £10.6 0.491
CMAS for age > 4 years (n = 34) >46 33.6 +13.0 449 +74 0.012
ERL (#/mm) >7 50+ 1.8 51+1.6 0.710
Laboratory disease activity
indicator
Neopterin (nmol/L) <10 22.0 £10.6 16.1 £11.0 0.005
ESR (mm/h) <20 18.6 + 134 151+9.7 0.154
von Willebrand factor antigen Variable * 179.3 £ 81.2 121.2 4+ 66.2 <0.001
Muscle enzymes
CK (IU/L) 26-27 2730.2 £ 8049.2 465.7 + 12444 0.021
AST (IU/L) 17-96 146.1 +239.5 55.0 £48.7 0.003
LDH (IU/L) 147-463 491.4 £+ 353.1 355.0 £ 190.3 0.007
Aldolase (U/L) 3.4-8.6 23.5+ 3438 112 £127 0.011
Flow cytometry
Total T cells (CD3+) 67.0+9.1 61.7 + 8.8 0.001
T helper cells (CD3+ CD4+) 51.4 +£454 404 +78 0.071
T cytotoxic cells (CD3+ CD8+) 19.8 £4.6 19.3+£53 0.553
B cells (CD19+) 28.2+9.3 294 +84 0.430
NK cells (CD16+/CD56+) 44422 88 +£32 <0.001

*blood type specific: Type B = 57-241%, Type O = 36-157%, Type A = 48-234%, Type AB = 64-238%.

To identify the specific NK cell subset (CD56!°%/dim ys. CD 56°1ight) decreased in the
untreated JDM patients, we repeated the flow cytometry to measure the level of CD16 and
CD56 expression in six JDM patients with low NK cells, three JDM patients with normal
NK, and three healthy pediatric matched controls (Figure 2). Although both subtypes were
diminished in the low NK group, the CD56!°%/dim NK cell population in the untreated
children with JDM had a more profound reduction of NK cells compared to their control
(0.55% vs. 4.6%, p < 0.001) (Figure 2).
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Figure 1. Peripheral blood NK cell count in JDM. (a) NK cell counts in children with JDM based
on various MSA groups. (b) Correlation between NK cell count and total disease activity score.
(c) Correlation between NK cell count and serum neopterin level.
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Figure 2. NK cell subpopulation. (a) CD56dim

NK cell population in JDM vs. control. (b) CD56Pri8ht

NK cell population in JDM vs. control. *** means p < 0.001.
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To investigate if the low NK cell counts in JDM reflected NK cell migration into the
inflamed tissue, we examined CD56 expression in the muscle biopsy of untreated JDM by
immunohistology (Figure 3a). The mean number of CD56-positive cells identified in the
muscle biopsy of untreated children with JDM (1 = 6) was 0.86 4 0.05 cells/mm?, which was
significantly higher compared to the control group’s (1 = 3) mean of 0.17 = 0.08 cells/mm?,
p = 0.023. Furthermore, the number of perforin-positive cells in an untreated JDM mus-
cle was 8.8-fold greater than in the age and gender-matched control muscle tissue. The
mean perforin-positive cell in muscle biopsy of JDM subject was 7.7 + 6 cells/mm? vs.
0.9 + 0.3 cells/mm? in controls, p = 0.038 (Figure 3b). Of note, these perforin-positive cells
colocalized with CD19-positive cells (B cells) 5.4-fold more frequently in JDM tissues than in
control samples (* p = 0.041) (Supplemental Figure S1).
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Figure 3. NK cell tissue infiltration. (a) Number of the CD56 positive cells in JDM and control muscle
biopsies. (b) Number of the perforin-positive cells in untreated JDM muscle biopsies. * means p < 0.05.

Next, we evaluated the correlation between the circulating NK cell count and the
corresponding serum concentration of CXCL11, a known chemoattractant of T and NK
cells that is induced by interferon-gamma and interferon-beta [32]. Serum CXCL11 trended
downward in relation to the NK cell percentage with a correlation coefficient of —0.45
(p = 0.05) (Supplemental Figure S2a). As expected, there was a strong correlation between
CXCL11 and serum neopterin (correlation coefficient of 0.85, p < 0.001) (Supplemental Fig-
ure S2b). Of note, there was an inverse correlation between serum CXCL10 and NK cell
count as well, with a correlation coefficient of —0.46; (p = 0.05) (see Supplemental Figure
52c). Additionally, there was a robust correlation between CXCL10 and serum neopterin
(correlation coefficient of 0.93, p < 0.001) (see Supplemental Figure 52d).

Lastly, we conducted a longitudinal evaluation of NK cell count in a subset of JDM pa-
tients (n = 69) with follow-up data over 36 months. There was no significant change
in the mean NK cell count between the treatment-naive JDM and the same patients
1-3 months after initiation of immunosuppressive medications. However, a significant
increase in NK cell count was observed 1-2 years later (the first sample taken after steroid
therapy was stopped) when compared to the same treatment-naive patient samples (mean
NK cell count 263.9 £ 138 cells/uL vs. 161.3 £ 150 cells/pL, p < 0.0001) (Figure 4).
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Figure 4. Peripheral blood NK cell count in JDM over time. The mean count of peripheral blood
NK cells remained relatively unchanged in treatment-naive JDM patients compared to the same
individuals 1-3 months after starting immunosuppressive drugs. However significant increase in
NK cell count was observed after steroid therapy was completed. **** means p < 0.0001, ns means

not significant.

3. Discussion

The presented data support our hypothesis that NK cells play a critical role in the
pathophysiology of untreated children with JDM. We had previously documented that
NK cell cytotoxicity, but not antibody-dependent cell-mediated killing, is decreased in un-
treated children with JDM [33]. A recent study revealed that treatment-naive JDM patients
exhibited significant NK cell activation and an increased prevalence of low-ribosome-
expressing NK cells [34]. This is associated with reduced NK cell function, which improves
with the control of active inflammatory disease [34]. In this study, over 50% of children
with JDM had a decreased NK cell count compared to an age-matched reference range
(Supplemental Table S1). Untreated JDM with a low NK cell count had more active disease
(muscle weakness) and higher muscle enzymes than children in the normal NK cell group.
A similar finding has been seen in a case series of JDM [35], orbital myositis patients [29],
and SLE patients [22,36]. Of note, a lower circulating NK cell count was also found in
adult myositis patients with lung disease than in adult myositis without lung disease [37].
Of interest, the NK cell count correlated inversely with the degree of muscle weakness
(measured by DAS-muscle and CMAS) but not skin involvement (evaluated by DAS-skin)
or nailfold capillary ERL density. To support this observation, we had previously shown
that skin biopsies of untreated children with JDM exhibited a greater number of mast cells
compared to healthy controls, but their matching muscle biopsies did not have a similar
increase in mast cell infiltration [38]. Furthermore, we had also previously documented
that serum neopterin, a macrophage product, tends to be more associated with muscle
weakness in JDM than rash [16,17,39].

We next evaluated the NK cell count associated with the different MSA groups [1].
The Anti-NXP-2 positive group had the lowest mean NK cell count, which is consistent
with the observation that the Anti-NXP-2 positive group had the highest DAS-muscle score
and the highest neopterin levels [16]. In this study, the differences in the mean NK cell
counts among different MSA groups had insufficient power for the evaluation. Also, the
low NK cell group displayed a significantly higher von Willebrand factor antigen level,
which is a biomarker of vasculitis in a subset of JDM patients [40,41], compared with JDM
patients whose NK levels were normal.
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The NK cells develop from the common lymphocyte progenitors in the bone marrow
by gradually downregulating CD34 and upregulating CD56 [42]. The NK cells” maturation
and survival depends on IL-15 or IL-2 [43,44]. Classically, NK cell development consists of
five main stages, but only the last two can be detected in the peripheral blood (CD56!°"/dim
and CD 56Pright NK cells) [45]. CD56Pright NK cells are mostly cytokine-producing cells; they
produce cytokines such as IFN y and GM-CSF and exhibit reduced cytolytic activity [45].
They are typically CD16 negative and can differentiate into CD56!°"/d™ NK cells [46].
CD56!°W/dim NK cells have more potent cytotoxic activity and less cytokine production.
These cells also express CD16 (FcyRIIIA) and killer immunoglobulin-like receptors (KIR)
(CD158). In addition, they are capable of secreting perforin and granzyme B upon stimula-
tion. However, the rigid distinction between the two subsets has been called into question
by various observations [47]. For example, CD56Pright NK cells have demonstrated the
ability to kill target cells in certain circumstances [48], and CD56!°"/dim NK cells can pro-
duce IFN-y [49]. In this study, we found that the reduced NK cell count in children with
JDM appears to be associated with a drop in CD56!°%/4im NK cells. JDM muscle biopsies
show increased infiltration of CD56 and perforin-positive cells, which supports enhanced
NK cell migration to the inflamed muscle. Tissue-resident NK cells, as observed in this
study, usually exhibit the CD56"18"t phenotype [47]. This has been documented in organs
such as the liver and uterus [50,51]. In a study of 108 adult SLE patients, the lupus patients
had significantly decreased NK cell counts and cytolytic function in addition to reduced
intracellular NK perforin expression [52]. In another report, the NK cell count was low
in adults with active lupus, but, unlike our findings, both the NK cell subpopulations
(CD56W/dim and the CD 56Pight NK cell) were decreased proportionately [22].

Of interest, approximately 10% of the NK cell population in the muscle tissue of JDM
colocalized with B cells. The nature of the interaction between NK cells and B cells remains
unclear. It is uncertain whether the NK cells actively interact with B cells or if the B cells
are drawn to the site of inflammation caused by muscle injury. Nonetheless, this finding
emphasizes the intricate interplay between these cell types and underscores the complexity
of the disease’s pathophysiology [53]. In our recent study, a B cell subpopulation positive
for otoferlin was identified and found to be enriched in treatment-naive JDM compared to
control samples [54]. These otoferlin-positive B cells were observed to infiltrate the muscle
tissue, adding to the growing body of evidence regarding the involvement of B cells in JDM
pathology [54]. Further research is warranted to fully characterize the impact of NK and B
cell interactions in JDM pathophysiology.

Although the decreased NK cell count could result from decreased bone marrow
production of NK cells, it is more likely due to NK cell migration to inflamed tissue,
consistent with our documentation of increased CD56 and perforin-positive cell counts in
the untreated JDM muscle biopsy. We postulate that the tissue migration is mediated by the
increased production of CXCL10 (IP-10) and CXCL11 (I-TAC) in untreated children with
JDM [55]. CXCL10 and CXCL11 bind to CXCR3 (CD183), a chemokine receptor expressed
on mature NK cells as well as T cells [56]. CXCR3 may facilitate the migration of NK and T
cells to the tissue during infection, especially in a type 1 interferon-rich environment [57-59].
It is plausible that muscle inflammation in untreated JDM provides an environment that
promotes NK tissue migration, given the high expression of type 1 interferon in the serum
and muscle of patients with active disease [15,60]. Furthermore, we recently documented a
negative correlation between NK cell count and neopterin levels (r = —0.31, p < 0.001) [16].
In a prior study, we showed that neopterin was positively correlated with both CXCL-10
(r2 =0.88, p < 0.0001) and CXCL-11 (r2 = 0.85, p < 0.0001). In addition, CXCL-10 production
is increased locally in the muscle tissue following muscle damage [61].

Figure 5 shows a proposed model of NK cell involvement in JDM. In summary, the
model displays images that show that interferon stimulates myeloid cells to produce
CXCL10 and CXCL11 chemokines, which injured muscle cells can also produce. These
chemokines bind to the CXCR3 receptor present on NK and T cells, allowing them to
migrate to infected tissues, particularly in a type 1 interferon-rich environment. This
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pathway may provide guidance toward a new therapeutic target for JDM patients who
failed conventional therapy.

Neopterin

CXCL10, CXCL11 I IL-12 , TNF-a

CXCR3

) Perforin granules
| CXCR3

Figure 5. Proposed model of NK cell involvement in JDM. Macrophages and other myeloid cells are
stimulated by interferon to produce chemokines CXCL10 (IP-10) and CXCL11 (I-TAC). Addition-
ally, injured muscle cells themselves can also produce CXCL10. These chemokines then bind to a
chemokine receptor called CXCR3 (CD183), which is expressed in NK cells and T cells. This binding
facilitates the migration of NK cells and T cells to the infected tissue, particularly in an environment
rich in type 1 interferon. This migration can potentially lead to further damage to muscle cells in
JDM. (M = Macrophages, TH1 = T helper 1 cells, NK = Natural Killer Cells, T = T cells).

Many CXCR3 antagonists have been developed to treat autoimmune diseases, but none
have yet been FDA-approved [62,63]. Of note, a CXCR3 antagonist reduces the migration
of activated T cells to the synovial fluid in a humanized mouse model [64]. Alternatively,
an anti-CXCL10 (IP-10) antibody can be used to inhibit inflammatory cell migration to
the inflamed muscle [65,66]. We anticipate that understanding the heterogenicity of the
inflammatory pathways of JDM will facilitate the development of clinical trials targeting
the CXCR3/CXCL10 axis in JDM.

Limitations of this study include the following: (1) the limited number of muscle
biopsy analyses hinders the possibility of establishing significant correlations between
tissue NK cells and disease activity or peripheral NK cell count; (2) the flow cytometry
analysis for NK cell subsets in both JDM patients and controls was performed on frozen
samples, which could potentially differ from fresh samples; however, the cell viability was
greater than 90% for all samples; (3) the sample size was insufficient to derive a meaningful
statistical analysis of the role of NK cells in the presence of specific MSA.

In summary, 56% of untreated JDM children have low peripheral blood NK cell
count. Furthermore, those untreated children with JDM and low NK cells have more
muscle weakness and higher muscle enzymes than those JDM children in the normal NK
cell group. Most of the NK cell count reduction is associated with a lower CD56!"/dim
population. Additionally, JDM muscle biopsies show increased infiltration of CD56 and
perforin-positive cells, which support enhanced NK cell migration to the inflamed muscle.
We speculate that targeting NK cells may provide new therapeutic modalities for a subset
of JDM patients.
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4. Materials and Methods
4.1. Study Subjects

All patients with JDM seen at Ann & Robert H. Lurie Children’s Hospital are recruited,
consented, and given the opportunity to enroll in the Juvenile Myositis (JM) Registry and
Biorepository. The data utilized in this study are collected as part of this registry. The
Institutional Review Board (IRB) at Ann & Robert H. Lurie Children’s Hospital of Chicago
(IRB 2008-13457, 2012-14858, 2010-14306) approved this study. We included all children who
met the Bohan and Peter criteria [67,68] for JDM and who had an NK cell count performed
before initiating medical therapy. In addition, we excluded subjects with overlap syndrome,
such as those with positive anti-PM-Scl, anti-Ul RNP, or anti-U2 RNP antibodies, from
the study.

Children with definite JDM (n = 133, 75% female, 25% male) were included in the
retrospective chart review after they had given their consent for this study. The racial
and ethnic background of the study subjects is as follows: White, Non-Hispanic 73%
White, Hispanic 19%, African American 3%, Asian 3%, and Others 2%. Age at enrollment
(diagnosis) ranged from 2.2-16.9 years with a mean of 6.9 years (£3.7 SD). The mean
duration of untreated disease was 8.6 months (4+9.9 SD). The distribution of MSAs was:
29.3% Anti-TIF1-y (anti-P155/140), 8.3% anti-Mi2, 6.4% both anti-Mi2 and Anti-TIF1-y,
5.3% Anti-NXP-2 (anti-M]J), 2.2% anti-MDAS5 (anti-CADM140), and 29.3% MSA negative.
18.2% of the earlier study subjects did not have an up-to-date MSA assessment at the
time of this study enrollment, which was prior to the identification of these. To further
specify the NK subset involved, more detailed flow cytometry was performed on nine
JDM children (6 with low NK cell count and 3 with normal NK cell count) and three
age-matched healthy pediatric controls. In addition, tissue staining for CD56 and perforin
was performed on diagnostic muscle biopsies from 6 untreated female JDM and three
orthopedic, pediatric white female controls (12-14 years old, two had spinal fusion surgery,
and one had scoliosis surgery).

4.2. Disease Activity Assessment and MSAs

The JDM disease activity evaluation utilized a standardized scoring system at each
visit. The Disease Activity Score (DAS)-total consists of 20 points that are categorized into
skin symptoms (0-9 points) and muscle symptoms (0-11 points) [69]. Muscle strength was
evaluated by The Childhood Myositis Assessment Scale (CMAS) [70,71]. Because both a
certified physical therapist is needed to assess the CMAS and patients need to cooperate
with the given tasks, some patients did not have CMAS data before therapy, making the
sample size too small for a formal evaluation of the CMAS. The CMAS is highly influenced
by the patient’s age; healthy children aged four or younger, with a score of 46 instead of
52 obtained by older children [31]. Therefore, the study subjects were divided into two
groups based on their age at diagnosis for CMAS analysis. The number of nailfold capillary
end row loops (ERL) was evaluated by averaging the number of ERL per mm in the eight
digits, excluding thumbs [72,73].

We obtained the following laboratory tests to assess disease activity before treatment:
muscle enzymes (creatine phosphokinase [CK], lactate dehydrogenase [LDH], aspartate
aminotransferase [AST], and aldolase), erythrocyte sedimentation rate (ESR), von Wille-
brand factor antigen, and serum neopterin [74]. Serum neopterin was evaluated by a
competitive enzyme-linked immunosorbent assay [16]. MSAs were determined via im-
munoprecipitation and immunodiffusion at the Oklahoma Medical Research Foundation
Oklahoma City, OK, USA [75]. CXCL11 and CXCL10 were assessed in 20 JDM patients
(13 untreated and 7 post-treatment) by the Meso Scale Discovery® Rockville, MD, USA
technique [55].

4.3. NK Cells Count by Flow Cytometry

NK cell count was measured by flow cytometry in the clinical immunology lab at
the Ann & Robert H. Lurie Children’s Hospital of Chicago. All study subjects had flow
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cytometry evaluation for CD45 (PerCP-Cy 5.5-labeled CD45, clone 2D1) CD3 (FITC-labeled
CD3, clone SK7), CD4 (PE-Cy7-labeled CD4, clone SK3) CD8 (APC-Cy7-labeled CD8, clone
SK1), CD16 (PE-labeled CD16, clone B73.1) CD56 (PE-labeled CD56, clone NCAM16.2)
and CD19 (APC-labeled CD19, clone S]25C1) before receiving treatment for JDM. BD
Biosciences, San Jose, CA, USA, manufactured all the antibodies for the flow cytometry tests.
The normal NK cell count was defined by using the age-specific reference range developed
in the Lurie Children’s Hospital Clinical Immunology Lab (Supplemental Table S1). The
JDM patients were divided into two groups (normal vs. low) based on their NK cell
count. The low NK group was defined as subjects with absolute NK cell count below the
age-specific reference range (Supplemental Table S1).

Peripheral blood NK cells can be classified into two groups based on the degree of
CD56 expression [45]. CD 56Pr8ht NK cells (previously known as immature or stage 4 NK
cells) are primarily cytokine-producing cells with low cytolytic activity [45]. They are
typically CD16 negative and can differentiate into the CD56!°"/dim [46]. CD56low/dim NK
cells (previously known as mature or stage 5 NK cells) have a more potent cytotoxic activity
and lower cytokine production. To identify the specific NK cell subtype (CD56loW/dim,
CD 56Pri8ht) that is altered in untreated children with JDM, additional flow cytometry was
performed on a companion peripheral blood (JDM active, untreated) sample, frozen at
—70 °C in the JM Biorepository. The WBCs were stained with CD16 and CD56 and labeled
with different fluorochromes. The gating strategy was as follows: (1) dead cells were
excluded with fixable cell viability dye (eBioscience San Diego, CA, USA, —eFluor 780);
the cell viability was >90% for all the samples; (2) lymphocytes were identified by forward
and side scatter in addition to CD45+ve status; (3) CD16 and CD56 antibodies were used to
characterize the NK cell subset. Figure 2a shows an example of the NK cells gating strategy.

4.4. Immunohistology

For immunoenzymatic staining, 8 um frozen sections of pediatric muscle tissue biop-
sies from untreated JDM patients or pediatric orthopedic controls were air-dried, fixed in
acetone at 4 °C for 10 min, and stored at —20 °C until use. Tissue sections were stained with
the following primary antibodies: AF647-labeled anti-CD56 (Clone: B159—BD Biosciences)
or unlabeled anti-human perforin (Clone: B-D4—Biolegend). Alkaline phosphatase-labeled
anti-mouse IgGl (Southern Biotech, Birmingham, AL, USA) secondary antibody identified
perforin staining. Alkaline phosphatase staining was developed in the presence of Fast
Blue BB substrate (Millipore Sigma, St. Louis, MO, USA), followed by the development of
horseradish peroxidase by adding either 3,3’-diaminobenzidine tetrahydrochloride sub-
strate (Leica Biosystems, Vista, CA, USA) or 3-Amino-9-Ethylcarbazole (AEC) detection
solution (Abcam). Tissues were cover-slipped in glycergel (Dako North America, Inc.,
Carpinteria, CA, USA). Stained tissues were imaged using a Revolve R4 microscope (Echo,
San Diego, CA, USA), and the density of stained cells was enumerated using Adobe
Photoshop version 22.1.1 software (Adobe Systems, San Jose, CA, USA).

4.5. Statistical Analysis

We divided the study subjects into two groups (low vs. normal NKs) based on the
age-appropriate reference range of the absolute NK cell count (Supplemental Table S1). The
student’s t-test and the chi-square test were used to compare the baseline characteristics
and disease activity markers of treatment-naive JDM children with low NK cell count
compared with those with a normal NK cell count. We also used Pearson correlation to
explore the relationship between various disease activity indicators and NK cell count
in untreated JDM subjects. Student’s t-test with Welch’s correction was used to assess
the difference between NK cell subpopulations and CD56 and perforin expression in the
muscle biopsies. We employed IBM SPSS Statistics® version 29.0 and GraphPad Prism®
version 9.4.1 to conduct the statistical tests and generate the Figures.
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5. Conclusions

Fifty-six percent of treatment-naive juvenile dermatomyositis patients exhibit de-
creased peripheral NK cells. Improvement in NK cell count is observed once the disease
progresses into remission. Additionally, muscle biopsies of treatment-naive JDM, albeit
with a limited sample size, reveal infiltration of CD56 and perforin-positive cells, indicating
increased migration of NK cells to inflamed muscle areas.
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