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Abstract: Spontaneous tumour formation in higher plants can occur in the absence of pathogen
invasion, depending on the plant genotype. Spontaneous tumour formation on the taproots is
consistently observed in certain inbred lines of radish (Raphanus sativus var. radicula Pers.). In
this paper, using Oxford Nanopore and Illumina technologies, we have sequenced the genomes of
two closely related radish inbred lines that differ in their ability to spontaneously form tumours.
We identified a large number of single nucleotide variants (amino acid substitutions, insertions or
deletions, SNVs) that are likely to be associated with the spontaneous tumour formation. Among the
genes involved in the trait, we have identified those that regulate the cell cycle, meristem activity,
gene expression, and metabolism and signalling of phytohormones. After identifying the SNVs, we
performed Sanger sequencing of amplicons corresponding to SNV-containing regions to validate our
results. We then checked for the presence of SNVs in other tumour lines of the radish genetic collection
and found the ERF118 gene, which had the SNVs in the majority of tumour lines. Furthermore, we
performed the identification of the CLAVATA3/ESR (CLE) and WUSCHEL (WOX) genes and, as a
result, identified two unique radish CLE genes which probably encode proteins with multiple CLE
domains. The results obtained provide a basis for investigating the mechanisms of plant tumour
formation and also for future genetic and genomic studies of radish.

Keywords: spontaneous tumours; Raphanus sativus; inbred lines; genomic sequence; single nucleotide
variants; CLE; WOX

1. Introduction

Tumour formation is a pathological process that results from the uncontrolled prolifer-
ation of a group of cells. Tumours occur in virtually all multicellular organisms and are
represented by newly formed tissues whose cells are actively proliferating. In animals, a
system of proto-oncogenes and tumour suppressor genes forms a complex network that
systemically controls the rate of cell division, growth, and differentiation at the level of
the whole organism. Disruption of this control, both under the influence of environmental
factors and due to genomic instability, leads to the development of tumours. Higher plants
contain functional orthologues of many mammalian tumour suppressors and oncogenes,
but mutations in these genes in plants have not led to tumour formation, suggesting a very
different principle of organisation of the systemic control of cell division and differentiation
in plants [1–3].

Most examples of plant tumours arise as a result of interactions with a variety of
pathogens and phytophages, from bacteria and viruses to nematodes and arthropods [4].
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The development of pathogen-induced tumours is usually associated with an imbalance
of such phytohormones such as auxin, cytokinin, and peptide hormones [4]. More rarely,
spontaneous tumours develop in the absence of pathogens in the plants with specific
genotypes (mutants, interspecific hybrids, inbred lines), making them more similar to
animal tumours [1,4]. The exact causes of spontaneous tumour formation have only
been studied in Arabidopsis mutants that have defects in cell–cell adhesion due to the
loss of function of enzymes involved in the biosynthesis or modification of cell wall
components [5–8]. The study of these mutants has revealed one of the unknown aspects
of the systemic control of cell division in plants, bringing cell adhesion to the fore [1].
At the same time, not all tumour mutants of Arabidopsis and other plants have impaired
cell adhesion. Studying other examples of plant tumours may help in identifying other
systemic regulators of cell division in higher plants.

The objects of our research are spontaneous tumours of the inbred lines of European
cherry radish (Raphanus sativus var. radicula Pers.) (Figure 1a). The genetic collection of
radish inbred lines has been maintained at St. Petersburg State University (SPbSU) since
the 1960s by selfing individual plants, and now contains thirty-three highly inbred lines,
originated from four radish cultivars. Eleven radish inbred lines stably form tumours on
the taproots of plants in the flowering stage ([9,10], Figure 1).
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Figure 1. Spontaneous tumour formation in inbred radish lines: (a). taproots of related lines 19 (left)
and 18 (right) contrasting in the tumour formation trait; (b). a family tree of the radish genetic
collection showing the origin of the inbred lines; tumour lines 10, 11, 12, 13, 14, 16, 19, 20, 21, 32, 34
are marked in red; the squares indicate the intended progeny of each radish line. Different boxes
represent lines of diverse cultivars. The sector that includes lines originating from the Saxa cultivar is
highlighted in green.

As with most examples of spontaneous tumours in plants, the mechanism triggering
tumour formation in the radish inbred lines is unknown. Tumours on radish taproots
originate from the pericycle and cambium as callus-like structures and later acquire features
of secondary differentiation, such as vasculature, and meristematic foci similar to root
apical meristems due to auxin maxima and WOX5 expression [11]. The RNA-seq of radish
tumours compared to lateral roots revealed the differential expression of the more than
1600 genes [12]. Most of the pathways upregulated in radish tumours were associated
with the control of cell division, showing the extreme activation of this process in the
tumour tissue [12].

In the present work, we have sequenced the genomes of two closely related radish
inbred lines 18 and 19 that contrastingly differ in their ability to form tumours ([9], Figure 1).
In genetic crosses between these two lines, this trait was inherited as a monogenic reces-
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sive [13], providing an opportunity to identify a specific gene that regulates spontaneous
tumour formation.

As a result, a number of SNVs (InDels and SNPs) were revealed in the tumour radish
line. Among these, we found more than a hundred SNVs in the CDS of protein-coding
genes that are thought to lead to changes in protein structure (“stop lost”/“stop gained” or
a frameshift) or in positions 1–20 of the 5’-UTR, which could severely affect the translation
efficiency [14]. Many of the genes with such SNVs in the tumour line are homologues
of Arabidopsis genes, which are involved in cell cycle regulation, cytoskeleton organisa-
tion, meristem development, and phytohormone homeostasis. Among these, we selected
108 SNVs that are in the homozygous state in the tumour radish line. The presence of
the selected InDels and SNPs in the radish tumour line was verified by sequencing the
amplicons of the corresponding gene regions in radish lines 18 and 19.

To search for the association of SNVs with spontaneous tumour formation, we per-
formed the sequencing of 40 SNV-containing gene regions in seven tumour and fourteen
non-tumour radish lines of the SPbSU genetic collection. As a result, we found that the
RsERF018 gene contains the CAG insertion in the 5’-UTR close to the start codon in most
tumour radish lines and only two non-tumour lines, which allows us to propose it as a
candidate regulator of spontaneous tumour formation.

Based on genome assemblies’ data of two radish inbred lines, we carried out the
identification and chromosomal localisation of the genes belonging to the CLE and WOX
families which are known to be master regulators of meristem identity and stem cell
homeostasis. Among them, we identified new, previously uncharacterised radish CLE
genes which are likely to encode proteins with multiple CLE domains. Homologues of such
a group of CLEs are absent in Arabidopsis, but have been identified in Brassica napus [15].

The sequencing of the genome of the tumour radish line may be a step towards
identifying new mechanisms underlying spontaneous tumour formation in higher plants.

2. Results
2.1. Assessment of the Assembly Quality of the Genomes of Two Radish Inbred Lines

To compare the genomic DNA sequences of tumour radish line 19 and non-tumour
radish line 18, we performed a hybrid chromosome-level assembly using a combination of
data obtained by Illumina and Oxford Nanopore sequencing methods.

As a result of the assembly quality assessment using the BUSCO programme (https:
//busco.ezlab.org/ (accessed on 30 May 2024)), it was shown that the number of single
copies of nuclear genes was greater than 92.2% for line 19 and 91.1% for line 18. The
number of duplicated sequences was 6.4% for line 19 and 5.7% for line 18, and the overall
assembly quality index was greater than 98.6% for line 19 and 96.8% for line 18, indicating
a low content of fragmented or incomplete sequences and no contamination by sequences
from other phylogenetic taxa (Figure 2). The assembly parameter values obtained using
the Quast programme indicated that the genome size of line 18 was 492,907,896 bp with
N50 = 12,750, and the genome size of line 19 was 480,234,765 bp with N50 = 13,846,043.
These parameters are comparable to the characteristics of reference radish genomes [16–18].

A BUSCO analysis of the genome assemblies of lines 18 and 19 showed quality indicators
of 96.8 and 98.8, respectively. Thus, the assembly quality of the genomes of radish lines
obtained in this work is not inferior to those available in the NCBI database (https://www.
ncbi.nlm.nih.gov/datasets/genome/?taxon=3725, accessed on 23 January 2024).

https://busco.ezlab.org/
https://busco.ezlab.org/
https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=3725
https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=3725
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Figure 2. Comparative characteristics of the genomes of radish lines 18 and 19 sequenced in this
work and the radish reference genome (GCA_019705955.1). The analysis was carried out using the
BUSCO programme.

2.2. Identification of SNVs in the Protein-Coding Genes of the Tumour Radish Line

By analysing the genome sequences of tumour and non-tumour radish lines, we
have identified a large number of SNVs (514,083 InDels and 2,260,270 SNPs) in tumour
line 19 (Table 1, Supplementary Figure S1). Among them, 35,399 InDels and 688,148 SNPs
were located in the CDS of protein-coding genes or in positions −1–20 of the 5’-UTR. Of
these, 21,698 InDels and 9451 SNPs were likely to result in the altered translation of the
corresponding proteins due to a frameshift, loss of a start or stop codon, gain of a start
codon, or decrease in the translation efficiency due to the changes in the 5’-UTR near
the start [14].

Table 1. Number of SNVs (InDels, SNPs) identified in the tumour radish line and their probable
impacts on gene structure (high, low, moderate, modifier). For SNPs, there is information on their
number in different functional classes (missense, nonsense, silent). Data were obtained using the
SnpEff tool v.5.1.

Variant Impact Functional Class

Type Total Type Number Type Number

SNP 2,260,270

HIGH 9451 MISSENSE 292,963

LOW 432,159 NONSENSE 5618

MODERATE 291,254 SILENT 393,274

MODIFIER 4,334,386

INDEL 514,083

HIGH 12,234

LOW 15,755

MODERATE 15,497

MODIFIER 1,227,445

Among the genes with these SNVs, we selected 240 InDels and 135 SNPs in the genes
related to GO that are probably associated with the control of plant cell proliferation: related to
the regulation of cell growth (GO:0008283, GO:0007346, GO:0010564, GO:0000278, GO:0051726,
GO:0006261, GO:0042023, GO:0000910, GO:0000911, GO:0000226, GO:0009828, GO:0009505,
GO:0009825), meristem activity (GO:0010014, GO:0010075, GO:0009933), phytohormone
signalling (GO:0009736, GO:0009690, GO:0009686, GO:0045487, GO:0009734, GO:0009733,
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GO:0009735, GO:00097390, gene expression regulation (GO:0003700, GO:0006306, GO:0034968,
GO:0051567), and organogenesis (GO:0048364, GO:0048527, GO:0090451).

Among the genes belonging to these GO pathways, 72 genes with InDels and 36 genes
with SNPs were in the homozygous state in radish line 19. Of these 72 InDels, 57 resulted in
a frameshift, 9 in a frameshift and loss of a start codon, 5 in a frameshift and gain of a stop
codon, and 1 in a change in the 5’-UTR near the start codon. Of the 36 SNPs, 23 resulted
in a gain of a stop codon, 10 in a loss of a stop codon, and 3 in a loss of a start codon. We
determined the chromosomal location of genes with such SNVs (Figure 3). More detailed
information on these genes can be found in Supplementary Tables S1 and S2.
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Figure 3. Chromosomal location of radish genes with (a) InDels or (b) SNPs identified in tumour line 19
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It can be assumed that the abovementioned SNVs could lead to a loss of function of
the corresponding protein-coding genes in the tumour radish line, and thus each of these
SNVs could cause tumour formation. The effects of loss-of-function mutations in some
of these genes on plant development have also been described for their homologues in
Arabidopsis (Supplementary Tables S1 and S2).

https://www.wur.nl/en/show/mapchart.htm
https://www.wur.nl/en/show/mapchart.htm


Int. J. Mol. Sci. 2024, 25, 6236 6 of 20

2.3. Search for the Presence of Identified SNVs in the Tumour and Non-Tumour Lines of the Radish
Genetic Collection

To search for probable candidate regulators of spontaneous tumour formation among
the genes containing selected SNVs in line 19 and to verify the Nanopore and Illumina
sequencing data, we amplified the corresponding gene regions of several other tumour (12,
13, 14, 16, 20, 21, 32) and non-tumour (3, 5, 6, 8, 9, 23, 25, 26, 27, 28, 29, 30, 37, 39) lines of
the radish genetic collection.

As a result, the presence of the same SNV was confirmed in most tumour lines for
the RsERF018 gene (Figure 4). For the other 39 genes, in some of them, SNVs were only
identified in line 19, or there was a polymorphism that was not associated with the tumour
formation trait.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 20 
 

 

Figure 3. Chromosomal location of radish genes with (a) InDels or (b) SNPs identified in tumour 
line 19 compared to non-tumour line 18 performed using the MapChart 2.32 software 
(https://www.wur.nl/en/show/mapchart.htm (accessed on 30 April 2024)). 

2.3. Search for the Presence of Identified SNVs in the Tumour and Non-Tumour Lines of the 
Radish Genetic Collection 

To search for probable candidate regulators of spontaneous tumour formation 
among the genes containing selected SNVs in line 19 and to verify the Nanopore and 
Illumina sequencing data, we amplified the corresponding gene regions of several other 
tumour (12, 13, 14, 16, 20, 21, 32) and non-tumour (3, 5, 6, 8, 9, 23, 25, 26, 27, 28, 29, 30, 37, 
39) lines of the radish genetic collection.  

As a result, the presence of the same SNV was confirmed in most tumour lines for 
the RsERF018 gene (Figure 4). For the other 39 genes, in some of them, SNVs were only 
identified in line 19, or there was a polymorphism that was not associated with the 
tumour formation trait.  

The RsERF018 gene, whose homologue in Arabidopsis controls ethylene response 
and cambium cell division [19], contains a CAG insertion just upstream of the start 
codon of the gene in tumour lines 12, 13, 14, 19, 20, and 21, and also in non-tumour lines 
26 and 27, whereas no insertion was detected in tumour lines 16 and 32, as well as in 
most non-tumour lines (Figure 4). According to data obtained in Arabidopsis, this type of 
change in positions -1–20 of the 5’-UTR dramatically decreases the efficiency of 
translation [20]. 

The RsERF018 gene needs to be further investigated as a possible regulator of 
spontaneous tumour formation. 

 
Figure 4. Schematic representation of the insertion (marked with an asterisk) detected in the 
RsERF018 gene. (a) The scheme of an ERF18 gene. The insertion is located on the border of the 5’-
UTR and the start codon. (b) 5’-UTR insertion of the RsERF018 gene in radish lines and its possible 
consequences. The amino acid content of the protein synthesised during translation of the normal 
sequence is marked in black, and the protein synthesised during translation in the case of the CAG 
insertion is marked in white. Radish tumour lines are highlighted in red. 

2.4. Identification and Chromosomal Localisation of WOX and CLE Genes in the Obtained 
Genome Assemblies of Inbred Radish Lines 

Meristem regulators are known to be involved in the control of the plant cell 
division plan, and have been shown to be involved in the development of numerous 
examples of plant tumours [4]. The balance between cell division and differentiation in 
various plant meristems is controlled by the WOX-CLAVATA system, a highly conserved 

Figure 4. Schematic representation of the insertion (marked with an asterisk) detected in the RsERF018
gene. (a) The scheme of an ERF18 gene. The insertion is located on the border of the 5’-UTR and the
start codon. (b) 5’-UTR insertion of the RsERF018 gene in radish lines and its possible consequences.
The amino acid content of the protein synthesised during translation of the normal sequence is
marked in black, and the protein synthesised during translation in the case of the CAG insertion is
marked in white. Radish tumour lines are highlighted in red.

The RsERF018 gene, whose homologue in Arabidopsis controls ethylene response and
cambium cell division [19], contains a CAG insertion just upstream of the start codon of
the gene in tumour lines 12, 13, 14, 19, 20, and 21, and also in non-tumour lines 26 and 27,
whereas no insertion was detected in tumour lines 16 and 32, as well as in most non-
tumour lines (Figure 4). According to data obtained in Arabidopsis, this type of change in
positions -1–20 of the 5’-UTR dramatically decreases the efficiency of translation [20].

The RsERF018 gene needs to be further investigated as a possible regulator of sponta-
neous tumour formation.

2.4. Identification and Chromosomal Localisation of WOX and CLE Genes in the Obtained Genome
Assemblies of Inbred Radish Lines

Meristem regulators are known to be involved in the control of the plant cell division
plan, and have been shown to be involved in the development of numerous examples of
plant tumours [4]. The balance between cell division and differentiation in various plant
meristems is controlled by the WOX-CLAVATA system, a highly conserved regulatory
module [21], consisting of CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE)
peptides; the protein kinase receptors that bind CLEs; and the targets of CLE action, the
WUSCHEL-RELATED HOMEOBOX (WOX) homeodomain transcription factors [22–24].
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We carried out the identification of the radish CLE and WOX family genes in our
genome assemblies of 18 and 19 radish lines (Figure 5, Supplementary Figures S2 and S3).
Totals of 52 RsCLE genes and 24 RsWOX genes were found. All 24 RsWOX genes have
been identified previously [25]. Among the RsCLE genes, 16 RsCLEs were identified in
our previous work [26], and other RsCLE genes were annotated in the reference radish
genome [16]. The chromosomal location of RsWOX and RsCLE genes (Figure 5) revealed
the clusters of closely located RsCLEs on 2, 4, and 9 radish chromosomes.
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Figure 5. Chromosomal location of radish (a) CLE and (b) WOX family genes performed using the
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It is important to note that the RsWOX2, RsWOX14, and RsCLE7 genes were among
those identified in radish tumour line 19 as possessing SNVs in the CDS that are likely to
result in loss of function (Supplementary Figure S4, Tables S1 and S2). At the same time,
these SNVs were only confirmed in tumour line 19 and not in other radish tumour lines.

2.5. Identification of Radish CLE Genes Likely to Encode Proteins with Multiple CLE Domains

Among all the RsCLE genes identified in this work (Figure 6), we have found two
unique RsCLEs of unknown function that probably encode proteins with multiple CLE

https://www.wur.nl/en/show/mapchart.htm
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domains. We then found the same genes in the radish reference genome, where they
had not been described as CLE genes and were named in the NCBI database as actin-
binding protein wsp1-like (LOC108807713) and proline-rich receptor-like protein kinase
PERK10 (LOC108858878). We have uploaded the sequences of these genes found in our
assemblies to the NCBI database (Submission ID: 2791313, GenBank numbers PP236904.1
and PP236905.1) under the names RsCLEm1 and RsCLEm2 (“RsCLE multidomain”).
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Figure 6. Radish CLE gene family (RsCLEs). (a) Phylogenetic tree of RsCLE genes constructed using
the Neighbour-joining algorithm. The colour indicates RsCLEm1 and RsCLEm2 genes, which encode
proteins with multiple CLE domains. (b) CLE domain consensus sequences of all RsCLE peptides
identified in radish.

Each of the RsCLEm genes contains eight tandem CLE domain sequences separated by
short spacers (Figure 7). The CLE genes encoding multidomain CLE proteins were previously
identified and functionally studied in Brassica napus [15], but were absent in Arabidopsis.
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Figure 7. The proteins with multiple CLE domains probably encoded by RsCLEm genes.
(a) A representation of the domain organisation of RsCLEm proteins, including the positions of
signal peptide (SP) and CLE domains. Signal motifs were predicted with the SignalP-6.0 tool
(https://services.healthtech.dtu.dk/service.php?SignalP (accessed on 30 April 2024)). Identical se-
quences of CLE domains are marked with the same colour. (b) CLE domain consensus sequences of
Raphanus sativus and Brassica napus. (c) Sequence alignment of the putative 12-amino-acid CLE do-
main sequences encoded by the CLEm genes of Raphanus sativus and Brassica napus. (d) Phylogenetic
analysis of the BnCLEm and RsCLEm peptides.

3. Discussion

To date, radish genome sequencing has previously been performed for several Asian
and European cultivars and isolates [16,17,27–31]. Polymorphism in radish is being actively
studied [32,33]. The Rs1.0 genome, which is a reference genome for radish, was based on
the chromosome sequences of R. sativus of the Korean cultivar WK10039 [16].

In our work, we have sequenced the genomes of two closely related radish inbred lines
that differ in their ability to spontaneously form tumours [9–13]. This is the first attempt to
sequence the genome of plants with spontaneous tumour formation.

To date, the most well-studied examples of spontaneous tumours in higher plants
are several monogenic mutants of Arabidopsis [5,34–36] and one of Nicotiana tabacum [37],
which form tumours on different organs of seedlings. In most cases, tumours in these
mutants are the result of a loss of function of pectin metabolism genes, which are involved
in cell wall formation and cell adhesion [5–8]. The discovery of such mutants showed
that cell adhesion is one of the mechanisms that systemically regulate cell proliferation
in the plant body. However, cell adhesion is not the only mechanism of such systemic
regulation. In Arabidopsis, there are also tumour-forming mutants with loss of function of
the other genes whose association with tumour development is much less obvious, such
as the gene-encoding protein of the immunophilin family [34], the tyrosine phosphatase-
like protein [38], and the chromatin remodelling factor [39]. Thus, the identification of
plant genes whose loss of function leads to spontaneous tumour formation will help in
identifying new systemic mechanisms for cell division control in higher plants.

https://services.healthtech.dtu.dk/service.php?SignalP
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In our work, we have identified numerous SNVs, including those in the CDS or
positions −1–20 of the 5’-UTR of protein-coding genes, that distinguish the tumour radish
line from the relative non-tumour line. Therefore, we can assume that certain SNVs may be
inducers of spontaneous tumour formation. According to data on transcriptome analysis
of the roots and spontaneous tumours in the radish inbred line, all 108 genes with loss-of-
function SNVs in tumour line 19 were expressed in radish taproots [12]. Moreover, five
genes with such SNVs identified in this study were among the DEGs: the expression levels
of the cell cycle regulator RsPCNA1 and the gene of unknown function LOC108817684
were increased in the tumours, whereas the expression levels of the radish homologues
of the auxin response gene RsSAUR32, the ethylene response cambium-associated genes
RsERF018 and RsERF019, and also the RsLRR-RK gene encoding receptor-like protein
kinase were decreased [12].

Due to the large number of SNVs identified, it is currently not possible to make clear
assumptions about the role of each SNV in spontaneous tumour formation. Additional
testing for the presence of the identified SNVs in tumour and non-tumour radish lines
revealed that a CAG insertion at position −1 of the 5’-UTR of the RsERF018 gene was
present in the seven out of eight tumour radish lines tested and was absent in the thirteen
out of fifteen non-tumour lines. Without the insertion, this region contained an AAA
sequence just before the start codon, which should result in high translation efficiency [20].
Therefore, an insertion of a CAG between the start and the AAA region (Figure 4) should
result in a considerable decrease in the amount of the translated protein, as has been shown
in Arabidopsis [20].

In this work, we also characterised and chromosomally localised genes of the WOX and
CLE families in the genomic sequences of radish lines from the SPbSU genetic collection.
Among the RsWOX and RsCLE genes, the loss-of-function SNVs were detected in the
RsWOX14, RsWOX2, and RsCLE7 genes in line 19 (Supplementary Figure S4).

In Arabidopsis, the WOX14 gene is a regulator of cambium and xylem balance and
acts redundantly with the WOX4 [40]. The WOX2 is known to be a regulator of early
embryogenesis and callus formation [41]. The CLE7 gene in Arabidopsis also functions as
a regulator of callus formation and regeneration [42]. Since, according to our previous
data, spontaneous tumours on radish taproots originate from the cambium and develop
as undifferentiated callus-like structures [11], these genes are perspective candidates for
tumour regulators. However, the results on these were not very encouraging, as our data
show that none of the corresponding SNVs were found in the sequences of these genes in
the other radish tumour lines studied.

The genes RsWOX14, RsWOX2, and RsCLE7 are represented by a single copy in the
radish genome, but homozygosity for the loss-of-function mutations in them does not result
in reduced viability of radish line 19. According to available data, a single mutation in each
of these genes in Arabidopsis does not cause any serious developmental abnormalities in
the mature plants [40].

Analysis of the genomes of the radish lines also allowed us to identify two RsCLE genes,
RsCLEm1 and RsCLEm2, which are likely to encode proteins with multiple CLE domains
and a unique CLE domain composition (Figure 7). There are no identified homologues of
these genes in Arabidopsis, but they are related to the B. napus CLEm genes, which encode
multidomain CLE proteins that function as light stimulators of shoot apical meristem
activity [15]. The RsCLEms contain eight tandem CLE domain sequences and are closely
related to BnCLEm3, whose product contains five nearly identical tandem CLE domains [15].

Thus, in addition to identifying SNVs probably associated with tumours, the sequenc-
ing of the radish inbred lines allowed the identification of novel CLE family genes.

4. Materials and Methods
4.1. Plant Material

Closely related lines 18 and 19 of the R. sativus genetic collection were used in this
study. Both lines originated from a single self-pollinated plant of the Saxa cultivar [9] and
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are now represented by the progeny of approximately 40–45 generations of inbreeding,
indicating an extremely low level of heterozygosity.

Saxa (cat. № 9464454 in the State Register of Selection Achievements Admitted for
Use (National List).) is the cultivar of European radish with round red taproot, which was
obtained at the Federal Scientific Centre for Vegetable Growing (Moscow Region, Russia)
by the method of mass selection from a sample originating from Central Europe. This
radish variety has not yet been subjected to genome sequencing.

4.2. Genomic DNA Isolation, Library Preparation, and Sequencing

Total DNA for sequencing was isolated from 50 7-day-old, etiolated radish seedlings of in-
bred lines according to an unpublished protocol approved by the Laboratory of Plant-Microbial
Interactions of the All-Russia Research Institute for Agricultural Microbiology (ARRIAM).

The DNA sequencing of line 19 was performed using Oxford Nanopore technology in
the Core Centrum “Genomic Technologies, Proteomics and Cell Biology” at the ARRIAM
using a MinION device (Oxford Nanopore, Cambridge, UK). The genome assembly of
line 19 was performed using the Canu v.1.7.1 tool (https://github.com/marbl/canu/
releases (accessed on 30 April 2024)) with default settings. The sequencing of line 19
was also performed with Illumina technology on the HiSeq2500 sequencer at the Centre
of Molecular and Cellular Technologies of Saint Petersburg State University Research
Park. The NEBNext® Ultra™ DNA Library Prep Kit for Illumina (New England Biolabs,
Ipswich, MA, USA) was used for library construction. Dual barcoding was performed
using the NEBNext® Ultra™ DNA Index Prep Kit for Illumina and NEBNext® Multiplex
Oligos® Illumina® (Dual Index Primers Set 1). To improve the quality of the genome
assemblies, the data were refined to correct possible errors in the Pilon v.1.22 tool (https:
//github.com/broadinstitute/pilon/releases (accessed on 30 April 2024)) with default
settings based on data obtained by two sequencing technologies (Illumina and Nanopore).

The DNA sequencing of line 18 was performed with Illumina technology only, at
the Centre of Molecular and Cellular Technologies of Saint Petersburg State University
Research Park using the HiSeq2500 sequencer. The NEBNext® Ultra™ DNA Library Prep
Kit for Illumina (New England Biolabs) was used for library construction. Dual barcod-
ing was performed using the NEBNext® Ultra™ DNA Index Prep Kit for Illumina and
NEBNext® Multiplex Oligos® Illumina® (Dual Index Primers Set 1). Line 18 genome assem-
bly was performed using the SOAPdenovo v.2.04 tool (https://github.com/aquaskyline/
SOAPdenovo2 (accessed on 30 April 2024)) with maximal read length = 150, average insert
size = 100, cutoff of pair number for a reliable connection = 5).

4.3. Bioinformatic Processing of the Sequencing Results

For each assembly, MultiQC v.1.12 [43] and Trimmomatic v.0.40 with the HEAD-
CROP:15 and CROP:140 options [44] were used for quality control and read correc-
tion, respectively. The assemblies were indexed using the bowtie2 tool (https://github.
com/BenLangmead/bowtie2 (accessed on 30 April 2024)) with default settings. Assem-
blies of two chromosome-level genomes were generated using the Ragtag tool (https:
//github.com/malonge/RagTag (accessed on 30 April 2024)) and the chromosome-level
reference radish genome GCA_019703475.1 (https://www.ncbi.nlm.nih.gov/data-hub/
genome/GCA_019703475.1/ (accessed on 30 April 2024)) with default settings.

Annotation of the genomes of lines 18 and 19 was performed using the Augustus Gene
Prediction Tool (https://github.com/Gaius-Augustus/Augustus (accessed on 30 April
2024)) with the −species = arabidopsis parameter.

Alignment of the line 19 sequences to the line 18 genome assembly and vice versa
was performed using the bowtie2 program (https://github.com/BenLangmead/bowtie2
(accessed on 30 April 2024)), and the identification of candidate genes and differences
in the structure of these genes in different radish lines was performed using SnpEff [45],
SnpSift [45], and GATK with the HaplotypeCaller option (https://gatk.broadinstitute.org/
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hc/en-us/articles/360037225632-HaplotypeCaller (accessed on 30 April 2024)), with the
parameters SelectVariants --select-type SNP or --select-type INDEL options.

The GO enrichment analysis was performed based on the list of all genes with SNVs
and the list of all radish genes as inputs using the R programming language (v. 4.0.2) based
on an unpublished custom R script. The GSEABase v. 1.50 (https://bioconductor.riken.jp/
packages/3.11/bioc/manuals/GSEABase/man/GSEABase.pdf, accessed on 31 May 2024)
was used for data visualisation. A total of 148 pathways related to different biological
processes were identified, all of which were statistically significant (p.val_GO ← 0.01,
OddsRatio_GO← 2).

Visualisation of the sequence alignment for assembly and checking for the presence of
InDels and SNPs in silico were performed in the IGV genome browser (https://igv.org/
(accessed on 30 April 2024)).

To confirm the detected differences in SNVs between line 18 and line 19 as well as
between other tumour (12, 13, 14, 16, 20, 21, 32) and non-tumour (3, 5, 6, 8, 9, 23, 25, 26, 27, 28,
29, 30, 37, 39) lines of the radish genetic collection, DNA was isolated from radish seedlings
of the listed lines using the CTAB method. PCR was performed under the following
conditions: initial DNA denaturation at 98 ◦C for 3 min; DNA denaturation at 98 ◦C for
10 s, primer annealing at 52 ◦C for 30 s, extension at 72 ◦C for 1 min, repeated 35 times; and
final extension at 72 ◦C for 5 min. Primers were designed using the VectorNTI software
v1.1.1 algorithm (Invitrogen, Waltham, MA, USA) to amplify 300–400-length amplicons
and synthesised by Evrogen (Moscow, Russia). The PCR mixtures were subjected to
Sanger sequencing.

Sequences for the RsWOX genes were searched in the radish genome assemblies
represented in the NBCI database (https://www.ncbi.nlm.nih.gov/datasets/genome/
?taxon=3725, accessed on 23 January 2024) using the blastP, blastN, and tblastN algorithms
of the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 30 April 2024)),
based on the nucleotide and amino acid sequences of A. thaliana and R. sativus genes
and proteins.

The phylogenetic tree of radish CLE protein sequences was constructed based on the
alignment of R. sativus CLE protein amino acid sequences in MEGA7 software v.10.2. (https:
//www.megasoftware.net/(accessed on 30 April 2024)) using the Muscle algorithm [46]
by Neighbour joining [47] with default parameters and bootstrap 1000 [48]; the tree was
visualised using iTOL software v.6.9 (https://itol.embl.de/ (accessed on 30 April 2024)).

Nucleotide and amino acid sequences were analysed using the following programmes:
ApE (https://jorgensen.biology.utah.edu/wayned/ape/ (accessed on 30 April 2024), v.3.1.0),
SnapGENE (https://www.snapgene.com/ (accessed on 30 April 2024); v.6.0.2), UGENE
(http://ugene.net/ru/; v.33), and MEGA7 (https://www.megasoftware.net/ (accessed
on 30 April 2024); v. 10.2). Signal motifs were predicted with the SignalP-6.0 tool (https:
//services.healthtech.dtu.dk/service.php?SignalP (accessed on 30 April 2024)).

The location of genes on radish chromosomes was visualised using the MapChart 2.32
software ((https://www.wur.nl/en/show/mapchart.htm (accessed on 30 April 2024)).

The search for domains in proteins and their visualisation was performed using the
MEME online tool (https://meme-suite.org/meme/tools/meme (accessed on 30 April 2024)).

All the steps of our experiment are shown graphically in Figure 8.
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5. Conclusions

By sequencing the genomes of related tumour and non-tumour radish lines, it was
possible to identify a number of candidate genes for the role of regulators of spontaneous
tumours. Further study of the relationship between the identified genes and tumour
formation could increase our knowledge of the role of different pathways involved in the
systemic regulation of plant cell division. In addition, this work analysed the WOX and
CLE family genes in radish and identified new, previously unknown CLE genes.
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