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Abstract: Single-cell RNA sequencing (scRNA-seq) is widely used to interpret cellular states, detect
cell subpopulations, and study disease mechanisms. In scRNA-seq data analysis, cell clustering
is a key step that can identify cell types. However, scRNA-seq data are characterized by high
dimensionality and significant sparsity, presenting considerable challenges for clustering. In the
high-dimensional gene expression space, cells may form complex topological structures. Many
conventional scRNA-seq data analysis methods focus on identifying cell subgroups rather than
exploring these potential high-dimensional structures in detail. Although some methods have
begun to consider the topological structures within the data, many still overlook the continuity and
complex topology present in single-cell data. We propose a deep learning framework that begins
by employing a zero-inflated negative binomial (ZINB) model to denoise the highly sparse and
over-dispersed scRNA-seq data. Next, scZAG uses an adaptive graph contrastive representation
learning approach that combines approximate personalized propagation of neural predictions graph
convolution (APPNPGCN) with graph contrastive learning methods. By using APPNPGCN as
the encoder for graph contrastive learning, we ensure that each cell’s representation reflects not
only its own features but also its position in the graph and its relationships with other cells. Graph
contrastive learning exploits the relationships between nodes to capture the similarity among cells,
better representing the data’s underlying continuity and complex topology. Finally, the learned low-
dimensional latent representations are clustered using Kullback-Leibler divergence. We validated
the superior clustering performance of scZAG on 10 common scRNA-seq datasets in comparison to
existing state-of-the-art clustering methods.

Keywords: scRNA-seq data; APPNPGCN; graph contrastive learning; ZINB model; KL divergence

1. Introduction

Single-cell RNA sequencing (scRNA-seq) is a formidable tool that provides in-depth
insights into the genetic traits of each individual cell [1]. This technology is invaluable for
distinguishing cell types with fine granularity [2], exploring the depths of developmental
biology, identifying the mechanisms of complex diseases [3], and mapping the develop-
mental trajectories of cells [4]. In the analysis of scRNA-seq data, precisely discerning
different cell types is an essential step [4]. As such, cell clustering methods have become
a crucial component of scRNA-seq data analysis, capable of identifying a variety of cell
types without any preset assumptions [2]. Traditional clustering techniques, such as K-
means [5], hierarchical clustering [6], and density-based clustering [7], have been utilized
to tackle clustering tasks. Nonetheless, the clustering analysis of scRNA-seq data still
presents computational and statistical challenges, as limitations in sequencing technology
and environmental factors lead to extreme sparsity in the data and a high incidence of
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zeros [8,9]. Therefore, the development of more efficient and accurate clustering methods
for scRNA-seq data is compellingly necessary.

Numerous clustering methods have been developed to address these challenges. For
instance, CIDR employs a fast PCA-based approach using dissimilarity matrices for data im-
putation and clustering [10]. SC3 introduces a consensus clustering framework tailored for
scRNA-seq data, reducing dimensions through PCA and Laplace transforms [11]. SIMLR
utilizes multi-kernel learning to attain more robust distance metrics and to handle extensive
data missingness [12]. Despite these advances, due to the sparsity of gene expression levels
in the data, these methods often provide suboptimal solutions when dealing with scRNA-
seq data [13]. Furthermore, these methods commonly rely on computationally intensive
full-graph Laplacian matrices, which demand considerable computational and storage re-
sources. AutoClass learns the data distribution from raw scRNA-seq data and reconstructs
gene expression values based on specific cell types. However, these methods rely on the
original distribution of scRNA-seq data and overlook the topological structure information
inherent in the data. In recent years, deep embedding clustering methods have emerged
as successful approaches for modeling high-dimensional and sparse scRNA-seq data. Ex-
amples include scDeepcluster and scziDesk. These methods refine clusters iteratively
by learning highly confident assignments and leveraging auxiliary target distributions,
ultimately leading to improved clustering results. Nevertheless, these deep embedding
clustering methods frequently overlook the propagation of structural information and the
relationships between nodes.

Recently, graph neural networks (GNNs) have garnered attention from researchers
due to their ability to capture the relational information between neighboring nodes in a
graph [14]. GNNs can reveal the connections between a target node and its surrounding
nodes, thereby enhancing the representation of node features [15]. This has made GNNs a
popular method for processing single-cell RNA sequencing (scRNA-seq) data. For example,
scGAE utilizes a graph autoencoder to preserve the topological structure and perform
dimensionality reduction on scRNA-seq data. GraphSCC combines graph convolutional
networks with denoising autoencoder networks to simultaneously capture the complex
relationships between cells and the intrinsic characteristics of cells. scTAG leverages GNNs
to summarize the related data of adjacent nodes and maps cell expression data to a ZINB
model [13]. Although current GNN-based methods have achieved remarkable results in
clustering scRNA-seq data, these strategies often overlook the global information of the
graph, leading to an inability to better extract effective latent features.

Due to the limited and hard-to-obtain labeling resources for cell types, as well as the
difficulty in learning more effective feature representations, graph contrastive learning
has demonstrated strong potential. The core idea is to improve the accuracy of feature
representation by increasing the similarity between positive samples while decreasing the
similarity between negative samples. Contrastive learning is mainly used in unsupervised
representation learning, where it can fully utilize a large amount of unlabeled data. It has
shown superior performance on these datasets, even surpassing some supervised learning
methods [16]. This makes contrastive learning naturally suited for scRNA-seq data analysis.
The first method to apply this to scRNA-seq data clustering was contrastive-sc [17], which
uses a dropout neural network layer to randomly mask a set of genes, assigning a weight
of zero to randomly selected genes. In this case, some key features may be ignored, and
important features for model learning might be missed, potentially leading to decreased
accuracy in clustering [16]. scNAME [18] combines neighborhood contrastive loss with an
auxiliary masking estimation task to delve deeper into the correlations between features
and similarities between cells. While common contrastive learning methods effectively
utilize genes as features of cells, they do not consider the interrelations between cells.
GNNs, however, have the capability to capture and represent the complex high-order
structural relationships between cells [19]. Therefore, using graph contrastive learning
for cell clustering is a novel approach that could potentially improve the accuracy of cell
clustering.
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Consequently, we introduce a novel deep graph contrastive learning clustering method
called scZAG. scZAG utilizes a ZINB graph convolutional autoencoder to capture the zero-
inflation characteristic of scRNA-seq data and reduce noise impact. It employs a joint
adaptive data augmentation strategy targeting topological structures and node attributes,
preserving key structures and attributes within the cell graph. Utilizing an APPNPGCN
as the encoder, scZAG effectively captures local and global graph structure information.
By leveraging graph contrastive learning, scZAG learns representative node features and
optimizes the cell clustering process using Kullback-Leibler (KL) divergence, ensuring
similar cells are assigned to the same cluster while dissimilar ones are separated.

2. Results
2.1. Implementation Details

In our scZAG method, the construction of the cell graph utilizes the KNN algorithm,
with the hyperparameter K set to 15. For the APPNPGCN autoencoder segment, we
designed two layers with 128 and 15 nodes, respectively. Concurrently, the fully con-
nected decoder comprises three hidden layers, with node counts of 128, 256, and 512 in
sequence [13]. We employ the Adam optimizer to train the model, which is divided into
two parts: pre-training and main training [20]. In the pre-training phase, we set the model
to run for 1000 epochs with a learning rate of 1 x 10~%. In the subsequent main training
phase, the model undergoes 300 epochs, with the learning rate adjusted to 5 x 10~%. For
the baseline methods, we adhere to the hyperparameter settings, as reported in the original
publications. All our experiments were conducted on a CentOS 7.9 server equipped with
an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90 GHz, two NVIDIA A100 GPUs each with 40 GB
of memory, and 1 TB of RAM.

2.2. Clustering Performance

We compared five state-of-the-art scRNA-seq clustering methods, including
scziDesk [21], GraphSCC [14], scGAE [22], scDeepCluster [23], and AutoClass [24].

As illustrated in Figure 1, our method, scZAG, was compared across 10 datasets,
with all experimental results obtained by averaging five runs for each method. In the
comparative experiments across these datasets, scZAG achieved the highest ARI scores
on nine datasets and the highest NMI scores on eight, thus demonstrating the superior
performance of our method among those evaluated. The figure reveals that the clustering
performance of the other methods was not consistent, with inherent limitations restricting
their generalizability. From Figure 1, it is evident that scDeepCluster performs poorly on
most datasets due to its neglect of the underlying relationships between cells. Utilizing
graph neural networks enables the capture of relational information between adjacent
nodes in the graph, thereby enhancing the representation of node features. However, we
observed that conventional deep graph embedding models did not exhibit advantages, and
their clustering performance was not sufficiently stable. For instance, in the “Wang_Lung”
dataset, the presence of only two cell types may lead to a biased and highly sparse data
distribution. Consequently, this could result in suboptimal performance for methods
like GraphSCC and scGAE, which rely solely on the information structure retained in
the cell graph and may struggle to accommodate the peculiarities of scRNA-seq data.
Consequently, further simulation of the data through the ZINB distribution was necessary,
once again highlighting the superiority of scZAG. Additionally, employing deep embedded
clustering methods with the ZINB distribution model, including scziDesk and scDCC,
demonstrated better and more stable clustering performance. Although scziDesk and
AutoClass achieved commendable performance on certain specific datasets, they both
overlooked the transmission of information between cells and the relationships among
them. Our use of APPNPGCN allows for the integration of local information from neighbors
and global information from more distant nodes, enabling a better grasp of intercellular
information transmission; the use of graph contrastive learning captures the complex
relationships between cells more effectively, leading to more accurate cell type distinctions.



Int. J. Mol. Sci. 2024, 25,5976 40f16
A
1.00 —
0.75
9(1 0.50 -
0.25 [ scZAG
[ scziDesk
0.00 Y ; [ GraphScC
Adam Young QS_Lung Qx_ L|mb Muscle Muraro [ scGAE
[ scDeepCluster,
1.00 e [ AutoClass
0.75
EE 0.50 -
0.25 |—| H H
0.00 oA ! H
Wang_Lung QS_Limb_Muscle QS_Heart Guo QS_Trachea
B
1.00 -
0.75 - - .
% 0.50 -
0.25 - [ scZAG
[ scziDesk
0.00 . . i . i [ GraphSCC
Adam Young QS_Lung Qx_Limb_Muscle Muraro @ scGAE
[ scDeepCluster,
1.00 _ . [ AutoClass
0.75
% 0.50
el || [ill
0.00 = T T 1 T
Wang_Lung QS_Limb_Muscle QS_Heart Guo QS_Trachea

Figure 1. ARI (A) and NMI (B) scores of scZAG and five other clustering methods across ten
real-world datasets.

To further substantiate the superiority of scZAG over other methods, we conducted a
Mann-Whitney U test, also known as the Wilcoxon rank-sum test, as shown in Figure 2.
The Mann-Whitney U test is a non-parametric statistical method that provides a means to
compare the medians of two independent samples without relying on specific distributional
assumptions. The statistical outcome produced by the test, namely the p-value, allows
us to definitively determine the presence of significant differences between scZAG and
the other four methods. From Figure 2, it can be observed that when the p-value is set
to 0.05, significant differences exist between scZAG and both GraphSCC and AutoClass
in terms of the ARI evaluation metric. Similarly, significant differences are observed
between scZAG and AutoClass in terms of the NMI evaluation metric. However, when
the p-value is set to 0.001, significant differences are found between scZAG and both
scGAE and scDeepCluster in terms of both the ARI and NMI evaluation metrics. These
results indicate significant discrepancies in clustering performance between scZAG and
the other algorithms at different significance levels, demonstrating superior clustering
performance of scZAG over other methods. Moreover, it can be further elucidated that
scZAG effectively performs dimensionality reduction of scRNA-seq data by utilizing the
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ZINB-based autoencoder. By leveraging a joint adaptive data augmentation strategy
targeting topological structures and node attributes, scZAG preserves key structures and
attributes within the cell graph. Through graph contrastive learning on the two enhanced
cell graphs obtained from the augmentation strategy, scZAG learns representative node
features, thus improving clustering accuracy. By effectively addressing the challenges
of high dimensionality and high dropout events in scRNA-seq data, scZAG consistently
demonstrates outstanding performance across multiple datasets and evaluation metrics,
thereby assisting researchers in tasks such as cell type identification in single-cell RNA
sequencing data.
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Figure 2. Box plots for six methods across ten datasets, along with significance analysis, are presented.
This analysis is presented for the ARI (A) and NMI (B) metrics.

2.3. Visualized Analysis

To demonstrate the intuitive clustering performance of scZAG, we selected two real
datasets (Qx_Limb_Muscle and Adam) with different sample sizes and subtypes for cell
visualization. From Figure 3, we can observe that scZAG displays distinct cell clusters with
clear boundaries compared to other methods. scZAG distinctly separates more cell clusters,
and the clustering results are more accurate, with each cluster containing fewer cells of
other types. The scDeepCluster and scGAE methods incorrectly split cells of the same
type into multiple clusters. GraphSCC fails to clearly distinguish between cell clusters. On
the other hand, the clusters identified by AutoClass and scziDesk contain a large mixture
of other cell types, leading to lower accuracy in the results. These visualizations provide
a vivid corroboration of our numerical findings, clearly demonstrating that scZAG can
not only accurately identify various cell types but also tightly group cells of the same
type together while effectively distinguishing between different cell types. Through visual
analysis, we can effectively demonstrate that scZAG outperforms other methods in terms of
visualization quality and clustering performance. Compared to other clustering methods,
the clusters generated by scZAG are clearer, more compact, and exhibit more distinct
separation between clusters.
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Figure 3. Visualization analysis of cell types. (A) Clustering of the Qx_Limb_Muscle dataset using six
clustering methods, followed by visualization with 2D t-SNE. (B) Clustering of the Adam dataset
using six clustering methods, followed by visualization with 2D t-SNE.

2.4. Parameter Analysis

Influence of the Hyperparameter K in the KNN Algorithm: In constructing cell
neighborhoods using the KNN algorithm, K represents the number of nearest neighbors
for each cell. To select an optimal value for K, we experimented with different K values
to observe their impact on downstream analysis results. As illustrated in Figure 4A,
both evaluation metrics peak when the hyperparameter K is set to 15. Consequently, we
designated 15 as the hyperparameter K within our scZAG model.
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Figure 4. Parameter analysis. (A) The impact of different neighbor parameters K on ARI and NMI
values. (B) The effect of varying numbers of highly variable genes on ARI and NMI values.

Analysis of the Number of Highly Variable Genes: In scRNA-seq data analysis,
highly variable genes are crucial for distinguishing cell types or states due to their signif-
icant expression variations across different cells. Focusing on these genes reduces data
dimensionality and emphasizes the most informative ones. In our model, we determined
the optimal number of highly variable genes through multiple experiments, ranging from
300 to 2500. Figure 4B illustrates the average NMI and ARI for selecting 300, 500, 1000, 1500,
2000, and 2500 highly variable genes across 10 datasets. Optimal values for both metrics
are observed when selecting the top 500 highly variable genes. Therefore, in our scZAG
method, we proceed with experiments using the top 500 highly variable genes.

2.5. Ablation Study

To assess the contribution of each component to our scZAG model, we carried out ab-
lation experiments under three scenarios: (1) excluding APPNPGCN, where we substituted
the APPNPGCN with a conventional GCN; (2) excluding the adaptive graph contrastive
learning (GCA) module while keeping the rest of the components intact; and (3) excluding
the ZINB model, again with the rest of the components remaining unchanged. Table 1
presents the mean ARI and NMI scores achieved by scZAG on ten distinct datasets. As per
the table, it is evident that each component positively influences the overall performance of
scZAG. The APPNPGCN, utilizing power series and random walks for feature propagation,
effectively spreads information across the graph, which is conducive to feature integration
between cells and enhanced clustering. The graph contrastive learning module is designed
to discern the similarities and differences among nodes, helping to identify and accentuate
those pivotal features that are instrumental in differentiating cell types. Lastly, the ZINB
model captures the zero-inflation aspect of scRNA-seq data, which tailors our method to
the data more aptly, thereby enabling more accurate delineation of cell subpopulations in
clustering outcomes.

Table 1. Measurement of ablation studies using NMI and ARI metrics. Boldface indicates the best
results in the ablation experiments.

Methods NMI ARI
GCN + GCA + ZINB 0.836 0.844
APPNPGCN + ZINB 0.847 0.854
APPNPGCN + GCA 0.795 0.809

scZAG 0.869 0.881
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3. Discussion

We have introduced a deep learning method for scRNA-seq clustering named scZAG.
Although traditional graph neural networks excel at processing graph-structured informa-
tion, they can sometimes be overly influenced by the graph structure, especially when the
edge weights are not set properly. To overcome this issue, scZAG incorporates APPNPGCN,
a method that achieves a better balance between node features and graph structure infor-
mation through an improved propagation scheme based on personalized PageRank. Given
that scRNA-seq data typically contain multiple cell types and states, which present complex
patterns and structures in high-dimensional space, the iterative propagation mechanism of
APPNPGCN aids the model in capturing the intricate relationships between these cells.

Furthermore, we have implemented a novel adaptive data augmentation approach. By
integrating graph contrastive learning, this method is designed to learn the similarities and
differences between nodes, aiding in the identification and emphasis of key features that
facilitate the distinction of cell types or states, thereby enhancing the clustering outcome.
To further augment the model’s performance, we have integrated a ZINB model within the
APPNPGCN encoder. The ZINB model handles the zero-inflation and discrete distribution
commonly found in scRNA-seq data, providing a more accurate representation of gene
expression profiles. By integrating the ZINB model with GNN, we can leverage the more
precise cell feature representations provided by ZINB. This enables GNNs to learn more
discriminative feature representations, thus improving the clustering algorithm’s ability
to identify cell types and states accurately. Personalized PageRank, combined with the
ZINB model, offers more accurate information propagation by incorporating both graph
structure and cell features. This integration allows clustering algorithms to utilize cell-
cell relationships more effectively for clustering, resulting in more precise identification of
different cell types and states. The integration of the ZINB model can improve the clustering
algorithm’s stability and accuracy. By utilizing the more accurate feature representations
provided by the ZINB model and the more accurate graph structure modeling provided
by the personalized PageRank algorithm, the clustering algorithm’s sensitivity to noise
and disturbances in the data can be reduced, leading to improved clustering stability and
accuracy. Lastly, scZAG utilizes a self-optimizing deep embedding clustering approach,
feeding the latent features extracted by APPNPGCN into an adaptive clustering module
and employing the KL divergence to fulfill the clustering task.

To validate the clustering efficacy of scZAG, we compared it against other state-of-the-
art scRNA-seq clustering methods on ten real datasets. Based on the clustering performance,
and corroborated by the results of the Mann-Whitney U test, scZAG significantly outper-
formed the other methods. We also conducted a thorough analysis of hyperparameters to
identify the optimal settings for the scZAG approach. Ablation studies confirmed that each
component within scZAG positively contributes to the overall performance of the model.
Finally, our visualization analysis demonstrated that, compared to other methods, scZAG'’s
latent embedding representations more effectively differentiate and separate the various
cell populations.

When the number of cell types in the dataset increases, both our method and other
methods may experience a decrease in accuracy. This is because as the diversity of cell
types increases, the complexity of the dataset also increases, making it more challenging to
differentiate between different cell types. Additionally, there may be overlapping or similar
gene expression patterns among different cell types in the dataset, further complicating
accurate classification. In the future, we will continue to improve the balance of scZAG and
apply it to the integration of single-cell multi-omics data. Furthermore, we aim to enhance
the interpretability of the model by integrating topic modeling techniques.

4. Materials and Methods

The architecture of scZAG is illustrated in Figure 5. scZAG can be divided into three
modules: the ZINB-based autoencoder module, the graph contrastive learning module,
and the clustering module. First, the ZINB-based autoencoder module employs a ZINB
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Figure 5. The structural architecture of scZAG. The gene expression matrix is taken as the raw data
for scZAG, and a cell graph is constructed via KNN. Subsequently, we generate two augmented cell
graphs through random enhancements of the graph structure and attributes. The low-dimensional
latent representations of the two enhanced cell graphs are then learned through the APPNPGCN
encoder. Next, the model is trained using a contrastive learning objective, aiming to ensure that
a node’s representation is similar across two different views yet distinctive from all other nodes’
representations. Note that we define negative samples as all other nodes within the two views.
Hence, the negative samples originate from two sources: intra-view (purple) and inter-view nodes
(red). scZAG feeds the data Xj»; and the cell graph E; into a ZINB-based autoencoder to learn
the low-dimensional latent representation Z and obtains the ZINB loss through the ZINB decoder.
Finally, scZAG clusters the low-dimensional latent representation Z using the Kullback-Leibler (KL)
divergence and optimizes clustering by minimizing the KL loss.

4.1. Data Sources

To validate the clustering performance of the scZAG model on scRNA-seq data, we
compared it with several state-of-the-art scRNA-seq clustering methods across ten real
datasets, which are detailed in Table 2 and originate from recently published papers on
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scRNA-seq clustering. These datasets come from various sequencing platforms, species,
and organs. To assess the clustering performance, we employed two common evaluation
metrics: the adjusted Rand index (ARI) and normalized mutual information (NMI), both
of which are used to measure the consistency between the generated clusters and the
true groups. For both of these evaluation metrics, higher values indicate better clustering
performance.

Table 2. Summary of the scRNA-seq datasets.

Dataset Cell Gene Class Platform Reference
Adam 3660 23,797 8 Drop-seq [25]
Young 5685 33,658 11 10x [26]

QS_Limb_Muscle 1090 23,341 6 Smart-seq2 [27]
QS_Heart 4365 23,341 8 Smart-seq?2 [27]
QS_Lung 1676 23,341 11 Smart-seq2 [27]

Qx_Limb_Muscle 3909 23,341 6 10x [27]

Muraro 2122 19,046 9 CEL-seq2 [28]

Wang_Lung 9519 14,561 2 10x [29]
Guo 6490 27,477 10 10x [30]
QS_Trachea 1350 23,341 4 Smart-seq?2 [27]

4.2. Data Pre-Processing

The scRNA-seq gene expression matrix X is used as the input for our model, where
Xijj represents the expression count of the jth gene (1 <j < O) in the ith cell (1 <i <N).
To ensure the quality and reliability of the data, we employ the following pre-processing
methods to pre-process the raw scRNA-seq gene expression matrix. First, quality control
and data filtering constitute the initial step of our pre-processing. Taking reference from
scGNN [31], we filter out genes that are expressed in more than 1% of cells but are non-zero
and genes that are not expressed. Next, as the count matrix data are discrete and subject to
large-scale factor variations, we normalize them, followed by rescaling the discrete data
using a natural logarithm transformation. The normalization is defined as follows:

N(X;) = In <m(X) Xy ) (1)
K Zo Xio ’

where m(X) represents the median of the total expression values of the cells. Lastly, we

select the top 500 highly variable genes based on the normalized discrete values calculated

by the scanpy package [32]. This approach is intended to highlight key variations within

the data, thus improving the accuracy and interpretability of further analysis.

4.3. Cell Graph

Similar to previous work [13], we use the KNN (K nearest neighbors) algorithm to
construct a cell graph from the pre-processed data, where each node in the graph represents
a cell. For each cell, we find its K nearest neighbors and connect them. Thus, each cell is
connected to its K closest cells, forming a graph. In our experiments, we set the value of K
to 15. We use the Euclidean distance to describe the correlation between nodes in order to
identify the k shortest distances. Subsequently, the cell graph we construct is undirected,
with all edges weighted equally at 1.

4.4. Graph Contrastive Learning Framework

The graph contrastive learning framework we employ follows the common graph
contrastive learning paradigm, where the model aims to maximize the consistency of
representations across different views. Specifically, we begin by generating two graph
views through random graph augmentations applied to the input data. We then utilize
a contrastive objective that ensures that the encoded embeddings of each node within
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the two different views remain consistent with each other and distinguishable from the
embeddings of other nodes.

In each iteration of scZAG, we employ two random augmentation functions, x ~ I
and x' ~ T, where I represents the set of all p0551ble augmentatlon functions. We

then obtain two augmented graphs, ?1 = x( ) and ?2 = x'(%), with node embeddings
u= f (Ml, Al) and V= f (Mz,Az) where M- represents the feature matrix of the view

and A represents the adjacency matrix of the view. A discriminator (contrastive objective)
is then employed to distinguish between embeddings of the same node in these two views
and embeddings of other nodes. For any node, its embedding u; in one view is the anchor,
and its embedding v; in the other view is the “positive sample.” All other embeddings
in the two views are treated as negative samples, representing nodes different from the
anchor. To facilitate meaningful feature representations, we utilize the InfoNCE multi-view
contrastive loss function, defining the pairwise objective for each positive pair as follows:

e@(u;,‘(),‘)/T

0(u; )/ T 0(u;, o)/ T 0(u;0;) /T’
Y Yl Te T
positive pair

¢ (u;,v;) = log 2)

intra-view negative pairs  inter-view negative pairs

where T is a temperature parameter. We define the critic function 6(u;, v;) = s(g(u), g(v)),
where s(-, -) represents a predetermined similarity function, and g(-) is a non-linear pro-
jection function, which aims to enhance the expressive power of the critic function. The
projection function g is implemented through a two-layer perceptron model. Through this
design, the model is able to learn a powerful critic function that can accurately evaluate the
similarity of node embeddings in different views, thereby contributing to the achievement
of the contrastive learning objective.

For each pair of positive samples, negative samples are defined from both inter-view
and intra-view nodes, corresponding to the first and second terms of Equation (2). As the
two views are symmetrical, the loss from the alternate view is similarly denoted as #(v;, u;).
The overall objective to maximize, representing the average of all positive sample pairs, is

defined as follows: .
N
j - Wzi:l [f(uil vi) + ?/ﬂ(vi/ ui)}/ (3)

In summary, each training round involves applymg two random data augmentatlon

functions, x and x’, to generate augmented graphs, ‘51 = x( ) and Zz = x'(%). Node fea-
tures within these augmented graphs are learned using a graph convolutional autoencoder
based on personalized PageRank propagation, resulting in node embeddings U and V.
The model optimizes the objective function in Equation (3) during training, adjusting its
parameters to maximize this function and learn node embeddings that effectively capture
relationships between nodes.

4.5. Adaptive Graph Augmentation

In our scZAG model, we employ an adaptive augmentation approach [20] that pre-
serves important structures and attributes while perturbing less significant edges and
nodes. This means that when we randomly delete edges and mask node features, the
probability of deletion varies according to the importance of each edge and node. Edges or
features with lower importance are more likely to be removed or masked; conversely, those
with higher importance have a lower probability of being disrupted. Overall, we emphasize
the preservation of important structures and attributes rather than random destruction of
the view. This method better guides the model to retain fundamental topological structures
and semantic graph patterns.
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4.5.1. Topology-Level Augmentation
For the topology-level augmentation, we randomly drop edges from the graph with a

bias towards the importance of the edges. Formally, we sample a modified subset A from
the original adjacency matrix A with the following probability:

P{(u,v) EZ} =1-1pl,, 4)

where A represents the set of edges in the generated view. The importance of edge
(u,v) denoted by pf, allows the augmentation function to more likely disrupt edges
of lesser importance, ensuring that the generated view maintains critical connectivity
structures. Node centrality is employed to assess the prominence of nodes, and we define
edge centrality wf, based on the centrality of the connecting nodes (u,v). Specifically,
Wy = (pc(u) + ¢c(v))/2, where @c(+) : V — R™ is a node centrality measure.

To assess the likelihood of edge removal based on centrality, we introduce
sy, = log wY,, accounting for varying centrality magnitudes. Subsequently, we normalize
centrality values to transform them into probabilities, defined as follows:

e : Sremzx — Sftv

Pio = min{ —=——2"pe, P |, ®)
Simax — Hs

where p. is a hyperparameter that governs the overall likelihood of edge deletion, u; and

S5..¢ Tepresent the mean and maximum values of s}, respectively. The term pr < lisa

cutoff probability that truncates the probability to prevent an excessively high chance of

deletion, which would lead to an overly disrupted graph structure.

We define PageRank centrality as the node centrality function. PageRank centrality
is determined by the PageRank weights derived from the PageRank algorithm, which
disseminates influence across directed edges, and nodes that accumulate the greatest
influence are considered important. Formally, the centrality values are computed as follows:

c=aAD 1o +1, (6)

where o € RV is the vector of PageRank centrality scores for each node. ais a damping
factor that mitigates the absorption of ranks by sink nodes in the graph. Following the
recommendation of Lawrence et al. [33], we set the damping factor a to 0.85. Since our cell
graph is undirected, we transform it into a directed graph before applying the PageRank
algorithm, where each undirected edge is replaced by two directed edges.

4.5.2. Node-Attribute-Level Augmentation

At the node attribute level, we introduce noise to node attributes by randomly masking
portions of dimensions in node features with zeros. Formally, we first adopt a random

vector m € {O, 1}F , where each dimension is independently drawn from a Bernoulli

f

distribution, i.e., n?i ~ Bern(l - P ), Vi. The resulting node feature matrix X is:

X:[xloﬁ;xzom;---;xNoW]T, (7)

where [; -] denotes the concatenation operation, and o is the element-wise multiplication.

f

Similar to topological enhancement, the probability p; reflects the importance of that node
feature in the ith dimension. We assume that feature dimensions that appear in nodes with
greater influence are important and define the weight of feature dimensions as follows. For
sparse one-hot node features, we compute the dimension weight of i as follows:

wl =Y % ge(u), (8)
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where x,; € {0,1} indicates the presence of feature dimension i in node u, and ¢.(u)
measures the importance of node u. For dense node features of a node u, we take the
absolute value |x,;| to assess the feature weight in dimension i:

w = Yyl - pe(u) 9)

Similar to topological enhancement, we then normalize these weights to obtain the
importance probabilities for the feature in a given dimension:

f S£1ax - 5{
pz = mln f f pf/p’l' 7 (10)

Smax — Hs

where sf = log wf Finally, combining topolog1ca1 enhancement and node attribute

enhancement, we generate two augmented views, ?1 and ?2

4.6. Graph Convolution Based on Personalized PageRank Propagation

To better capture the global structural information in graphs while maintaining com-
putational efficiency, we utilize an autoencoder based on approximate personalized propa-
gation of neural predictions using graph convolution (APPNPGCN) [34]. The core idea
is to propagate neural predictions through an approximation of personalized PageRank,
which is guided by the graph’s edge structure. This helps generate node embeddings
that reflect a node’s global position and its neighborhood information within the graph.
Using this approach enhances the model’s ability to learn from scRNA-seq data. In the
case of standard GCNs, when multiple layers are involved, the mean aggregation approach
can lead to over-smoothing issues. Thus, standard GCNs lose the capability to capture
local structures. Resorting to larger neighborhoods would inevitably increase the neural
network’s depth and the number of learnable parameters.

To overcome the loss of local structure capture, we draw on the connection between
the limiting distribution and PageRank. Using a personalized PageRank variant with a

root node x, the equation 7yp,(ix) = (1 — &) Amyp,(ix) + i computes the distribution
of personalized PageRank values starting from the root node x. « is a damping factor
determining the likelihood of returning to the root node x for random walk restarts, and

A is the normalized adjacency matrix describing node connectivity. Solving this equation
iteratively yields personalized PageRank values, 7, (ix ), for each node i based on the root
node x. By solving this equation, we can obtain the following:

7T]ypr(ix> = “(In - (1 - “)A) 1ix (11)

The indicator vector iy allows us to preserve the local neighborhood of nodes even
within the limiting distribution.

We begin with initial predictions based on each node’s unique features and enhance
them using personalized PageRank, defining the core concept of neural predictive per-
sonalized propagation (APPNP). APPNP employs a power iteration method for efficient
topic-sensitive PageRank approximation with linear computational complexity. Unlike
traditional PageRank, each power iteration step corresponds to random walks with restarts,
improving prediction accuracy. The computation for each power iteration step in the
topic-sensitive PageRank variant follows the formulae below:

29 = H = fo(X), (12)
ZEHD — (1 —a)AZW 4 aH, (13)

z(K) = softmax((l —a)AzK-D 4 aH), (14)
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where X denotes the feature matrix, fp is a neural network with parameter theta that
generates predictive results H. The prediction matrix H serves as both the starting vector
and the propagation set, with K being the number of iterations, where k € [0, K — 2]. During
the process of generating predictions and continuously propagating these predictions,
the model undergoes end-to-end training. This means that during back propagation,
gradients flow through the propagation scheme (implicitly involving an infinite number of
neighborhood aggregation layers). Incorporating these propagation effects can significantly
enhance the model’s accuracy.

4.7. ZINB-Based Graph Convolutional Autoencoder

To address the issues of excessive zeros and over-dispersion in scRNA-seq data,
we incorporate a zero-inflated negative binomial distribution into a graph convolutional
autoencoder based on personalized PageRank propagation to learn low-dimensional em-
beddings of gene expression. The reconstruction of scRNA-seq data using the ZINB-based
graph convolutional autoencoder is defined as follows:

I (s

ZINB(X| 7, 1t,0) = 75(X) + (1 — m)NB(X), (16)

where 0 and y denote the dispersion and mean parameters, respectively, while 7t represents
the zero-inflation probability, which is the likelihood of an observation being zero. To
estimate the three critical parameters of the ZINB distribution, y, 6, and 77, we employ three
distinct fully connected layers within our computational framework.

7T = sigmoid(Wr fp(Z)), (17)
u=exp(Wufp(Z)), (18)
0 = exp(Wofp(2)), (19)

where fp is a fully connected neural network comprising three hidden layers with 128, 256,
and 512 nodes, respectively. Wy, W,,, and Wy represent three weight matrices corresponding
to the parameters of our model. 7, 1, and 6 denote the zero-inflation probability, the mean
of the negative binomial distribution, and the dispersion parameter, respectively. We
utilize the negative log-likelihood of the ZINB distribution as the reconstruction loss for
the original data X:

Lzing = —log(ZINB(X|m, 1, 6)) (20)

4.8. Self-Optimizing Deep Graph-Embedded Clustering

Self-optimizing deep embedding clustering integrates graph embedding with deep
clustering, aiming to optimize clustering performance by learning non-linear embeddings
within the graph structure. Traditional clustering algorithms are unsupervised and label-
free, lacking optimization feedback during training. Therefore, we employ self-optimizing
deep embedding clustering, which receives optimization feedback throughout the training
process, yielding more efficient and accurate results when clustering graph-structured
data. We utilize the KL divergence to measure the discrepancy between two probability
distributions, P and Q. Here, P represents the true distribution, while Q represents the
model distribution or an approximation. We define the clustering loss as follows:

Le=KL(P|Q) =Y.} piuzch#, (21)
i u m
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where g;,, is the soft label for the embedded node z;. g;, measures the similarity between z;
and the cluster center u using a Student’s t-distribution and is defined as follows:

(14l — pal?)

(1 - wel?)

Jiv = (22)

Initial clusters {u} are generated via spectral clustering after pre-training our model.
piu is the auxiliary target distribution, refined to the following:

qizu/zi Giu
¥ (a5 /i qir)

This approach allows the model to iteratively improve the cluster assignments through
feedback mechanisms inherently built into the training process.

Piu = (23)
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