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61-614 Poznań, Poland; lumro@amu.edu.pl

* Correspondence: beatakoz@amu.edu.pl

Abstract: Alkaloids are natural compounds useful as scaffolds for discovering new bioactive
molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted in-
dole derivatives, which were either functionalized at N1 or not. The compounds were characterized
by spectroscopic methods. The protective effects of the new compounds against in vitro oxidative
hemolysis induced by standard oxidant 2,2′-azobis(2-amidinopropane dihydro chloride (AAPH) on
human erythrocytes as a cell model were investigated. Additionally, the compounds were screened
for antimicrobial activity. The results indicated that most of the indole derivatives devoid of the N1
substitution exhibited strong cytoprotective properties. The docking studies supported the affinities
of selected indole-based ligands as potential antioxidants. Furthermore, the derivatives obtained ex-
hibited potent fungicidal properties. The structures of the eight derivatives possessing indole moiety
bridged to the imidazole-, benzimidazole-, thiazole-, benzothiazole-, and 5-methylbenzothiazoline-
2-thiones were determined by X-ray diffraction. The C=S bond lengths in the thioamide fragment
pointed to the involvement of zwitterionic structures of varying contribution. The predominance of
zwitterionic mesomers may explain the lack of cytoprotective properties, while steric effects, which
limit multiple the hydrogen-bond acceptor properties of a thione sulfur, seem to be responsible for
the high hemolytic activity.

Keywords: gramine; indole derivatives; thione derivatives; anti-oxidant properties; oxidative
hemolysis; docking study; crystal structures

1. Introduction

Alkaloids are a large group of naturally occurring compounds used as precursors for
synthesizing new drugs [1–4]. Among them, the indole alkaloids, such as vinca alkaloids
(vincristine and vinblastine), reserpine, or ergot alkaloids, are of significant pharmacologi-
cal interest [5–10]. Another indole alkaloid that has been constantly receiving increasing
attention in sustainable chemistry is gramine. This earth-abundant natural compound is
used as a pharmaceutical lead scaffold for synthesizing indole-based compounds with
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different biological activities [11–16]. The dimethylamine group at the C3 position of the in-
dole ring in gramine can undergo substitution reactions [17,18]. Therefore, functionalizing
this position is convenient for obtaining more intricate structures or starting materials for
further functionalization and reactions. Many C3-substituted indole analogs are effective
as anticancer, antitubercular, antimicrobial, and antioxidant agents [5,9,19,20]. Another
modification in the structure of gramine involves substituting the nitrogen atom in the
indole group. N-substituted indole derivatives have shown anti-inflammatory, antimi-
crobial, antipsychotic, antifungal, and antioxidant effects [14,21–24]. Indole derivatives
with tertiary amino and phenyl groups at the N1 nitrogen atom exhibit significant activity
against the Staphylococcus aureus pathogen [24].

We synthesized two groups of new indole-based derivatives based on the literature
data (Figure 1) to evaluate their selected biological activity. One group of molecules
consisted of indole derivatives, featuring substituents at both the C3 and N1 positions.
Another group of gramine derivatives contained indole moieties attached by a methylene
linker at the C3 position to azoles or benzazoles.
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Azole-based compounds are essential building blocks in many pharmaceutical agents,
and they have various effects, including antimicrobial properties [25–29]. Their activities are
explained by the existence of a tautomeric equilibrium. Tautomers differ in their molecular
shapes and proton donor–acceptor properties; therefore, depending on the tautomeric form,
they can be involved in different molecular interactions between themselves or with other
targets. In the investigated series that comprise the azole-2-thione moieties, the molecules
can theoretically exist in two tautomeric forms, viz., thione and thiol. The thione form
provides the only ‘classical’ hydrogen bond acceptor site, the other possibility being the
engagement as a hydrogen bond acceptor site of π-electron systems or solvation.

In the studies of membrane-active compounds for any biomedical application, hu-
man red blood cells (RBCs) are commonly used as a cell model [30–32]. Due to their
availability and lack of organelles, they are used to evaluate the cytotoxicity of newly
synthesized compounds.

RBCs are an excellent model cell for antioxidant studies due to their membrane, which
has a high polyunsaturated fatty acid content. Furthermore, RBCs with hemoglobin con-
taining heme iron are continuously exposed to oxidation during oxygen transport [33,34].
ROS (reactive oxygen species) are both radical (superoxide O2

•−, hydroxyl OH•, peroxyl
RO2

•, hydroperoxyl HO2
•) and nonradical (hydrogen peroxide H2O2, hypochlorous acid

HOCl, and ozone O3) forms of oxygen. They are formed through enzymatic and non-
enzymatic processes, and they can be acquired from external sources, such as food, UV
radiation, or environmental pollution [35]. Although ROS play a significant role in signal
transduction [36], excess can lead to an oxidative stress that causes cancer, diabetes, and
neurodegenerative diseases [37,38].
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Exposure of RBCs to oxidative stress can consequently result in changes in the molec-
ular structure of their cell membrane, thus leading to hemolysis. Therefore, one of the
main criteria limiting the in vitro use of new bioactive compounds is the evaluation of their
hemocompatibility. Compounds considered hemocompatible [32] are not toxic to all cells.

Cells have developed a series of antioxidant defense systems to scavenge or minimize
the formation of oxygen-derived radicals, thereby protecting themselves from oxidative
damage. These antioxidant systems include dietary antioxidants and endogenous enzy-
matic and non-enzymatic constituents. Enzymatic antioxidants, which act as catalysts, are
responsible for removing ROS from biological systems. Superoxide dismutase catalyzes
the conversion of O2

•− to H2O2, while H2O2 can be reduced to water by catalase or glu-
tathione peroxidase through two distinct mechanisms. Hydroxyl radicals are generated in
the Fenton reaction from hydrogen peroxide in the presence of Fe (II) or Cu (I), and they
are neutralized by glutathione peroxidase [38,39]. The most common dietary antioxidants
include vitamins A, C, and E, as well as flavonoids and alkaloids [40,41].

This study aimed to utilize alkaloid gramine in the synthesis of two new groups of
indole derivatives with altering substituents at C3 and N1, determine their structures and
spectroscopic characteristics, and in vitro evaluate their hemocompatibility and cytoprotec-
tive activity under oxidative stress conditions. In addition, an in silico docking study was
conducted to estimate the affinity of the obtained compounds for three protein domains:
myeloperoxidase (MPO), xanthine dehydrogenase, and cyclooxygenase-2 (COX-2). These
enzymes are involved in generating ROS and contributing to oxidative stress [42–47]. Since
gramine and its derivatives have demonstrated the potential to inhibit the growth of certain
bacterial and fungal species [12], the compounds obtained were also preliminarily screened
for in vitro antimicrobial activity.

2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization of New Indole Derivatives

Gramine (1), a commercial indole alkaloid, was used as the substrate for the synthetic
routes, as shown in Figure 2.

Compounds 2–13 were synthesized by heating gramine with the corresponding sub-
strate in ethanol. Derivatives 2–9 were synthesized in an alkaline medium, which was
achieved by adding NaOH to the substrate in ethanol before adding gramine and heating.
Dimers 3 and 7 crystallized first, and, after adding water to the filtrate, Monomers 2 and
6 appeared as solids, which were then filtered. In the reaction with 1,2-dihydro-1,2,4-
triazole-3-thione (i.e., a synthesis of 12 and 13), column chromatography was necessary to
separate the dimer and monomer forms. Heating gramine in acetic anhydride produced
N-acetyl-3-acetoxymethylindole (14), which can be converted to Compound 15. Com-
pound 14 was reacted with anhydrous ethyl alcohol in an alkaline medium to produce
3-ethoxymethylindole (16). The resulting ether derivative (16) was then treated with ben-
zoic acid to yield Compound 17. Compounds 18–27 were obtained by reaction of Derivative
16 with a series of bromoesters. Derivative 29 was synthesized through a two-step process
involving the hydrolysis of N-acetyl-3-acetoxymethylindole (14), which was followed by a
reaction with 2,5-dihydroxybenzoic acid.

A crucial structural feature of azoles and benzazoles is the existence of tautomeric
forms. Figure 3 shows the following: (A) two tautomeric forms of imidazole-2-thiones
(thione and thiol) and (B) their mesomeric effect. According to the literature data, the
thione form is predominant in polar solvents and the solid state [16,48–55].
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The NMR spectra analysis confirmed the presence of the thione forms of the newly
obtained gramine derivatives (2, 4, 6, 12, and 13) in the DMSO-d6 solution.

The newly synthesized compounds (2–13, 15, 17–27, and 29) exhibited characteristic
signals for the aromatic indole system in the 8.50–6.20 ppm range, as observed in their
1H NMR spectra. Additionally, the signals from the azole rings and phenyl (17, 24–27,
and 29) substituents were visible in the aromatic region (7.00–8.50 ppm). The singlets
at 11–14 ppm were assigned to the NH protons of the gramine moiety (2–13) and the
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imidazole-, benzimidazole-2-thione or triazole-3-thione rings (4, 6, 12). The protons of
the –C(10)H2– groups of all the new compounds showed singlets in the range of about
4.65–5.80 ppm. The singlets from the -CH3 group present at the nitrogen atoms in 5 and 8
were at 3.48 and 3.75 ppm, respectively. The singlet from the methyl group at position C5
in 11 was at 2.33 ppm. A singlet near 2.60 ppm was observed for three protons from the
acetyl group (15, 29).

The 13C NMR spectra of the new compounds showed signals from the carbon atoms
of the indole rings at 109–162 ppm. Compounds 17, 24–27, and 29 also exhibited signals
in the 109–158 ppm range, which originated from the phenyl substituents. Additionally,
the spectra of Compounds 17–27 displayed signals from the carbonyl carbon atoms at
about 166–171 ppm. The acetyl group signal for Compounds 15 and 29 was observed at
approximately 168 ppm. The thione group signal was located at approximately 160 ppm
(4–8, 12, and 13) or 180–195 ppm (2, 3, and 9–11). Additionally, the signals from the
azole (4, 5, 10, 12, and 13) and benzazole (6–8 and 11) rings were present in the range
of 111–152 ppm. The signals corresponding to the carbon atoms at the C10 position of
all compounds occurred in the 33–69 ppm region. The carbon signal from the methyl
group was connected to the nitrogen atom in 5 and 8, and was approximately 33 ppm,
while the signal from the methyl group in Position C5 in 11 was at 20.92 ppm. The
carbon signal from the -CH3 in the acetyl group (15 and 29) was present at 24.23 ppm and
29.92 ppm, respectively.

The structures of all the new indole derivatives were also confirmed by EI-MS and IR
spectroscopy, as well as elemental analysis.

The FT-IR spectra of all the compounds in the KBr tablets exhibited characteristic
absorption bands of 3050–2800 cm−1, which corresponded to the C-H bonds of the aromatic
rings. Furthermore, in the spectra of Compounds 2–13, a wide band at 3500–3200 cm−1 was
present, thereby corresponding to the stretching vibrations of N-H in the indole ring. The
carbonyl group exhibited an intense stretching vibration peak at approximately 1700 cm−1

(15, 17–27, and 29). Stretching vibrations of C=S were observed from 1000 cm−1 to
1300 cm−1. The FT-IR spectrum of Compound 29 showed a broad absorption band with a
maximum of 3215 cm−1, thereby indicating the O-H bond vibrations of the hydroxyl groups.

The EI-MS spectra of all the newly synthesized compounds showed signals correspond-
ing to molecular ions, with relative abundances ranging from 2 to 100%. For derivatives
2–13 and 15, ions with an intensity of 100% were identified at m/z = 130 (C9H8N)+.

The NMR (1H and 13C), EI-MS, and FT-IR spectra of the investigated compounds are
provided in the Supplementary Materials (Figures S1–S25).

2.2. X-ray Analysis

We investigated, by X-ray diffraction, a series of eight compounds (2, 4–5, and 7–11),
in which indole moiety was bridged by the –CH2– group to the five-membered heterocyclic
fragments containing altered imidazole-, benzimidazole-, thiazole-, benzothiazole-, and
5-methylbenzothiazoline-2-thiones (Figure 2). The structures of the molecules, as seen in
the crystals, are presented in Figure 4. The hydrogen bond geometrical parameters with
intramolecular interactions are presented in Table S1. The crystal data, together with the
experimental and refinement details, are shown in Table S2.

The molecules in all of the investigated crystals appeared in a thione form. The
C=S bonds in the thioamide fragment in Compounds 2, 4, 5, 7, and 8 measured at room
temperature varied from 1.679(3) to 1.697(2) Å, with the mean value of 1.685(7) Å. The value
was between that which is typical for single and double bonds. This was rationalized in
terms of a substantial involvement of zwitterionic structures, as presented in Figure 3B [55].
In particular, the thione tautomer in 4 had a more significant contribution of the zwitterionic
forms that involve single C+-S− covalent bonds than any other structure. The main skeleton
can be described as consisting of two methylene-bridged subunits, each containing aromatic
rings, which are inclined with respect to each other at angles varying from 66.6 to 87.9◦.
One of the fragments was always a C3-substituted planar indole moiety, while the others
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were N-substituted 2-thione derivatives of imidazole (2, 4, and 5), benzimidazole (7 and
8), thiazole (9 and 10), and 5-methylbenzoxazole (11). A description of the molecular
conformation was provided by a pair of torsion angles (φ1 and φ2) measured along the
C-C-C-N and C-C-N-C methylene bonds, which are listed in Table 1.
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structures 10 and 11, and the H-atoms are represented as sticks.

To enable an easier comparison, Table 1 also provides chemical diagrams and a capped
stick representation of the molecules, all of which were seen in the same orientation,
i.e., along the indole plane. This allowed us to combine the values of the torsion angles
with a particular molecular shape.
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Table 1. Torsion angles (◦) describing the rotation around the methylene C-C and C-N bonds in
the molecules present in crystals. Molecular diagrams and perspective views of the molecules are
provided to relate the metrical values to a particular molecular shape.

φ1 φ2

2

−77.7(5) 89.6(5)
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Except for 10, the investigated molecules adopted similar, propeller-shaped conforma-
tion. The exceptional conformation of 10 could be due to the involvement of its thiocarbonyl
group as a quintuple hydrogen bond acceptor (Figure 5, Table S1). The ability of the sulfur
atom to simultaneously engage in a greater number of interactions than conventional
acceptors such as O and N was evidenced by Bogdanovic and colleagues [56].
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Moreover, a comparison of 10 with its benzothiazole analog [16] revealed that the latter
analog totally excluded the C=S group from its involvement in intermolecular interactions.
Although the alteration took place in the crystals, we were tempted to combine it with the
finding that the compound with the benzothiazole-2-thione moiety neither displayed a
cytoprotective or chelating ability, nor did it protect the RBCs from the oxidative stress-
induced hemolysis [16]. Meanwhile, its homolog, 10, with the thiazole-2-thione scaffold,
showed significant cytoprotective activity and was hemocompatible (vide infra).

Unlike the thiazole-2-thione derivatives, the imidazole-2-thiones were less prone to
the structural changes caused by chemical modifications. The isostructuralism of 5 and 9
(Table S2) indicated that the N-methyl group and sulfur atom are structural isosters, suppos-
edly because neither of these fragments are involved in hydrogen bonding. Molecules 2, 4,
and 7, which contained two N-H hydrogen-bond donor groups, formed three-dimensional
associates, either by taking advantage of the relatively easy approach of these groups
to the thione sulfur (2 and 4), or by including solvent molecules to overcome the steric
hindrance in an approach to the sulfur acceptor (7, Figure 6). The remaining derivatives
(5, 8, 9, and 11), having only one N-H donor group, associated into 1D chains or tapes
(Figure 7). A detailed description of the molecular conformation and intermolecular inter-
actions in the crystals of Compounds 2, 4–5, and 7–11 (Figures S26 and S27) is provided in
the Supplementary Materials.
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2.3. Biological Activity
2.3.1. Antibacterial and Fungicidal Activity

A preliminary screening of the in vitro antimicrobial activity of gramine and its deriva-
tives against pathogens microorganisms was studied using the well diffusion technique.
Analysis of the interactions of the selected bacterial species with the tested compounds
showed no antagonistic effects in most cases, except for Compounds 13 and 15. Com-
pound 13 exhibited antagonistic effects, as evidenced by the growth inhibition zones of M.
luteus (7.3 mm), B. subtilis (9.4 mm), and P. fluorescens (10.5 mm). Derivative 15 was the
most potent in inhibiting the growth of M. luteus and E. coli, thereby resulting in a zone of
inhibition of 11 and 7.7 mm, respectively (see Table S3).

An analysis of the effect of gramine and its derivatives on the development of the tested
mold species revealed that Compound 10 exhibited the strongest antagonistic reaction
toward B. cinerea, with a growth inhibition zone of 23 mm (Table 2). This fungal species
was also effectively inhibited by gramine and Compounds 3, 11–13, 21, 24, and 25, thus
resulting in growth inhibition zones ranging from 11 to 19 mm.

Table 2. Fungicidal activities of Compounds 1–29. Growth inhibition zones: <9 mm—low active
compounds; 10–15 mm—medium active compounds; and >15 mm—active compounds.

Compound

Zone of Growth Inhibition [mm]

Alternaria
alternata

Fusarium
culmorum

Trichoderma
harzianum

Trichoderma
atroviride

Botrytis
cinerea

Gramine (1) 10.0 3.5 0 13.0 11.2
2 2.3 2.8 8.0 2.5 3.5
3 9 1 4 11 16
4 2.0 3.5 7.5 1.5 4.3
5 13.0 4.5 7.0 4.0 4.5
6 2.3 7.8 13.0 22.0 3.3
7 4.8 5.5 2.8 13.5 2.3
8 2.3 4.0 9.0 12.0 5.0
9 2.0 2.5 3.7 3.0 4.0

10 9 2.1 8 5 23
11 9 1 3.5 0 17
12 10 1 8.4 6.6 19
13 18 13.2 4.5 7 16.5
17 1.3 3.8 5.0 20.0 4.0
18 0 3.0 7.5 10.0 3.8
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Table 2. Cont.

Compound

Zone of Growth Inhibition [mm]

Alternaria
alternata

Fusarium
culmorum

Trichoderma
harzianum

Trichoderma
atroviride

Botrytis
cinerea

19 8.0 4.5 6.5 11.5 3.5
20 0 5.0 8.0 10.5 3.5
21 10.0 1.5 0 3.0 18.0
22 3.5 4.5 8.5 11.0 4.5
23 1.5 3.8 9.5 10.0 4.5
24 7.0 1.5 2.0 0 11.0
25 6.0 2.0 0 8.0 15.0
26 2.8 5.0 20.0 20.0 4.0
27 0 4.0 9.0 2.0 3.8
29 8.5 3.8 6.0 15.0 5.3

Most of the analyzed compounds (1, 3, 6–8, 17–20, 22, 23, 26, and 29) significantly
inhibited the growth of T. atroviride. The most-effective compounds were 6, 17, and 26,
with growth inhibition zones of ≥20 mm. Derivatives 6 and 26 also had a clear impact on
the growth of Trichoderma fungi, thus causing growth inhibition zones of 13 and 20 mm in
T. harzianum, respectively. Compounds 5, 12, 13, and 21 significantly limited the growth
of A. alternata, with at least 10 mm inhibition zones. Compound 13 was also important in
inhibiting the growth of F. culmorum, thereby causing the formation of a 13.2 mm growth
inhibition zone.

2.3.2. Cytoprotective Activity against Free Radicals

The ability of all compounds to inhibit 2,2′-azobis(2-amidinopropane dihydro- chloride
(AAPH)-induced oxidative hemolysis was used to determine their cytoprotective activity.
AAPH was widely used as a standard free radical inducer. During a temperature-dependent
homolysis of AAPH, peroxyl and alkoxyl radicals were generated [57], thus leading to lipid
peroxydation in the cell membranes [58]. In an AAPH assay, Trolox (TX), a water-soluble
vitamin E, was used as a standard antioxidant [59].

As shown in Figure 8A, most derivatives containing azole, benzazole, or pyrrolidine
rings (2–13, 16), in a concentration of 0.1 mg/mL, exhibited cytoprotective activities against
oxidative stress in the range of 57.0% ± 3.20–94.7% ± 0.4. The most-effective derivatives
were 2, 5, and 15, with activity values of 92.7% ± 1.6, 92.2% ± 1.8, and 94.7% ± 0.4,
respectively. These values are comparable to the standard antioxidant Trolox (96.0% ± 1.5).
Compounds 2 and 5 were found to be hydrophilic, with logP values of 1.80 and 1.94,
respectively. They contained polar substituents in Position C3 of the indole ring, resulting in
a “polar head-non-polar tail” structure, which enhanced the stability of the RBC membrane
by interacting in the lipid bilayer of the cell membrane [14,60]. The high cytoprotective
activity also characterized Derivative 10 (84.9% ± 1.3), especially in comparison to its
benzothiazole analog [16].

Derivatives 2–3, 5, 7–8, and 10–11 had a substituent at the C3 position, which stabilized
the resulting indolyl radical. Additionally, these compounds had an unsubstituted nitrogen
atom N1, which further promoted the radical stabilization and enhanced their cytoprotec-
tive activity. However, Compound 15 showed high cytoprotective activity despite having a
substituted N1 nitrogen atom. This result was likely due to the pyrrolidinedithiocarbamate
moiety at the C3 position.

Only four compounds showed a cytoprotective activity lower than 20%: 4, 6, 9, and
12. It was suggested that Derivatives 4, 6, and 12, like 4-mercaptoimidazole [61], are
predominantly in the zwitterionic form at a physiological pH, with a thiolate group that
converts to a thiyl radical (RS•) in the presence of the free radicals generated by AAPH.
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be used to evaluate their antioxidant properties. Compounds 2–13 and 15, which contain 
heteroatoms with a lone electron pair (N and S), were investigated for their complexing 
activity. Figure 9 shows that most of the derivatives had ferrous chelating properties 
within the range of 1.4% ± 5.4 to 38.6% ± 3.2. However, only Compound 9 (98.5% ± 1.5) 
complexed Fe2+ ions more effectively than gramine, and it was found to be comparable to 
the standard chelator EDTA (99.7% ± 0.2). This derivative differed from all others because 
the electrons in its thiazoline-2-thione moiety were not involved in resonance, as in 2 and 
4, or in the aromatic system (as in Compound 10), thus allowing them to be used for 
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Figure 8. (A) Cytoprotective activity of Compounds 2–15 and the standard antioxidant Trolox at
a concentration of 0.1 mg/mL against the oxidative hemolysis induced by free radicals generated
from AAPH. The results (n = 9) are presented as the mean value ± standard deviation (*** p < 0.001,
** p < 0.01) in comparison with the standard antioxidant Trolox. The non statistically significant
difference (p > 0.05) is indicated as ns. Inactive compounds are indicated as n.a. (B) Cytoprotective
activity of Compounds 17–29 and the standard antioxidant Trolox at a concentration of 0.01 mg/mL
against the oxidative hemolysis induced by free radicals generated from AAPH. The results (n = 10)
are presented as the mean value ± standard deviation (*** p < 0.001) in comparison with the standard
antioxidant Trolox. The non statistically significant difference (p > 0.05) is indicated as ns.

Thiyl radicals can cause the excessive generation of oxidants in erythrocytes, thereby
leading to an imbalance in pro- and antioxidant levels. In addition, the thiyl radical
can interfere with the lipid bilayer of RBCs by a direct addition to the double bonds
in unsaturated fatty acids or by initiating the lipid peroxidation process by removing
hydrogen from lipids [62,63]. It is noteworthy that Derivative 9 showed low cytoprotective
activity (2.4% ± 5.3), which was attributed to the substituent in Position C3 of the indole
ring. The thiazole-2-thione moiety cannot form resonance structures, which results in a
lack of stabilization in the free radicals formed.

Since most of the derivatives in the second group (17–27 and 29) were hemolytic
at 0.1 mg/mL, antioxidant studies were performed at a 10-fold lower concentration of
0.01 mg/mL. The results are shown in Figure 8B.

Among all the derivatives, Derivative 27, with a phenylacetate substituent in the
N1 position, demonstrated the highest cytoprotective activity at 31.3% ± 12.9. The cy-
toprotective activity of the standard Trolox (Tx) was 52.1% ± 7.0. Compound 29 had an
acetyl group in the N1 position and a dihydroxybenzoic substituent in the C3 position.
Its cytoprotective activity value was surprisingly low at 11.5% ± 8.9, despite the high
antiradical activity exhibited by the derivatives of benzoic acid, particularly with respect to
its hydroxy derivatives [64,65].
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The HAT (Hydrogen Atom Transfer) mechanism is one of the primary antioxidant
mechanisms of indoles. The key to this mechanism is the hydrogen atom located on
the nitrogen atom of the pyrrole ring [66,67]. Derivatives 17–27 and 29, which have
substitutions at the N1 position, may have low cytoprotective activity due their prevention
of the formation of the indolyl radical.

2.3.3. Chelating Activity

The hydroxyl radical •OH is considered the most harmful free radical and is primarily
responsible for the cytotoxic effects on aerobic organisms. It is formed in the presence of
iron by the Haber–Weiss and Fenton reactions, where ferrous ions (Fe2+) are oxidized to
ferric ions (Fe3+). Therefore, the ability of compounds to chelate Fe2+ ions can be used to
evaluate their antioxidant properties. Compounds 2–13 and 15, which contain heteroatoms
with a lone electron pair (N and S), were investigated for their complexing activity. Figure 9
shows that most of the derivatives had ferrous chelating properties within the range of
1.4% ± 5.4 to 38.6% ± 3.2. However, only Compound 9 (98.5% ± 1.5) complexed Fe2+ ions
more effectively than gramine, and it was found to be comparable to the standard chelator
EDTA (99.7% ± 0.2). This derivative differed from all others because the electrons in its
thiazoline-2-thione moiety were not involved in resonance, as in 2 and 4, or in the aromatic
system (as in Compound 10), thus allowing them to be used for ferrous ion complexation.
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2.3.4. Hemolytic Properties

The hemolytic activity of all derivatives has been assessed in vitro using human RBCs
as a cell model. In general, a bioactive compound is considered hemolytic at a given
concentration if it causes hemolysis of 5% or more of RBCs in a given sample [14–16].
Bioactive compounds that do not induce hemolysis of more than 5% of exposed RBCs are
considered hemocompatible [68].

As shown in Figure 10A, the majority of derivatives with an azole or benzazole sub-
stituent at the C3 position of the indole ring are not hemolytic (hemolysis from 2.1% ± 0.1
to 4.8% ± 0.1). Compound 15, which contains a pyrrolidinedithiocarbamate moiety, is also
hemocompatible (2.1% ± 0.1). Compounds 3, 7, 8, and 13 demonstrated high hemolytic
activity, with values of 7.0% ± 0.9, 8.0% ± 1.3, 11.1% ± 2.0, and 21.8% ± 1.0, respectively.
The high hemolytic activity of these compounds may be attributed to steric reasons, par-
ticularly the presence of two indole moieties. The impact of having two indole groups
on the increase in hemolytic activity is evident when comparing the hemolytic activity
values for Compounds 2 (2.5% ± 0.1) versus 3 (7.0% ± 0.9), 6 (4.6% ± 0.4) versus 7
(8.0% ± 1.3), and—especially for triazole derivatives—12 (2.8% ± 0.1) and 13 (21.8% ± 1.0).
The hemolytic activity of Derivative 8, which contains an N-methylated benzimidazole
ring, increased from 4.6% ± 0.4 in the parent Molecule 6 to 11.1% ± 2.0. The increase in
hemolytic activity can be attributed to changes in the molecular conformation of Compound
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8 compared to Compound 6, which resulted in different interactions with the lipid bilayer
of the RBCs. No significant effects were observed when comparing the hemolytic activity
values of Derivative 11 with those of the parent molecule (non-methylated at C5) [16], as
well as the non-methylated Compound 4 with the N-methylated Compound 5. In both
cases, the hemolytic activity values were similar.
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Figure 10. (A) Hemolytic activity of Compounds 2–15 at a concentration of 0.1 mg/mL. Re-
sults (n = 9) are presented as the mean value ± standard deviation (* p < 0.05, ** p < 0.01, and
*** p < 0.001) in comparison with the standard buffer PBS. Non statistically significant difference
(p > 0.05) is indicated as ns. The green line indicates a hemolysis threshold of 5%. (B) Hemolytic
activity of Compounds 17–29 at a concentration of 0.1 mg/mL. Results (n = 9) are presented as the
mean value ± standard deviation. (* p < 0.05, ** p < 0.01, and *** p < 0.001) in comparison with the
standard buffer PBS. Non statistically significant difference (p > 0.05) is indicated as ns. The green
line indicates a hemolysis threshold of 5%.

The hemolytic activity of Compounds 18–27 (Figure 10B) was dependent on the
hydrophobicity of the ester substituents at the N1 position. It can be stated that the presence
of these substituents enables incorporation into the phospholipid bilayer of RBCs. Among
all the ester derivatives examined, Compounds 18, 20, 22, and 26 exhibited no hemolytic
activity (ranging from 1.4% ± 0.4 to 2.3% ± 0.7) and demonstrated hemocompatibility at
the tested concentration.

2.4. In Silico Study

Lipinski’s and Verber’s rules provide criteria for determining whether new derivatives
meet the requirements for a drug. According to Lipinski [69], a drug-like compound should
have a molecular mass (MW) of less than 500 g/mol, an octanol/water partition coefficient
(logP) of under 5, no more than 5 hydrogen bond donors (HBD), and 10 hydrogen bond
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acceptors (HBA). Veber’s rule [70] considers rotatable bonds (RTB) to be less than 10,
and a polar surface area (TPSA) should not be greater than 140Å2. In addition to the
drug-likeness parameters mentioned above, it is important to consider water solubility,
gastrointestinal absorption (GI absorption), and blood–brain barrier penetration (BBB
permeability). The physicochemical properties of the derivatives were evaluated using the
SwissADME website [70]. Table 3 shows that all the derivatives met Lipinski’s and Verber’s
rules and had high gastrointestinal absorption. Most could penetrate the blood–brain
barrier (except for Compounds 3, 10, 12, 15, and 29), which means they may act in the central
nervous system. All compounds, except Compound 7, were either soluble or moderately
soluble in water. The low solubility of Compound 7 was due to its high lipophilicity, as
indicated by its logP value of 4.78, the highest among all the compounds studied.

Table 3. The physicochemical, pharmacokinetic, and drug-likeness properties of the indole deriva-
tives. LogS in the table is the average value of the logS calculated using three different methods.
* Solubility class—logS scale: insoluble < −10, poorly < −6, moderately < −4, soluble < −2, and
very < 0.

Compound MW
[g/mol] logP HBD HBA RTB TPSA

[Å2]
GI

Absorption
BBB

Permeant LogS Solubility *

2 231.32 1.80 2 0 2 63.15 High Yes −3.01 Soluble
3 360.48 3.39 2 0 4 70.15 High No −5.32 Moderately
4 229.30 2.17 1 1 2 72.41 High Yes −3.63 Soluble
5 245.34 1.94 1 0 2 61.07 High Yes −3.32 Soluble
6 279.36 3.25 1 1 2 72.41 High Yes −5.08 Moderately
7 408.52 4.78 2 0 4 73.53 High Yes −6.91 Poorly
8 293.39 3.43 1 0 2 57.74 High Yes −4.58 Moderately
9 248.37 2.63 1 0 2 76.42 High Yes −3.77 Soluble

10 246.35 3.03 1 0 2 70.15 High No −3.99 Soluble
11 294.37 3.90 1 1 2 65.95 High Yes −5.34 Moderately
12 230.29 1.85 1 2 2 85.30 High No −5.47 Moderately
13 359.45 3.38 2 1 4 86.42 High Yes −2.90 Soluble
15 318.46 3.27 0 1 5 82.63 High No −5.47 Moderately
17 295.33 3.43 0 3 6 40.46 High Yes −4.74 Moderately
18 247.29 2.14 0 3 6 40.46 High Yes −3.01 Soluble
19 261.32 2.49 0 3 7 40.46 High Yes −3.35 Soluble
20 275.34 2.80 0 3 7 40.46 High Yes −3.62 Soluble
21 289.37 3.03 0 3 7 40.46 High Yes −3.87 Soluble
22 275.34 2.81 0 3 7 40.46 High Yes −3.61 Soluble
23 303.40 3.50 0 3 9 40.46 High Yes −4.36 Moderately
24 309.36 3.32 0 3 7 40.46 High Yes −4.73 Moderately
25 323.39 3.41 0 3 8 40.46 High Yes −4.82 Moderately
26 323.39 3.47 0 3 7 40.46 High Yes −4.83 Moderately
27 337.41 3.75 0 3 8 40.46 High Yes −5.17 Moderately
29 325.32 2.54 2 5 5 88.76 High No −4.25 Moderately

2.5. Molecular Docking

Compounds 2, 5, and 15 were selected for molecular docking due to their cytoprotec-
tive activity above 90%. These compounds were found to be non-hemolytic. The selection
of protein domains was guided by their specific biological functions within the physiologi-
cal system. The chosen proteins, Myeloperoxidase (MPO), Xanthine dehydrogenase, and
Cyclooxygenase-2 (COX-2), play crucial roles in cellular processes, and targeting them can
have significant implications for modulating oxidative stress. These proteins can generate
reactive oxygen spices (ROS) as part of the body’s defense mechanism against pathogens,
or as a by-product of their enzymatic activity. Inhibition of their activity may reduce the
generation of ROS associated with their function, thereby reducing oxidative stress [42–47].

The molecular docking data revealed that the newly acquired indole-based derivatives
indeed exhibited affinity for the investigated protein domains. In Table 4, their affinity to
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the 1DNU protein domain is notably comparable to the reference ligand, melatonin. The
ProteinsPlus algorithms, namely PoseView [71,72] and PoseEdit [71,73], were unable to
produce 2D maps of the interactions. The following error was raised: “No interactions
found by the PoseView interaction model”. This indicated that Compounds 15 did not
have 2D depictions of the interactions between the protein domain and them. This raised
the issue of whether it can be connected with the different settings and then used in UCSF
Chimera 1.16 software [74]. Moving on to the 1N5X protein domain, the affinity of the
indole-based derivatives was similar to the reference ligand, febuxostat. However, their
affinity remained quite similar, indicating comparable binding tendencies. Similarly, for
the 4COX protein domain, the affinity of the indole-based derivatives was slightly lower
than that of the native ligand, indomethacin. Nevertheless, this disparity still suggests
promising opportunities for its binding to the protein domain.

Table 4. The results of molecular docking to the 1DNU, 1N5X, and 4COX protein domains of all the
compounds analyzed. Melatonin, febuxostat, and indomethacin were used as reference molecules.

PDB ID Compound Average Binding Energy
[kcal/mol]

Standard Deviation
of Binding Energy

[kcal/mol]

1DNU

Melatonin −5.3 0.15
2 −5.4 0.21
5 −5.5 0.25
15 −5.2 0.15

1N5X

Febuxostat −7.0 0.32
2 −7.9 0.41
5 −7.8 0.61
15 −7.5 0.45

4COX

Indomethacin −8.0 0.82
2 −7.4 0.39
5 −7.3 0.61
15 −7.2 0.15

Figures 11–14 provide visual representations of the interactions between the indole-
based derivatives and the 1DNU protein domain (PDB ID). Correspondingly, Figures S28–S31
(Supplementary part) depict the interactions between indole-based derivatives and the
1N5X protein domain (PDB ID). It is noteworthy that the recreation of the native ligand’s
initial pose in the latter case has an acceptable accuracy, with a Root Mean Square Devi-
ation (RMSD) of 2.635 Å [75]. Figures S32–S35 (Supplementary Materials), illustrate the
interactions between indole-based derivatives and the 4COX protein domain (PDB ID). In
this case, the recreation of the native ligand’s initial pose exhibits good accuracy, with an
RMSD of 0.953 Å, which is considered satisfactory in the recreation of the initial pose [75].
These visualizations provide insights into the intricate molecular interactions underlying
the binding of indole-based derivatives to the respective protein domains, thus reinforcing
their potential as candidates for further exploration and development. All the molecular
docking results are stored in Table 4.
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dashed line suggests a potential hydrogen bond formation between the GLY 207 C residue and the 
pyrrolic hydrogen atom of the ligand, with a length of 2.29 Å. (b) A detailed view of the interactions 
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Figure 11. (a) The interactions between Derivative 2 and the 1DNU protein domain. The dark green
dashed line suggests a potential hydrogen bond formation between the GLY 207 C residue and one
of the hydrogen atoms bonded to the pyrrolic nitrogen atom of the ligand, with a length of 2.59 Å.
(b) A detailed view of the interactions proposed by the molecular docking between the 1DNU protein
domain’s binding site and Derivative 2. One hydrogen bond was expected (blue dashed line), and
the hydrophobic contacts are indicated by the green solid lines.
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5. One hydrogen bond was expected (blue dashed line), and the hydrophobic contacts are indicated
by the green solid lines.
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Figure 14. The binding site of the 1DNU protein domain features the reference ligand (melatonin),
the native ligand (NAG620), and the investigated Compounds 2, 5, and 15 simultaneously.

The conducted studies indicate that the analyzed indole-based ligands exhibited
affinity profiles comparable to the reference ligands (melatonin for 1DNU and febuxostat
for 1N5X), thus suggesting a similar strength of binding to these domains. However, a
notable distinction emerged concerning the 4COX protein domain. In this particular case,
all of the ligands exhibited lower binding energies than the reference ligand (indomethacin),
thus implying a lower affinity to this protein domain. Consequently, these ligands may
potentially demonstrate inferior antioxidant properties compared to the reference ligand in
the context of the 4COX domain.

3. Materials and Methods
3.1. Instrumentation and Chemicals

The synthesis reagents and solvents used in this study were commercially available.
The IR spectra were obtained using FT/IR Nicolet iS5 (Thermo Scientific, Walthmam, MA,
USA) (KBr pellet, cm−1). The 1H and 13C NMR spectra were obtained using Varian (Palo,
Alto, CA, USA) VNMR-S 400 MHz (DMSO-d6 as the solvent and TMS as the internal stan-
dard). The melting points were measured using the SMP-20 apparatus (Büchi Labortechnik
AG, Flawil, Switzerland). The EI mass spectra were obtained using the 320MS/450GC
mass spectrometer (Bruker, Billerica, MA, USA). The nitrogen, carbon, hydrogen, and
sulfur percentage content was determined through elemental analysis using the Elemental
Analyzer Vario EL III apparatus (Shimadzu, Kyoto, Japan). TLC analysis was conducted
using silica gel 60 plates with a fluorescent indicator (254 nm) and was then visualized
under UV light (Sigma-Aldrich, Poznan, Poland).

3.2. Synthesis of Gramine Derivatives

A typical procedure for the synthesis of Compounds 2–9
We used 2 mmol of the appropriate azole or benzazole (1,5-Dihydro-2H-imidazole-

2-thione for 2 and 3; imidazole-2-thione for 4; 1-methyl-1H-imidazole-2-thione for 5; 1,2-
dihydro-2H-1,3-benzimidazole-2-thione for 6 and 7; 3-methyl-1H-benzimidazole -2-thione
for 8; and 1,3-thiazolidine-2-thione for 9. These were then diluted in 10 mL of EtOH and
cooled to 0–5 ◦C. Then, a solution of NaOH (1.5 mmol) in 4 mL of H2O was added, and the
mixture was stirred for 1 hour. After that, a solution of gramine (1 mmol) in 4 mL of EtOH
was added, and the mixture was heated under reflux for 3–12 hours. The products obtained
were filtered under a reduced pressure and washed with distilled water. Compounds 4, 5,
and 9 were recrystallized from H2O (4) or toluene (5, 9).

1-((1H-indol-3-yl)methyl)imidazolidine-2-thione (2)
White sold (99 mg, 43%); m.p 144–147 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 11.02

(s, 1H), 8.06 (s, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.40–7.31 (m, 2H), 7.09 (ddd, J = 8.1, 6.9, 1.2 Hz,
1H), 6.98 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 4.84 (s, 2H), 3.39 (ddd, J = 9.2, 6.8, 2.2 Hz, 2H), and
3.37–3.27 (m, 2H); 13C NMR (101 MHz, DMSO-d6): δ 181.83, 136.36, 126.62, 124.99, 121.28,
119.21, 118.68, 111.47, 109.71, 47.00, 41.35, and 40.58; IR (KBr, cm−1) νmax: 3317, 3210, 2887,
1502, 1454, 1251, 1225, 1071, 753, 644, and 599; and EI-MS (m/z, % int.): 231 (34). Analysis
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was calculated for C12H13N3S (MW = 231.32) with the following: C, 62.31; H, 5.66; N, 18.17;
and S, 13.86; and found: C, 62.02; H, 5.67; N, 18.12; and S, 13.54.

1,3-bis((1H-indol-3-yl)methyl)imidazolidine-2-thione (3)
White solid (14 mg, 6%); m.p 157–160 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 11.00

(d, J = 2.5 Hz, 2H), 7.78 (d, J = 7.9 Hz, 2H), 7.34 (dd, J = 5.4, 2.9 Hz, 4H), 7.07 (ddd,
J = 8.1, 6.9, 1.2 Hz, 2H), 7.03–6.91 (m, 2H), 4.95 (s, 4H), and 3.22 (s, 4H); 13C NMR (101 MHz,
DMSO-d6): 180.49, 136.36, 126.59, 125.00, 121.24, 119.26, 118.69, 111.42, 109.65, 44.56, and
42.44; IR (KBr, cm−1) νmax: 3397, 3057, 2910, 2881, 1502, 1455, 1328, 1254, 1094, 753,
635, and 593; and EI-MS (m/z, % int.): 360 (2). Analysis was calculated for C21H20N4S
(MW = 360.48) with the following: C, 69.97; H, 5.59; N, 15.54; and S, 8.89; and found: C,
69.23; H, 5.55; N, 15.91; and S, 9.01.

1-((1H-indol-3-yl)methyl)-1,3-dihydro-2H-imidazole-2-thione (4)
Light brown crystals (124 mg, 54%); m.p 206–209 ◦C; 1H NMR (400 MHz, DMSO-d6):

δ 12.07 (s, 1H), 11.09 (d, J = 7.9 Hz, 1H), 7.79–7.71 (m, 1H), 7.50 (dd, J = 6.0, 2.5 Hz, 1H), 7.37
(dt, J = 8.1, 0.9 Hz, 1H), 7.08 (dtd, J = 7.7, 6.7, 1.2 Hz, 1H), 6.96 (dddd, J = 9.1, 8.0, 7.0, 1.1 Hz,
1H), 6.93–6.80 (m, 2H), and 5.26 (s, 2H); 13C NMR (101 MHz, DMSO-d6): δ 160.40, 136.19,
126.20, 125.45, 121.41, 118.99, 118.85, 117.80, 114.35, 111.52, 110.24, and 40.96; IR (KBr, cm−1)
νmax: 3221, 3116, 3029, 2916, 2713, 1551, 1470, 1263, 1138, 747, 616, and 576; and EI-MS (m/z,
% int.): 229 (10). Analysis was calculated for C12H11N3S (MW = 229.30) with the following:
C, 62.86; H, 4.84; N, 13.33; and S, 13.98; and found: C, 63,32; H, 5.12; N, 17.43; and S, 13.21.

1-((1H-indol-3-yl)methyl)-3-methyl-1,3-dihydro-2H-imidazole-2-thione (5)
White crystals (159 mg, 65%); m.p 166–168 ◦C; 1H NMR (400 MHz, DMSO-d6): δ

11.13–11.08 (m, 1H), 7.76–7.69 (m, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.37 (dt, J = 8.1, 0.9 Hz, 1H),
7.08 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 7.00–6.95 (m, 2H), 5.31–5.27
(m, 2H), and 3.48 (s, 3H); 13C NMR (101 MHz, DMSO-d6): δ 161.12, 136.17, 126.18, 125.59,
121.41, 118.91, 118.88, 118.39, 116.61, 111.54, 109.98, 42.09, and 34.38; IR (KBr, cm−1) νmax:
3427, 3212, 3162, 3132, 2914, 1554, 1459, 1223, 1139, 756, 664, and 599; and EI-MS (m/z, %
int.): 245 (8). Analysis was calculated for C13H15N3S (MW = 245.34) with the following: C,
63.64; H, 6.16; N, 17.13; and S, 13.07; and found: C, 64.30; H, 6.18; N, 17.32; and S, 13.25.

1-((1H-indol-3-yl)methyl)-1,3-dihydro-2H-benzo[d]imidazole-2-thione (6)
Beige crystals (142 mg, 51%); m.p 244–242 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 12.81

(s, 1H), 11.09 (d, J = 2.6 Hz, 1H), 7.95 (dd, J = 8.0, 1.1 Hz, 1H), 7.65 (d, J = 2.5 Hz, 1H),
7.46–7.37 (m, 1H), 7.33 (dt, J = 8.2, 1.0 Hz, 1H), 7.20–7.01 (m, 4H), 6.94 (ddd, J = 8.0, 7.0, 1.1
Hz, 1H), and 5.66 (s, 2H); 13C NMR (101 MHz, DMSO-d6): δ 168.10, 136.21, 132.26, 130.79,
126.11, 125.79, 122.74, 121.95, 121.36, 119.37, 118.77, 111.52, 110.31, 109.58, and 109.37; IR
(KBr, cm−1) νmax: 3374, 3183, 3056, 1623, 1556, 1456, 1370, 1130, 737, 615, and 593; and
EI-MS (m/z, % int.): 279 (39). Analysis was calculated for C16H13N3S (MW = 279.36) with
the following: C, 68.79; H, 4.69; N, 15.04; and S, 11.48; and found: C, 68.62; H, 4.32; N, 15.91;
and S, 10.57.

1,3-bis((1H-indol-3-yl)methyl)-1,3-dihydro-2H-benzo[d]imidazole-2-thione (7)
White crystals (53 mg, 13%); m.p 232–235 ◦C; 1H NMR (400 MHz, DMSO-d6): δ

11.10–11.05 (m, 2H), 7.98 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 2.5 Hz, 2H), 7.43 (dq, J = 7.0, 4.0 Hz,
2H), 7.30 (d, J = 8.2 Hz, 2H), 7.04 (ddd, J = 11.2, 7.0, 2.3 Hz, 4H), 6.92 (ddd, J = 8.0, 7.0, 1.0
Hz, 2H), and 5.80 (s, 4H); 13C NMR (101 MHz, DMSO-d6): δ 168.43, 136.24, 131.39, 126.02,
125.79, 122.36, 121.35, 119.51, 118.81, 111.46, 110.33, 109.38, and 40.66; IR (KBr, cm−1) νmax:
3569, 3409, 2972, 2931, 1647, 1556, 1409, 1370, 1046, 777, 622, and 582; and EI-MS (m/z, %
int.): 408 (4). Analysis was calculated for C25H20N4S (MW = 408.52) with the following: C,
73.50; H, 4.93; N, 13.71; and S, 7.85; and found: C, 73.90; H, 4.34; N, 13.55; and S, 7.64.

1-((1H-indol-3-yl)methyl)-3-methyl-1,3-dihydro-2H-benzo[d]imidazole-2-thione (8)
Beige crystals (132 mg, 50%); m.p 180–182 ◦C; 1H NMR (400 MHz, DMSO-d6): δ

11.12–11.07 (m, 1H), 7.92 (ddt, J = 7.9, 1.4, 0.7 Hz, 1H), 7.65 (d, J = 2.5 Hz, 1H), 7.54–7.47
(m, 1H), 7.43–7.37 (m, 1H), 7.33 (dt, J = 8.2, 0.9 Hz, 1H), 7.17 (pd, J = 7.4, 1.4 Hz, 2H), 7.05
(ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 6.94 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 5.75–5.68 (m, 2H), and
3.75 (s, 3H); 13C NMR (101 MHz, DMSO-d6): δ 168.83, 136.17, 132.15, 131.18, 126.10, 125.83,
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122.65, 122.52, 121.35, 119.34, 118.79, 111.51, 110.22, 109.45, 109.34, 40.29, and 31.16; IR (KBr):
IR (KBr, cm−1) νmax: 3454, 3228, 3062, 2930, 1549, 1486, 1408, 1338, 1129, 741, 623, and 598;
and EI-MS (m/z, % int.): 293 (50). Analysis was calculated for C17H15N3S (MW = 293.39)
with the following: C, 69,60; H, 5.15; N, 14.32; and S, 10.93; and found: C, 69.43; H, 5.16; N,
14.28; and S, 11.13.

3-((1H-indol-3-yl)methyl)thiazolidine-2-thione (9)
White solid (112 mg, 45%); m.p > 360 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 11.16

(s, 1H), 7.69 (dt, J = 7.9, 1.0 Hz, 1H), 7.46 (s, 1H), 7.39 (dt, J = 8.1, 1.0 Hz, 1H), 7.11 (ddd,
J = 8.2, 7.0, 1.2 Hz, 1H), 7.01 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 5.07 (s, 2H), 3.93 (dd, J = 8.5,
7.5 Hz, 2H), and 3.20 (dd, J = 8.6, 7.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6): δ 194.00,
136.26, 126.32, 125.79, 121.49, 119.04, 118.90, 111.66, 108.45, 55.71, 43.73, and 26.33; IR (KBr,
cm−1) νmax: 3257, 3113, 3040, 2918, 1550, 1490, 1429, 1313, 1216, 1125, 758, 679, 645, and 591;
and EI-MS (m/z, % int.): 248 (36). Analysis was calculated for C12H12N2S2 (MW = 248.36)
with the following: C,58.03; H, 4.87; N, 11.28; S, and 25.82; and found: C, 57.72; H, 4.76; N,
11.67; and S, 25.72.

A typical procedure for the synthesis of Compounds 10–13
The gramine solution (1 mmol) and the corresponding substrate (1,3-thiazolidine-2-

thione for 10; 5-methyl-3H-1,3-benzoxazole-2-thione for 11; and 1,2-dihydro-1,2,4-triazole-
3-thione for 12 and 13) (1 mmol) were heated under reflux for 5–10 hours in 8–10 mL of
EtOH. Compounds 10 and 11 were crystallized, while 12 and 13 required purification
through column chromatography (using CHCl3).

3-((1H-indol-3-yl)methyl)thiazole-2(3H)-thione (10)
Brown crystals (91 mg, 37%); m.p 149–151 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 11.20

(s, 1H), 7.72 (dt, J = 7.9, 1.0 Hz, 1H), 7.57 (d, J = 2.6 Hz, 1H), 7.46 (d, J = 4.6 Hz, 1H), 7.39 (dt,
J = 8.1, 0.9 Hz, 1H), 7.11 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.01 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H),
6.94 (d, J = 4.6 Hz, 1H), and 5.48 (s, 2H); 13C NMR (101 MHz, DMSO-d6): δ 185.59, 136.15,
132.55, 126.18, 126.00, 121.57, 119.14, 118.69, 111.68, 111.53, 109.14, and 44.06; IR (KBr, cm−1)
νmax: 3260, 3132, 3103, 3058, 2917, 1543, 1456, 1258, 1193, 1128, 1042, 746, 631, and 580; and
EI-MS (m/z, % int.): 246 (25). Analysis was calculated for C12H10N2S2 (MW = 246.35): C,
58.51; H, 4.09; N, 11.37; and S, 26.03; and found: C, 58.69; H, 3.56; N, 11.46; and S, 26.30.

3-((1H-indol-3-yl)methyl)-5-methylbenzo[d]oxazole-2(3H)-thione (11)
White crystals (227 mg, 77%); m.p 231–234 ◦C; 1H NMR (400 MHz, DMSO-d6): δ

11.22–11.16 (m, 1H), 7.85 (dq, J = 7.9, 0.9 Hz, 1H), 7.75 (d, J = 2.6 Hz, 1H), 7.43–7.31 (m, 3H),
7.12–7.04 (m, 2H), 6.99 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 5.61 (s, 2H), and 2.33 (s, 3H); 13C NMR
(101 MHz, DMSO-d6): δ 179.16, 144.60, 136.24, 134.58, 131.16, 126.43, 125.91, 124.84, 121.53,
119.04, 118.99, 111.69, 111.33, 109.60, 107.56, 41.72, and 20.92; IR (KBr, cm−1) νmax: 3316,
3057, 2926, 1556, 1407, 1357, 1219, 1131, 796, 620, and 597; and EI-MS (m/z, % int.): 294 (15).
Analysis was calculated for C17H14N2OS (MW = 294.37) with the following: C, 69.36; H,
4.79; N, 9.52; and S, 10.89; and found: C, 69.14; H, 4.46; N, 9.50; and S, 10.96.

1-((1H-indol-3-yl)methyl)-1,2-dihydro-3H-1,2,4-triazole-3-thione (12)
Colorless oil (60 mg, 26%); 1H NMR (400 MHz, DMSO-d6): δ 12. 13.70 (s, 1H), 11.18

(s, 1H), 8.37 (s, 1H), 7.76–7.71 (m, 1H), 7.54 (d, J = 2.6 Hz, 1H), 7.39 (dt, J = 8.1, 0.9 Hz,
1H), 7.14–7.08 (m, 1H), 7.01 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), and 5.28 (s, 2H); 13C NMR
(101 MHz, DMSO-d6): δ 165.67, 141.83, 136.20, 125.91, 121.58, 119.11, 118.58, 111.71, and
109.00; IR (KBr, cm−1) νmax: 3406, 3127, 3009, 2925, 1548, 1481, 1458, 1341, 1210, 1096, 745,
665, and 580; and EI-MS (m/z, % int.): 230 (25). Analysis was calculated for C11H10N4S
(MW = 230.29) with the following: C, 57.37; H, 4.38; N, 24.33; and S, 13.92; and found: C,
57.39; H, 4.65; N, 24.42; and S, 13.72.

1,2-bis((1H-indol-3-yl)methyl)-1,2-dihydro-3H-1,2,4-triazole-3-thione (13)
Brown oil (36 mg, 10%); 1H NMR (400 MHz, DMSO-d6): δ 11.15 (s, 1H), 11.08–11.04 (m,

1H), 8.36 (s, 1H), 7.75 (dt, J = 7.9, 0.9 Hz, 1H), 7.71 (dq, J = 8.0, 0.8 Hz, 1H), 7.51 (d, J = 2.5 Hz,
1H), 7.43 (d, J = 2.5 Hz, 1H), 7.36 (dt, J = 8.1, 0.9 Hz, 1H), 7.33 (dt, J = 8.2, 0.9 Hz, 1H), 7.07
(dddd, J = 15.1, 8.2, 7.0, 1.2 Hz, 2H), 6.96 (dddd, J = 14.8, 7.9, 7.0, 1.0 Hz, 2H), 5.46 (s, 2H),
and 5.32 (s, 2H); 13C NMR (101 MHz, DMSO-d6): δ 164.36, 140.51, 136.17, 136.08, 126.19,
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125.88, 125.84, 125.53, 121.51, 121.29, 119.07, 119.00, 118.81, 118.54, 111.64, 111.46, 109.19,
108.79, 79.15, 43.90, and 40.55.; IR (KBr, cm−1) νmax: 3412, 2925, 1636, 1537, 1457, 1421, 1342,
1208, 1093, 746, and 578; and EI-MS (m/z, % int.): 359 (4). Analysis was calculated for
C20H17N5S (MW = 359.45) with the following: C, 66.83; H, 4.77; N, 19.48; and S, 8.92; and
found: C, 66.86; H, 4.53; N, 19.97; and S, 8.63.

Synthesis of (1-acetyl-1H-indol-3-yl)methyl pyrrolidine-1-carbodithioate (15)
N-acetyl-3-acetoxymethylindole (0.5 mmol) and sodium pyrrolidinedithiocarbamate

(1 mmol) were dissolved in water (10 mL) and heated under reflux for 6 h. The resulting
mixture was then extracted with diethyl ether, washed with water and brine, dried over
anhydrous KOH, and then evaporated to give a brown oil.

Brown oil (248 mg, 78%); 1H NMR (400 MHz, CDCl3): δ 7.69 (dd, J = 7.9, 1.2 Hz, 1H),
7.37–7.33 (m, 1H), 7.29 (d, J = 2.4 Hz, 1H), 7.20 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.14 (ddd,
J = 8.1, 7.0, 1.2 Hz, 1H), 4.78 (s, 2H), 3.95 (t, J = 6.8 Hz, 2H), 3.58 (t, J = 6.7 Hz, 2H), 2.60 (s,
3H), 2.03–2.00 (m, 2H), and 1.95 (td, J = 6.9, 1.6 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ
192.97, 168.50, 136.10, 126.88, 125.48, 123.86, 122.33, 119.71, 119.03, 111.23, 54.71, 50.43, 32.80,
25.97, and 24.23; IR (KBr, cm−1) νmax: 3405, 2969, 2869, 1702, 1329, 1160, 1006, 954, and 743;
and EI-MS (m/z, % int.): 318 (6). Analysis was calculated for C16H18N2OS2 (MW = 318.45)
with the following: C, 60,35; H, 5.70; N, 8.80; and S, 20.13; and found: C, 61,01; H, 5.62; N,
8.72; and S, 20.42.

Synthesis of 3-(ethoxymethyl)-1H-indol-1-yl benzoate (17)
A mixture of benzoic acid (0.5 mmol), PPh3 (0.75 mmol), and NBS (0.75 mmol) in

CH2Cl2 (2 mL) was prepared. The solution was stirred at 0 ◦C for 15 minutes and then
warmed to room temperature. Next, 3-etoxymethylindole (0.55 mmol) and Et3N (0.55 mmol)
were added, and the reaction mixture was stirred for one hour. The mixture was then
diluted with EtOAc and washed with NaHCO3. The aqueous layer was extracted with
EtOAc. The organic layers were combined, dried with anhydrous Na2SO4, and evaporated.
The crude product obtained was purified by column chromatography (CHCl3: EtOAc 5:1).

Yellow oil (37 mg, 32%); 1H NMR (400 MHz, CDCl3): δ 8.18–8.13 (m, 1H), 8.05
(d, J = 7.1 Hz, 1H), 7.69–7.64 (m, 1H), 7.56–7.49 (m, 4H), 7.46–7.40 (m, 1H), 4.68 (s, 2H), 4.38
(q, J = 7.1 Hz, 2H), and 1.39 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 166.65, 162.35,
134.53, 132.79, 130.54, 129.50, 128.85, 128.79, 128.28, 121.21, 119.35, 117.48, 110.65, 60.94, and
14.30; FT-IR (KBr, cm−1) νmax: 3057, 2924, 1783, 1715, and 1618; and EI-MS (m/z, % int.):
295 (100%). Analysis was calculated for C18H17NO3 (MW = 295.12) with the following: C,
73.20; H, 5.80; N, 4.74; and O, 16.25; and found: C, 73.41; H, 6.12; N, 4.53; and O, 15.94%.

A typical procedure for the synthesis of Compounds 18–27
Next, to 5 mL of anhydrous DMF, which was cooled to 0 ◦C, NaH (60%, 1 mmol) was

added. The resulting mixture was stirred at 0 ◦C for 15 minutes. Then, 3-etoxymethylindole
(1 mmol) that was dissolved in 1 mL of anhydrous DMF was added, and the mixture was
stirred for 30 minutes at 0 ◦C. Finally, an appropriate bromoester (methyl bromoacetate, ethyl
bromoacetate, isopropyl bromoacetate, tert-butyl bromoacetate, ethyl 2-bromopropionate,
ethyl 2-bromovalerate, phenyl bromoacetate, benzyl bromoacetate, methyl α-bromophenyl
acetate, and ethyl α-bromophenyl acetate) (1 mmol) were added dropwise and stirred for
24 h at room temperature. The resulting mixture was then extracted with EtOAc, washed
with water and brine, dried over anhydrous Na2SO4, and evaporated. The resulting crude
product was purified using column chromatography with gradient elution, starting from
PhMe: EtOAc 50:1.

Methyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)acetate (18)
Yellow oil (94 mg, 38%); 1H NMR (400 MHz, CDCl3): δ 7.71 (dt, J = 7.8, 1.0 Hz, 1H),

7.22 (d, J = 1.7 Hz, 1H), 7.17–7.15 (m, 2H), 7.08 (s, 1H), 4.81 (s, 2H), 4.71 (d, J = 0.7 Hz, 2H),
3.73 (s, 3H), 3.57 (q, J = 7.0 Hz, 2H), 1.23 (t, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ
168.95, 136.93, 127.77, 127.63, 122.36, 119.89, 119.63, 113.50, 108.89, 65.17, 64.38, 52.50, 47.55,
15.27; FT-IR (KBr, cm−1) νmax: 3050, 2952, 2866, 1743, 1661, 1614; and EI-MS (m/z, % int.):
246 (15). Analysis was calculated for C14H17NO3 (MW = 247.12) with the following: C,
68.00; H, 6.93; N, 5.66; and O, 19.41; and found: C, 67.71; H, 7.43; N, 5.82; and O, 19.04%.
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Ethyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)acetate (19)
Yellow oil (144 mg, 55%); 1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.8 Hz, 1H), 7.23

(dd, J = 2.5, 1.0 Hz, 1H), 7.22 (d, J = 1.0 Hz, 1H), 7.17–7.13 (m, 1H), 7.09 (s, 1H), 4.79 (s, 2H),
4.71 (s, 2H), 4.20 (q, J = 7.2 Hz, 2H), 3.55 (t, J = 7.0 Hz, 2H), and 1.27–1.21 (m, 6H); 13C NMR
(101 MHz, CDCl3): δ 168.45, 136.97, 127.78, 127.71, 122.29, 119.83, 119.60, 113.39, 108.93,
65.10, 64.39, 61.63, 47.72, 15.27, and 14.09; FT-IR (KBr, cm−1) νmax: 3053, 2978, 2932, 2867,
1750, and 1614; and EI-MS (m/z, % int.): 261 (20). Analysis was calculated for C15H19NO3
(MW = 261.14) with the following: C, 68.94; H, 7.33; N, 5.36; and O, 18.37; and found: C,
69.00; H, 7.15; N, 5.41; and O, 18.41%.

Isopropyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)acetate (20)
Yellow oil (165 mg, 60%); 1H NMR (400 MHz, CDCl3): δ 7.71 (dt, J = 7.8, 1.0 Hz, 1H),

7.23 (dd, J = 3.0, 1.0 Hz, 1H), 7.22 (d, J = 1.0 Hz, 1H), 7.17–7.13 (m, 1H), 7.09 (s, 1H), 5.06
(hept, J = 6.3 Hz, 1H), 4.76 (s, 2H), 4.71 (d, J = 0.7 Hz, 2H), 3.56 (q, J = 7.0 Hz, 2H), and
1.24–1.21 (m, 9H); 13C NMR (101 MHz, CDCl3): δ 167.98, 137.00, 127.81, 122.25, 122.14,
119.80, 119.59, 113.30, 108.96, 69.49, 65.04, 64.39, 47.95, 21.69, and 15.28; FT-IR (KBr, cm−1)
νmax: 3056, 2979, 2933, 2859, 1737, and 1615; and EI-MS (m/z, % int.): 275 (12,5). Analysis
was calculated for C16H21NO3 (MW = 275.15) with the following: C, 69.79; H, 7.69; N, 5.09;
and O, 17.43; and found: C, 70.00; H, 7.51; N, 5.18; and O, 17.31%.

Tert-butyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)acetate (21)
Yellow oil (191 mg, 66%); 1H NMR (400 MHz, CDCl3): δ 7.71 (dt, J = 7.9, 1.0 Hz, 1H),

7.23–7.22 (m, 2H), 7.16 –7.12 (m, 1H), 7.09 (t, J = 0.8 Hz, 1H), 4.71 (d, J = 0.7 Hz, 2H), 4.70
(s, 2H), 3.55 (q, J = 7.0 Hz, 2H), 1.48 (s, 1H), 1.44 (s, 9H), and 1.22 (t, J = 7.0 Hz, 3H); 13C NMR
(101 MHz, CDCl3): δ 167.59, 137.00, 127.86, 127.81, 122.19, 119.73, 119.57, 113.16, 108.97,
82.51, 64.99, 64.40, 48.50, 27.95, and 15.28; FT-IR (KBr, cm−1) νmax: 3054, 2979, 2933, 2873,
1745, and 1614; and EI-MS (m/z, % int.): 289 (23). Analysis was calculated for C17H23NO3
(MW = 289.17) with the following: C, 70.56; H, 8.01; N, 4.84; and O, 16.59; and found: C,
70.73; H, 7.94; N, 5.03; and O, 16.30%.

Ethyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)propanoate (22)
Yellow oil (157 mg, 57%); 1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 8.3 Hz, 1H),

7.31–7.27 (m, 2H), 7.24–7.20 (m, 1H), 7.16–7.13 (m, 1H), 5.10 (q, J = 7.3 Hz, 1H), 4.71 (s, 2H),
4.15 (qd, J = 7.1, 1.0 Hz, 2H), 3.57 (q, J = 7.0 Hz, 2H), 1.79 (d, J = 7.3 Hz, 3H), and 1.22
(dt, J = 13.2, 7.1 Hz, 6H); 13C NMR (101 MHz, CDCl3): δ 171.21, 136.62, 127.81, 124.45,
122.05, 119.84, 119.58, 113.26, 109.15, 65.16, 64.58, 61.57, 53.50, 17.56, 15.28, and 14.04; FT-IR
(KBr, cm−1) νmax: 3051, 2977, 2936, 2860, 1739, and 1614; and EI-MS (m/z, % int.): 275 (50).
Analysis was calculated for C16H21NO3 (MW = 275.15) with the following: C, 69.79; H,
7.69; N, 5.09; O, and 17.43; and found: C, 69.76; H, 7.99; N, 4.92; and O, 17.33%.

Ethyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)pentanoate (23)
Yellow oil (222 mg, 73%); 1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.9 Hz, 1H), 7.33

(d, J = 8.3 Hz, 1H), 7.29 (s, 1H), 7.24–7.20 (m, 1H), 7.16–7.12 (m, 1H), 4.96 (dd, J = 9.3, 6.2 Hz,
1H), 4.72 (d, J = 0.7 Hz, 2H), 4.15 (qd, J = 7.1, 2.9 Hz, 2H), 3.56 (q, J = 7.0 Hz, 2H), 1.30
(t, J = 7.1 Hz, 3H), 1.25–1.20 (m, 6H), and 0.97–0.91 (m, 4H); 13C NMR (101 MHz, CDCl3):
δ 170.91, 137.01, 127.68, 124.81, 122.00, 119.77, 119.55, 113.30, 109.13, 65.07, 64.62, 61.46,
57.82, 34.04, 19.24, 15.28, 14.07, and 13.52; FT-IR (KBr, cm−1) νmax: 3051, 2964, 2932, 2873,
1740, and 1614; and EI-MS (m/z, % int.): 303 (45). Analysis was calculated for C18H25NO3
(MW = 303.18) with the following: C, 71.26; H, 8.31; N, 4.62; and O, 15.82; and found: C,
70.98; H, 8.42; N, 4.60; and O, 16.00%.

Phenyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)acetate (24)
Yellow oil (114 mg, 37%); 1H NMR (400 MHz, CDCl3): δ 8.44 (d, J = 8.1 Hz, 1H), 7.63

(d, J = 7.0 Hz, 1H), 7.54 (s, 1H), 7.40–7.36 (m, 1H), 7.34–7.29 (m, 3H), 7.03–6.99 (m, 3H), 5.15
(s, 2H), 4.66 (d, J = 1.1 Hz, 2H), 3.61 (q, J = 7.0 Hz, 2H), and 1.27 (t, J = 7.0 Hz, 3H); 13C NMR
(101 MHz, CDCl3): δ 166.17, 157.54, 136.18, 129.70, 129.25, 125.75, 124.22, 122.11, 121.83,
121.20, 119.46, 116.67, 114.69, 67.78, 66.03, 64.33, and 15.21; FT-IR (KBr, cm−1) νmax: 3119,
3059, 2969, 2940, 2842, 1707, and 1600; and EI-MS (m/z, % int.): 309 (35). Analysis was
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calculated for C19H19NO3 (MW = 309.14) with the following: C, 73.77; H, 6.19; N, 4.53; and
O, 15.52; and found: C, 73.80; H, 6.27; N, 4.49; and O, 15.43%.

Benzyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)acetate (25)
Yellow oil (243 mg, 75%); 1H NMR (400 MHz, CDCl3): δ 7.71 (d, J = 7.8 Hz, 1H),

7.34–7.32 (m, 3H), 7.27 (d, J = 4.0 Hz, 2H), 7.21 (dd, J = 6.2, 1.3 Hz, 2H), 7.17–7.13 (m, 1H),
7.08 (s, 1H), 5.16 (s, 2H), 4.84 (s, 2H), 4.70 (d, J = 0.7 Hz, 2H), 3.55 (q, J = 7.0 Hz, 2H), and
1.22 (t, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 168.31, 136.98, 135.02, 128.57, 128.48,
128.27, 127.83, 127.68, 122.36, 119.90, 119.65, 113.55, 108.96, 67.23, 65.07, 64.37, 47.71, and
15.27; FT-IR (KBr, cm−1) νmax: 3033, 2974, 2874, 2840, 1747, and 1683; and EI-MS (m/z, %
int.): 323 (23). Analysis was calculated for C20H21NO3 (MW = 323.15) with the following:
C, 74.28; H, 6.55; N, 4.33; and O, 14.84; and found: C, 74.27; H, 6.74; N, 3.99; and O, 15.00%.

Methyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)-2-phenylacetate (26)
Yellow oil (133 mg, 41%); 1H NMR (400 MHz, CDCl3): δ 7.72 (d, J = 7.3 Hz, 1H), 7.38

(d, J = 2.3 Hz, 3H), 7.19–7.17 (m, 3H), 7.16–7.13 (m, 1H), 7.10 (s, 1H), 7.10–7.08 (m, 1H), 4.65
(t, J = 0.7 Hz, 2H), 3.83 (s, 3H), 3.81 (s, 1H), 3.56–3.50 (m, 3H), and 1.20 (t, J = 7.0 Hz, 3H);
13C NMR (101 MHz, CDCl3): δ 170.01, 138.70, 129.63, 129.06, 128.98, 128.11, 127.92, 127.73,
125.94, 122.24, 120.15, 119.75, 113.32, 109.00, 65.14, 64.57, 61.85, 52.71, and 15.25; FT-IR (KBr,
cm−1) νmax: 3033, 2952, 2873, 1734, and 1612; and EI-MS (m/z, % int.): 323 (5). Analysis
was calculated for C20H21NO3 (MW = 323.15) with the following: C, 74.28; H, 6.55; N, 4.33;
and O, 14.84; and found: C, 74.22; H, 6.69; N, 4.12; and O, 14.97%.

Ethyl 2-(3-(ethoxymethyl)-1H-indol-1-yl)-2-phenylacetate (27)
Yellow oil (109 mg, 32%); 1H NMR (400 MHz, CDCl3): δ 7.72 (d, J = 7.8 Hz, 1H),

7.38–7.34 (m, 4H), 7.23–7.21 (m, 1H), 7.18–7.14 (m, 3H), 7.11 (d, J = 4.0 Hz, 1H), 6.19 (s, 1H),
4.66 (s, 2H), 4.31–4.26 (m, 2H), 3.53 (qd, J = 7.0, 0.9 Hz, 2H), 1.26 (t, J = 7.1 Hz, 4H), and
1.20 (t, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 169.50, 137.03, 134.57, 129.68, 129.02,
128.09, 127.53, 126.04, 122.17, 120.10, 119.73, 113.20, 109.05, 65.07, 64.57, 61.94, 15.24, 14.07,
and 13.97; FT-IR (KBr, cm−1) νmax: 3058, 2978, 2935, 2864, 1745, and 1613; and EI-MS (m/z,
% int.): 337 (40). Analysis was calculated for C21H23NO3 (MW = 337.17) with the following:
C, 74.75; H, 6.87; N, 4.15; and O, 14.23; and found: C, 74.93; H, 6.59; N, 4.32; and O, 14.16%.

Synthesis of (1-acetyl-1H-indol-3-yl)methyl 2,5-dihydroxybenzoate (29)
N-acetyl-3-hydroxymethylindole

(0.72 mmol) and 2,5-dihydroxybenzoic acid (0.72 mmol) were dissolved in THF (5 mL),
then DCC (0.72 mmol) was added, and the mixture was then stirred for 48 hours at room
temperature. The resulting white precipitate was filtered, and the filtrate was evaporated so
as to obtain a dark brown precipitate. The precipitate was then dissolved in EtOAc, washed
with 5% citric acid, saturated with NaHCO3 and brine, and then dried over anhydrous
Na2SO4 and evaporated. The crude product was purified by column chromatography
(PhMe: EtOAc 5:1).

Orange oil (87 mg, 37%); 1H NMR (400 MHz, CDCl3): δ 8.41 (d, J = 8.4 Hz, 1H), 7.65
(d, J = 7.1 Hz, 1H), 7.54 (s, 1H), 7.39–7.27 (m, 3H), 7.18–7.16 (m, 2H), 5.50 (s, 2H), and 2.64 (s,
3H); 13C NMR (101 MHz, CDCl3): δ 169.60, 168.88, 155.71, 148.06, 135.84, 129.00, 128.19,
125.78, 125.26, 124.40, 124.05, 119.04, 118.48, 116.78, 114.60, 111.90, 58.72, and 23.92; FT-IR
(KBr, cm−1) νmax: 3215, 2931, 2854, 1733, 1686, and 1620; and EI-MS (m/z, % int.): 325 (10).
Analysis was calculated for C18H15NO5 (MW = 325.10) with the following: C, 66.46; H,
4.65; N, 4.31; and O, 24.59; and found: C, 66.51; H, 9.58; N, 4.43; and O, 24.89%.

3.3. X-ray Analysis

Single-crystal X-ray diffraction measurements were carried out with the monochro-
mated CuKα radiation on a SuperNova diffractometer (4, 5, 7, 8, 9, and 11), or with MoKα

radiation on an Xcalibur diffractometer (2 and 10). Each dataset was measured with an
omega scan. These data were processed with the CrysAlisPro 1.171.42 software [76]. The
crystal structures were solved by direct methods with SHELXT [77] and refined by full-
matrix least-squares calculations on F2 with SHELXL [78]. All non-H atoms were refined
with anisotropic displacement parameters. Hydrogen atoms bonded to C and N atoms
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were placed at calculated positions based on the environment and perceived hybridization
of the atoms to which they were bonded. For room temperature structures, the methyl,
methylene, and aromatic C-H distances were standardized to 0.96, 0.97, and 0.93 Å, respec-
tively, and the N-H distance was 0.86 Å. For low-temperature structures, the corresponding
values were 0.98 and 0.99 and 0.95 Å and 0.88 Å. The solvent hydrogen atoms were located
on difference Fourier maps, and their O-H distances were standardized to the values of
0.82 and 0.85 Å for the ethanol and water molecules, respectively. All H-atoms were refined
as ‘riding’ on their carriers. During the refinement, isotropic displacement parameters
for H-atoms were assigned as 20% higher than the isotropic equivalent for the atom to
which the H-atom was bonded. The crystals of 8 were inversion-twinned with a ratio of
0.70(3):0.30(3). Moreover, in the crystal of 9, there were signs of disorder in the thiazoli-
dine moiety. We modeled this disorder by taking into account two alternative positions
for one of the two methylene groups for which the component occupancy factors were
refined to 0.62(3) and 0.38(3). MERCURY [79] was used to prepare drawings. CCDC
contains the supplementary crystallographic data for 2 (Deposition Number 2346551), 4
(Deposition Number 2346552), 5 (Deposition Number 2346553), 7 (Deposition Number
2346554), 8 (Deposition Number 2346555), 9 (Deposition Number 2346556), 10 (Deposition
Number 2346557), and 11 (Deposition Number 2346558). These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 8 April 2024)
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; email:
deposit@ccdc.cam.ac.uk).

3.4. Biological Study
3.4.1. Antibacterial and Antifungal Activity Measurements

The antibacterial properties of the compounds were determined against selected
bacteria: Micrococcus luteus, Bacillus subtilis, Escherichia coli, and Pseudomonas fluorescens. The
antifungal activity of the compounds was determined against Alternaria alternata, Fusarium
culmorum, Trichoderma harzianum, Trichoderma harzianum, and Botrytis cinerea. All the cultures
of microorganisms were obtained from the pure culture collection of the Microbiology
Department of the Faculty of Soil Science and Microbiology of the Poznan University of
Life Sciences.

The well diffusion method was used to evaluate the antimicrobial properties of the
compounds. A broth medium was used for the bacterial tests, while potato dextrose agar
(PDA) was used for mold cultivation. Next, 6 mL of each liquidized medium was poured
into sterile Petri dishes and allowed to solidify. After this, two 0.5 cm-diameter sterile glass
rings were placed on the surface of each plate. Then, 20 mL of each liquid medium contain-
ing suspensions of the tested microorganisms was added. The final bacterial suspension
had a density of 107 cells/cm3, which was obtained from 48-hour cultures on broth slants,
and the fungal suspension had a density of 108 spores/cm3, which was obtained from
5-day cultures on PDA slants. After the medium solidified, the glass rings were removed
with a pencil, leaving two wells on each plate. Then, 0.1 mL of the compound dissolved
in pure dimethyl sulfoxide was added to one well, and 0.1 mL of pure dimethyl sulfoxide
was added to the other well, which served as a control. Each compound was tested in four
replicates. Plates were incubated in a thermostat at 27 ◦C for M. luteus, B. subtilis, and P.
fluorescens cultures, as well as at 37 ◦C for the E. coli culture for 48 hours. All fungal cultures
were incubated in a thermostat at 24 ◦C for five days. At the end of the incubation, the
growth inhibition diameters of the tested strains were measured using calipers.

3.4.2. Human Red Blood Cell (RBC) Preparation

Human RBC suspensions (~65% hematocrit) were purchased from the Blood Bank in
Poznań according to the bilateral agreement between the Adam Mickiewicz University and
Blood Bank no. ZP/2867/D/21 without any contact with blood donors. The RBCs were
washed three times (960× g, 10 min, 4 ◦C) in 7.4 pH phosphate-buffered saline (PBS_137
mM of NaCl, 2.7 mM of KCl, 10 mM of Na2HPO4, and 1.76 mM of KH2PO4), which was
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supplemented with 10 mM of glucose. After washing, the RBCs were suspended in the
PBS buffer at 1.65 × 109 cells/mL, stored at 4 ◦C, and used within 5 h.

3.4.3. Inhibition of Free Radical-Induced Hemolysis

The cytoprotective activity of the derivatives was evaluated in accordance with a
previously described method [14–16]. Briefly, human RBCs (1.65 × 108 cells/mL, 1.5%
hematocrit) were preincubated in PBS (pH 7.4) supplemented with 10 mM of glucose, which
contained the tested compound or Trolox used as a standard antioxidant at a concentration
of 0.01 mg/mL for 20 min at 37 ◦C in a shaking incubator. After preincubation, 2,2′-azobis(2-
methylpropionamidine) dihydrochloride (AAPH) was added to a final concentration of
60 mM, and samples were incubated for the next four hours at 37 ◦C. RBCs incubated in
PBS and in PBS with AAPH were used as negative and positive controls, respectively. After
incubation, the RBC suspensions were centrifuged (960× g, 5 min, + 4 ◦C), and the degree
of hemolysis was determined by measuring the absorbance (Ab) of the supernatant at
λ = 540 nm in a BioMate™ 160 UV–Vis spectrophotometer. The percentage of free radical-
induced hemolysis inhibition was calculated using the following equation:

inhibition of hemolysis (%) = 100 − [(Abcomp/AbAAPH) × 100],

where Abcomp is the absorbance value of the supernatants obtained from samples incubated
with a compound tested in the presence of AAPH and AbAAPH is the absorbance of the
supernatant obtained from the positive control, respectively. Each sample was prepared
in triplicate and results were expressed as the mean ±SD value from three independent
experiments (n = 6), using RBCs obtained from different donors.

3.4.4. Ferrous Ion (Fe2+) Chelating Assay

The ferrous ions’ chelating activity of the derivatives was evaluated in accordance with
a previously described method [15]. The Fe2+-chelating ability of the tested compounds
was determined by the absorbance of the ferrous-ion–ferrozine complex at 562 nm at room
temperature (~22 ◦C, RT). Briefly, 0.1 mg/mL of the concentration of the tested compounds
in 0.2 mL of ethyl alcohol was added to a solution of 0.6 mM of FeCl2 (0.05 mL). EDTA
was used as the standard metal chelator. The reaction was started by adding 5 mM of
ferrozine (0.05 mL) in ethyl alcohol and then immediately shaking vigorously. The samples
were stored for 10 min at room temperature. After incubation, the absorbance (Ab) of the
solutions was measured at 562 nm in a BioMate™ 160 UV–Vis spectrophotometer. The
percentage of inhibition of the ferrozine–Fe2+ complex formation was calculated using the
following equation:

Fe2+ chelating (%) = [1 − (Ab1/Ab0)] × 100,

where Ab1 is the absorbance in the presence of the compound tested or EDTA and Ab0
is the absorbance of the sample without the tested compound. Each sample was made in
triplicate and three independent experiments were performed (n = 9).

3.4.5. Hemolysis Assay under Physiological Condition

The hemolytic activity was evaluated according to the previously described
method [14–16]. Briefly, RBCs (1.65 × 108 cells/mL, 1.5% hematocrit) were incubated
in a PBS (pH = 7.4) supplemented with 10 mM of glucose (Sigma Aldrich, Steinheim,
Germany) and containing the tested compound at the concentration of 0.1 mg/mL for
60 min at 37 ◦C in a thermo shaker (BioSan Thermo-Shaker TS-100C, Biosan, Riga, Latvia).
The negative control sample was a solution with RBCs incubated in PBS without the ad-
dition of the tested compounds. The positive control sample was a solution of the RBCs
incubated in deionized water without the addition of the tested compounds. Each sample
was prepared in triplicate, and the experiments were repeated three times with RBCs
from different donors. After incubation, the RBC suspensions were centrifuged (Sigma
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3–30 K Sartorious AG, Göttingen, Germany) (960× g, 10 min, 4 ◦C), and the degree of
hemolysis was estimated by measuring the absorbance of the supernatant on a BioMate™
160 UV-Vis spectrophotometer (Thermo Scientific, Waltham, MA, USA) at 540 nm. The
results were expressed as the percentage (%) of hemolysis, which was calculated using the
following formula:

hemolysis (%) = (sample Ab/positive control Ab) × 100,

where sample Ab is the absorbance value of the supernatant of RBCs incubated with the
tested compounds and the negative control, and the positive control AB is an absorbance
value of the supernatant of RBCs incubated in ice-cold deionized water. Each sample was
prepared in triplicate, and the results are presented as a mean value (±SD) of the three
independent experiments (n = 9).

3.4.6. Statistical Analysis

For the antioxidant and cytoprotective properties, data were plotted as the mean
value ± standard deviation (SD) of the results of three independent experiments, with
every sample taken in triplicate (n = 9). A paired t-Student test was used to, respectively,
compare the derivatives’ activity with the activity of the standard Trolox or EDTA. Statistical
significance was defined as p < 0.05. Inactive compounds were indicated as n.a. Non
statistically significant difference is indicated as n.s.

3.5. In Silico Study

The physicochemical calculations were conducted using the SwissADME website:
www.swissadme.ch (accessed on 2 February 2024).

3.6. Molecular Docking

The molecular docking process commenced by converting the SMILES representation
of indole-based chemical structures into 3D structures, and this was accomplished through
the application of OpenBabel tool version 3.1.1 [80,81]. Subsequently, the protein domains
corresponding to PDB [82], IDs 1DNU [83], 1N5X [84], and 4COX [85] were prepared in
accordance with the standard AutoDock tool 1.5.7 scheme [86]. Molecular dockings were
then carried out using AutoDock Vina [87], with the specific parameters outlined in Table 5
for each docking search.

Table 5. The search spaces of the analyzed binding sites of the protein domains.

PDB ID Search Space Center (x, y, z) Size of the Search Space (x, y, z)

1DNU 39.637, −38.454, −5.011 24, 24, 26

1N5X 96.559, 55.159, 39.980 24, 22, 40

4COX 23.941, 21.867, 13.892 26, 26, 32

4. Conclusions

The newly synthesized indole derivatives with methylene-bridged azole and benza-
zole substituents at C3 are compounds with a strong cytoprotective activity under oxidative
stress conditions. The exceptions are derivatives appearing as zwitterions at a physiological
pH, which occurred because of their ability to convert to harmful thiyl radicals. Of the
two possible tautomeric forms, the molecules in crystals and those in a DMSO-d6 solution
appeared as the thione tautomers. The C=S group was found to be the primary site for
H-bonding in the condensed media: it has the ability to form multicenter hydrogen bonds
with N-H and C-H donors.

Compared to imidazoles and oxazoles, thiazoles are more prone toward conforma-
tional changes driven by hydrogen bond association. The steric effects witnessed in the
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crystals of 7 and 8 (which are also supposedly present in Compounds 3 and 13) accounted
for their high hemolytic activity.

Since the majority of the indole derivatives substituted solely at the C3 position are
hemocompatibile, and as all of them adhere to the Lipinski and Veber rules, they represent
promising candidates for future research on designing new bioactive compounds and drugs.
The results presented in this study may facilitate the development of novel indole-based
molecules with antioxidant and cytoprotective activities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25105364/s1.
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