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Harnessing of CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic
Repeats/CRISPR-associated genes) systems for detection, chemical modification, and
sequence editing of nucleic acids dramatically changed many fields of fundamental sci-
ence, biotechnology, and biomedicine [1,2]. No wonder that the inventors of technology,
Emmanuelle Charpentier and Jennifer Doudna, have been awarded the Nobel Prize in
2020 [3]. Natural CRISPR/Cas systems are well suited to disrupting coding or non-coding
sequences in the genome, are much less effective at distinguishing and editing sequences
with single-nucleotide differences, and are prone to recognizing similar sequences in the
genome [4]. Therefore, further exploration of the CRISPR/Cas world continues both to
find new genome and epigenome editors and to engineer known editors to overcome their
shortcomings to make their applications more efficient, predictable, and safe.

The aim of this Special Issue is to gather knowledge on the current state of the rapidly
growing field of research and application of CRIPSR/Cas systems and other genome editing
tools in basic science, biotechnology, and biomedicine. The applications of CRISPR/Cas
systems discussed in the articles in this Special Issue are summarized in Figure 1.
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biotechnology, and biomedicine [1,2]. No wonder that the inventors of technology, Em-
manuelle Charpentier and Jennifer Doudna, have been awarded the Nobel Prize in 2020 
[3]. Natural CRISPR/Cas systems are well suited to disrupting coding or non-coding se-
quences in the genome, are much less effective at distinguishing and editing sequences 
with single-nucleotide differences, and are prone to recognizing similar sequences in the 
genome [4]. Therefore, further exploration of the CRISPR/Cas world continues both to 
find new genome and epigenome editors and to engineer known editors to overcome their 
shortcomings to make their applications more efficient, predictable, and safe. 

The aim of this Special Issue is to gather knowledge on the current state of the rapidly 
growing field of research and application of CRIPSR/Cas systems and other genome edit-
ing tools in basic science, biotechnology, and biomedicine. The applications of 
CRISPR/Cas systems discussed in the articles in this Special Issue are summarized in Fig-
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Figure 1. Selected applications of CRISPR/Cas-based genome editing that are discussed in the Spe-
cial Issue. Created with BioRender.com. 
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Figure 1. Selected applications of CRISPR/Cas-based genome editing that are discussed in the Special
Issue. Created with BioRender.com.
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Currently, complete CRISPR/Cas systems are found in more than 12,600 strains of
bacteria and archaea, according to CRISPRCasDB [5]. This is less than 1% of known
bacterial and archaea strains (402,709 strains with complete genomes), according to the
Genome Taxonomy Database [6]. Thus, the prokaryote universe provides an opportunity
for a broad search for novel genome editors. The greatest efforts are focused on exploring
the biotechnological potential of small-sized Cas effectors. Since Cas9 from Streptococcus
pyogens is the most active genome editor both in vitro and in vivo [7,8], smaller Cas9
orthologs are preferred. Thus, AnoCas9 from the thermophilic bacterium Anoxybacillus
flavithermus, characterized in vitro by Matveeva et al., provides a good example of such
small Cas effectors. AnoCas9 is a 1087 aa protein that exhibits nuclease activity in the
37–60 ◦C range and a PAM preference for 5′-NNNNNCDAA-3′ in vitro. This Cas protein
is a valuable addition to the known set of thermophilic Cas proteins used, for example,
for enrichment of sequencing libraries, allele-specific isothermal PCR, detection of human
viruses, etc. [9,10].

CRISPR/Cas systems have revolutionized the field of biotechnology. The traditional
yeast Saccharomyces cerevisiae has long been used to create improved producers of valu-
able substances because of its highly active homologous recombination, which allows
the reconstruction of entire heterologous biochemical pathways [11]. In the shadow of
S. cerevisiae, it was much less known and very difficult to genetically engineer nonconven-
tional yeasts with high biotechnological potential. Genetic engineering of nonconventional
yeasts has mainly relied on random mutagenesis using UV light, chemical mutagens,
or transposons [12], followed by the laborious selection of mutant strains with desired
properties. Xia et al., in their comprehensive review, describe the application of various
CRISPR/Cas-based approaches for metabolic engineering of both conventional and non-
conventional yeasts [13]. The authors also point out the drawbacks of CRISPR/Cas-based
systems that should be considered when planning genome editing experiments in yeast.
The development of CRISPR/Cas approaches for plant genome engineering [14] takes
plant biotechnology to a new level. Fast-growing poplar trees have good potential in the
paper industry, biofuel production, biomedicine, urban greening, and soil bioremediation.
In their comprehensive review, Kovalev et al. describe the currently known molecular
mechanisms of poplar immune defense as well as various ways, including genome editing
using CRISPR/Cas systems, to improve poplar resistance to pathogens.

In addition to biotechnological applications, CRISPR/Cas systems are widely used
in biomedicine, for example, to create cellular and animal models of human diseases [15].
Knockout animals are commonly used to study the mechanisms of pathogenesis associated
with the gene of interest [16]. McBeath et al. detail an approach using CRISPR/Cas9,
called recombination-regulated artificial intron (rAI), to generate conditional knockout
mice. The rAI method is simpler, faster, and cheaper than currently known methods for
tissue-specific knockout in mice. In another interesting intron-related story, Matveeva et al.
used CRISPR/Cas9 editing of introns within the tumor-suppressive long non-coding RNA
GAS5 to discover a quite interesting epigenetic mechanism for processing this lncRNA [17].
The authors also obtained mutant cell lines with the deletion of a significant portion of
GAS5. Transcriptome analysis of mutant cell lines revealed the involvement of lncRNA
GAS5 in the regulation of genes related to cell adhesion, signal transduction, and cell-
membrane structures. CRISPR/Cas systems are often used to create cellular models of
human diseases, including complex neuropsychiatric diseases such as schizophrenia (SZ).
Abashkin et al. found that the gene encoding the transcription factor ASCL1 is associated
with SZ [18]. Using CRISPR/Cas9, the authors created a mutant SH-SY5Y cell line with a
functional knockout of ASCL1, and transcriptome analysis of the mutant cell line allowed
them to identify genes whose deregulation by ASCL1 dysfunction may be associated
with the depletion of GABAergic neurons and/or reduced neuroplasticity. Indeed, these
pathogenic processes are observed in the brains of patients with SZ [19,20].

In animal models as well as in therapeutic approaches, CRISPR/Cas systems are used
more often for gene knockout than for knock-in because of weak homologous recombination
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in mammalian cells [21]. Leal et al. comprehensively discuss current approaches to enhance
homologous recombination in CRISPR/Cas9-based gene therapy applications [22].

There are several ways to deliver the CRISPR/Cas system into mammalian cells, and
the ribonucleoprotein (RNP) complex provides a fast, efficient, less cytotoxic, and more
specific way to edit the genome [23,24]. Therefore, purification technologies are needed
to reconstitute RNP complexes. Due to its large size and high cytotoxicity to bacterial
cells when overexpressed [25], SpCas9 is a difficult protein to purify from bacterial hosts.
Evmenov et al. described efficient protocols for the expression and purification of SpCas9
from E. coli. In addition, they compared several delivery methods for the CRISPR/Cas
system and found that the RNP complex combined with a transfection reagent allows for
more efficient editing in mammalian cells compared to plasmid transfection or incubation
with RNP. Increasing the stability and specificity of sgRNAs can significantly improve
the efficiency of genome editing in mammalian cells [26,27]. It is known that sgRNA
stabilization can improve the efficiency of genome editing. In addition to altering sgRNA
structure, a number of chemical modifications of sgRNAs have been proposed [28,29].
Prokhorova et al. propose to chemically modify sgRNA with N1-methylpseudouridine
as a way to stabilize sgRNA. This modification does not affect Cas9 activity in targets but
decreases off-target activity.

Naturally, prokaryotes are using CRISPR/Cas systems to target their viruses [30].
Therefore, it is rational to apply CRISPR/Cas systems to treat human viral diseases. The
prevalence of drug-resistant strains of human viruses [31–33] limits treatment options.
Globally distributed herpesviruses and hepatitis viruses are of greatest concern because
of the burden of disease and death they cause and the potential for outbreaks and epi-
demics [34,35]. These viruses have a latent form in their infectious cycle [36,37] that is
resistant to known therapeutic agents. Moreover, latent human or animal viruses can
contribute significantly to graft rejection in transplantation [38] or xenotransplantation [39].
Therefore, alternative, effective, and safe strategies to combat human viruses are urgently
needed. In this Special Issue, Bartosh et al. discuss novel CRISPR/Cas-based strategies for
the treatment of hepatitis viruses. In another study, Karpov et al. obtained promising results
on effective suppression of herpes simplex virus type 1 replication using CRISRPR/Cas9
and CRISPR/CasX systems in Vero cells. Another way to combat human viruses is through
the development of vaccines. In the case of influenza viruses, traditional technology based
on culturing the virus in chicken embryos has several drawbacks, including long incubation
times (6 months), allergic reactions to egg components, occasional antigenic mismatch
between egg-adapted viruses, and challenges in obtaining avian pandemic strains [40].
Therefore, alternative methods of rapid and safe production of influenza vaccines are
needed. Eshchenko et al. described the creation of the human cell line WI-38 VA13 with
a knockout of the gene encoding interferon-inducible transmembrane protein 3, which
prevents the virus from entering the cell.

Genome editing technology based on CRISPR/Cas systems gives humanity hope for
curing not only viral but also hereditary diseases. However, CRISPR/Cas-based molecular
tools have a number of drawbacks that limit their therapeutic applications. Hryhorow-
icz et al. comprehensively reviewed these drawbacks and discussed the development of
improved genome editors for more efficient and safer applications in human gene ther-
apy [41]. Karpov et al., in their comprehensive review, consider current approaches to
the treatment of type 1 diabetes using cellular regenerative medicine approaches, with
a focus on CRISPR/Cas-engineered cell products [42]. Special attention is given to the
possible drawbacks of cellular and CRISPR/Cas-based technologies and how to overcome
them. Paschoudi et al. highlight the recent successes of therapeutic approaches utilizing
CRISPR/Cas-based genome editing to treat β-hemoglobinopathies, including sickle cell
disease [43]. Notably, in late 2023, the FDA approved a cell-based gene therapy called
CasgevyTM for the treatment of sickle cell disease. CasgevyTM is the first FDA-approved
therapy utilizing CRISPR/Cas9-based genome editing technology [44]. Thus, ten years af-
ter the first application of the CRISPR/Cas9 system for genome editing in mammalian cells,
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presented in three seminal papers [45–47], the first CRISPR/Cas9-based cellular product
for curing human disease opens the era of CRISPR/Cas therapies for humans.
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