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Abstract: Clinical and preclinical studies have provided conflicting data on the postulated beneficial
effects of vitamin D in patients with prostate cancer. In this opinion piece, we discuss reasons for
discrepancies between preclinical and clinical vitamin D studies. Different criteria have been used as
evidence for the key roles of vitamin D. Clinical studies report integrative cancer outcome criteria
such as incidence and mortality in relation to vitamin D status over time. In contrast, preclinical
vitamin D studies report molecular and cellular changes resulting from treatment with the biologically
active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (calcitriol) in tissues. However, these reported
changes in preclinical in vitro studies are often the result of treatment with biologically irrelevant
high calcitriol concentrations. In typical experiments, the used calcitriol concentrations exceed the
calcitriol concentrations in normal and malignant prostate tissue by 100 to 1000 times. This raises
reasonable concerns regarding the postulated biological effects and mechanisms of these preclinical
vitamin D approaches in relation to clinical relevance. This is not restricted to prostate cancer, as
detailed data regarding the tissue-specific concentrations of vitamin D metabolites are currently
lacking. The application of unnaturally high concentrations of calcitriol in preclinical studies appears
to be a major reason why the results of preclinical in vitro studies hardly match up with outcomes of
vitamin D-related clinical studies. Regarding future studies addressing these concerns, we suggest
establishing reference ranges of tissue-specific vitamin D metabolites within various cancer entities,
carrying out model studies on human cancer cells and patient-derived organoids with biologically
relevant calcitriol concentrations, and lastly improving the design of vitamin D clinical trials where
results from preclinical studies guide the protocols and endpoints within these trials.

Keywords: prostate cancer; vitamin D; vitamin D status; vitamin D metabolites; 25(OH)D3; 1,25(OH)2D3;
calcitriol; clinical studies; preclinical studies

1. Introduction: The Aim of This Opinion Paper

Discussions regarding the preventive effectiveness of vitamin D as a nutrient in hu-
man skeletal and extra-skeletal health have been ongoing for years. This is evidenced not
only through numerous commentaries in social media and daily press articles but also by
contributions at annual scientific conferences in which both consensus and controversies
have been recorded [1–6]. While the impacts of vitamin D on bone diseases such as rickets,
osteoporosis, and osteomalacia are well established [7], its roles in extra-skeletal diseases
such as cardiovascular, dermatologic, neurological, metabolic, and immunological disor-
ders, and importantly in various cancers remain to be clarified [8–10]. In particular, the
association between vitamin D status and cancer risk, as well as the potential preventive
effect of vitamin D on both the incidence and mortality of cancers, are frequently dis-
cussed [11–14]. Different health effects of vitamin D have been proposed in different cancer
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entities, necessitating the evaluation of site-specific cancer studies rather than combining
data from different cancer entities to estimate health outcomes [13,15]. Therefore, in this
opinion paper, we focus on vitamin D in the context of prostate cancer (PCa).

Various observational, randomized controlled, and Mendelian randomized studies—
here referred to as clinical studies or trials—have provided conflicting data on the pos-
tulated beneficial effects of vitamin D for various PCa outcomes [16,17]. Details of these
studies are discussed later (Section 4). The inconsistent results from clinical studies contrast
with the findings of experimental preclinical studies on vitamin D [18–27], which consis-
tently demonstrated cancer-influencing molecular or cellular mechanisms corresponding
to vitamin D. This discrepancy between findings in clinical and preclinical studies has
been largely ignored within the vitamin D literature to date [28], and is therefore worth
further consideration.

To make our concern understandable, we give a brief overview of vitamin D metabolism,
the characterization of the vitamin D status through its metabolites, and the molecular
effects of vitamin D. Our focus is then critically directed toward preclinical PCa studies,
which are often carried out without considering the existing conditions in the human organ-
ism concerning relevant vitamin D metabolite concentrations. Subsequently, in connection
with the contradictory results obtained from clinical studies, we draw conclusions and
formulate propositions for future research.

2. Vitamin D Metabolism, Vitamin D Status, and Biological Actions of Vitamin D
2.1. Vitamin D Metabolism

The most important steps of vitamin D metabolism are summarized in the simpli-
fied vitamin D flow chart shown in Figure 1. For detailed information on the complex
metabolism of vitamin D, the reader is referred to current reviews [29–32]. For clarity,
we refer to the essential form of vitamin D for humans, vitamin D3, also known as chole-
calciferol, in the text below. While 89–90% of vitamin D3 is synthesized in the skin from
7-dehydrocholesterol upon exposure to sunlight, only 10–20% of vitamin D3 (along with
vitamin D2 as the other main form of vitamin D, also known as ergocalciferol) derives
from dietary intake (Figure 1). After being released into the bloodstream, vitamin D3
is transported by vitamin D-binding protein (VDBP) to the liver for hydroxylation to
25-hydroxyvitamin D3 (25(OH)D3, calcidiol) by the 25-hydroxylases encoded by cytochrome
P450 family 2 subfamily R member 1 (CYP2R1) and cytochrome P450 family 27 subfam-
ily A member 1 (CYP27A1) [33,34]. Megalin, a cell-surface LDL-receptor-related protein
2 (LRP2) in the kidney tubule, binds VDBP and internalizes 25(OH)D3, which is subse-
quently converted to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, calcitriol) by 1α-hydroxylase
encoded by cytochrome P450 family 27 subfamily B member 1 (CYP27B1) [35]. This hy-
droxylation also occurs in extrarenal tissues expressing the vitamin D receptor (VDR),
such as the prostate [21,29,36,37]. The hydroxylation step of calcidiol to calcitriol is stimu-
lated by parathyroid hormone, phosphorus, calcium, and fibroblast growth factor 23 with
its co-receptor Klotho, but is inhibited by 1,25(OH)2D3 itself through a feedback mecha-
nism [38,39]. Unlike renal hydroxylase, prostate 1α-hydroxylase has not been found to be
regulated by parathyroid hormone and calcium [40]. Both 25(OH)D3 and 1,25(OH)2D3 are
degraded by 24-hydroxylase encoded by cytochrome P450 family 24 subfamily A mem-
ber 1 (CYP24A1) into biologically inactive 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and
1,24,25-trihydroxyvitamin D3 (1,24,25(OH)3D3); see Figure 1.

It is important to emphasize that all four of the abovementioned cytochrome P450
enzymes are also expressed in the prostate [29], such that all enzymes for local synthesis
and degradation of vitamin D are available. In prostate cancer, expression of these enzymes
as well as VDR and LPR2 is shown to be both increased and decreased compared to normal
prostate (Figure 2). In human non-pathological prostate samples, CYP27B1 expression was
found to be higher in young men (<40 years) when compared to elderly men (>60 years),
whereas an inverse expression pattern was observed for the CYP24A1 gene [41]. This
decline in the expression of vitamin D-metabolizing enzymes corresponds to an age-related
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decline in intraprostatic calcitriol levels, indicating that age-dependent loss of the potential
protective effects of calcitriol is a potential confounder in clinical studies.
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Figure 1. Simplified schemes of (A) biosynthesis and degradation of vitamin D and (B) the calcitriol
action as ligand of the vitamin D receptor and the subsequent epigenome and transcriptome changes.
The metabolizing vitamin D hydroxylases are members of the cytochrome P450 family and are
indicated abbreviated in parentheses. Abbreviations for subfigure (A): Vitamin D binding protein
(VDBP); 25-hydroxylases encoded by cytochrome P450 family 2 subfamily R member 1 (CYP2R1)
and cytochrome P450 family 27 subfamily A member 1 (CYP27A1); 1α-hydroxylase encoded by
cytochrome P450 family 27 subfamily B member 1 (CYP27B1); 24-hydroxylase encoded by cytochrome
P450 family 24 subfamily A member 1 (CYP24A1). (B) Vitamin D receptor (VDR); Retinoid X
receptor (RXR); vitamin D response elements (VDREs). The different colored lines symbolize the two
DNA strands.
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Figure 2. Gene expression of the metabolizing vitamin D hydroxylases of the cytochrome P450 family,
the vitamin D receptor, and the LDL-receptor-related protein 2 in tissue samples of normal prostate
and prostate cancer. Data from The Cancer Genome Atlas (TCGA) downloaded from UCSC Xena
(https://xena.ucsc.edu/, accessed on 28 March 2024) were used [42,43]. Further details are given
in the Supplementary Materials. Abbreviations: Cytochrome P450 family 2 subfamily R member 1
(CYP2R1); cytochrome P450 family 27 subfamily A member 1 (CYP27A1); cytochrome P450 family 27
subfamily B member 1 (CYP27B1); cytochrome P450 family 24 subfamily A member 1 (CYP24A1);
vitamin D receptor (VDR), LDL-receptor-related protein 2 (LRP2).

2.2. Circulating 25(OH)D3 Level as Indicator of the Vitamin D Status

The main circulating vitamin D3 metabolites are 25(OH)D3, its degraded metabolite
24,25(OH)2D3, and calcitriol (1,25(OH)2D3), the functionally active vitamin D metabolite.
The use of serum calcitriol as a biomarker for vitamin D status is unsuitable due to the
strict control of calcitriol concentration by an autoregulatory feedback system involving
parathyroid hormone, fibroblast factor, calcium, and calcitriol itself, as well as its very short
half-life [44].

At present, there is a general consensus that circulating 25-hydroxyvitamin D, as the
summation of 25(OH)D3 and 25(OH)D2 with 25(OH)D3 as a major vitamin D metabo-
lite, is the most suitable and robust indicator characterizing the individual vitamin D
status [4,45,46]. Conclusive observational studies of health outcomes in relation to vitamin
D status and randomized controlled trials of vitamin D supplementation require repeated
measurements of the vitamin D status on specified dates during the trial [47]. However, the

https://xena.ucsc.edu/
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serum concentration thresholds defining vitamin D deficiency status and monitoring the
success of subsequent vitamin D supplementation differ quite significantly across various
government and scientific society guidelines [28,48]. There is a widespread agreement
that <25–30 nmol/L (<10–12 ng/mL) in 25(OH)D concentrations should be considered
severely deficient and must be corrected; however, thresholds for optimal 25(OH)D concen-
trations vary between 50 and 175 nmol/L (20 and 70 ng/mL) in various recent guidelines
and recommendations [28,45,48–53]. One apparent reason for this dilemma is the lack of
harmonization of the various 25(OH)D immunoassays used for measurement in different
studies in the past [2,5]. Differences of up to 20 nmol/L (8 ng/mL) between assays were
observed within the clinically relevant 25(OH)D range [54]. Therefore, it is unsurprising
that not only different healthy vitamin D status thresholds exist, but also that different
recommendations for the correction of deficiencies have been suggested in nutritional
guidelines [48]. Fortunately, in recent years, there have been many successful efforts that
improved comparability between assays by standardizing different commercial test kits
using generally accepted reference materials [54–60].

2.3. Calcitriol as Functional Ligand of the Vitamin D Receptor, the Expression of Vitamin D Target
Genes, and the Effect on Biological Processes

The circulating calcitriol concentration is sustained in a narrow range by the above-
mentioned autoregulatory feedback system, provided that there is no serious vitamin D
deficiency (status measured by 25(OH)D concentrations: <25 nmol/L or <10 ng/mL) [61].
The reference ranges of calcitriol in the serum/plasma of healthy adults have been reported
to be between 59 and 159 pmol/L, as determined through liquid chromatography with
tandem mass spectrometry [62] and between 43 to 228 pmol/L when measured through
isotopic and non-isotopic immunoassays [63]. This means that the circulating calcitriol
concentration is 1000 times lower than that of circulating 25(OH)D.

Calcitriol is the biologically active vitamin D metabolite in tissues [64–66]. As il-
lustrated above (Figure 2), the prostate has a complete set of enzymes that enable the
biosynthesis and degradation of calcitriol. The intraprostatic calcitriol level is not a result
of the passive diffusion of circulating calcitriol but is predominantly determined by the
internalized precursor 25(OH)D3 from the circulation and subsequent 1α-hydroxylase
activity [44,67].

Within cells, calcitriol acts in the different organs as a ligand of the VDR (recently
reviewed in detail in [68,69]; see Figure 1B). Briefly, VDR is a member of the nuclear re-
ceptor superfamily, has a structurally conserved ligand-binding domain, and functions
as a transcription factor activated by its high-affinity ligand calcitriol [70]. In the ligand
binding pocket of the VDR, calcitriol is fixed by three critical pairs of polar amino acids via
hydrogen bonds with the three OH groups of calcitriol. The binding of calcitriol changes
the protein–protein interaction characteristics of the VDR and its DNA-binding partner
retinoid X receptor (RXR). This heterodimeric complex binds to the vitamin D response ele-
ments (VDRE). The specific binding of co-activators with chromatin-modifying enzymes is
facilitated and increased chromatin accessibility is supported by the rearrangement of nucle-
osomes at many genomic regions, termed the chromatin model of vitamin D signaling [71].
Because of these epigenome changes, a regulatory loop of the VDR-bound enhancers pro-
moting accessible transcription start sites can be created. Increased or decreased expression
of numerous vitamin D target genes leads to the synthesis of corresponding mRNAs, which
leave the cell nucleus and are translated into proteins characteristic of various physiological
functions [72] (Figure 1B). More than 50 vitamin D target tissues have been identified
(https://www.proteinatlas.org/ENSG00000111424-VDR/tissue, accessed on 6 April 2024)
and 100 to 500 primary vitamin D target genes can be assumed per tissue [71,73,74]. The
different VDR-expressing tissues and cell types are differently equipped with vitamin D
target genes [69,75,76]. Vitamin D target genes have been classified into primary target
genes, which are directly regulated by the activated VDR, and secondary target genes,
which are regulated by factors such as transcription factors that are encoded by primary

https://www.proteinatlas.org/ENSG00000111424-VDR/tissue
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target genes [72]. Thus, the cell- and tissue-specific pleiotropic effects of vitamin D are
mediated through the subsequent cross-talk with tissue- and cell-specific metabolic path-
ways. Therefore, it is not surprising that Carlberg [72] characterized the biological processes
in which vitamin D is involved as follows: “in summary of all VDR-expressing tissues,
vitamin D has rather ubiquitous functions”.

3. Vitamin D in Preclinical Studies of Prostate Cancer

In the late 1960s, the identification of 25(OH)D3 and 1,25(OH)2D3 as essential metabo-
lites of vitamin D3 and the discovery of the VDR created the crucial prerequisites for
basic experimental studies exploring the molecular effects triggered by vitamin D in a
variety of cancer types [77,78]. Using new advanced technologies in molecular biology,
detailed cellular and molecular changes at all omics levels (e.g., genomics, transcriptomics,
epigenomics, and metabolomics) that are triggered through the activation of the VDR by
calcitriol have now been characterized [21,24,25,79,80]. Finally, the anti-cancer effects of
calcitriol have been evidenced in numerous fundamental biological processes, such as
cell proliferation, differentiation, apoptosis, cell invasion and metastasis, angiogenesis,
epithelial-mesenchymal transition, oxidative stress, and innate and adaptive immunity
(recently reviewed in [14,69,81–84]).

In prostate cancer, the role of biologically active calcitriol—both alone and combined
with various drugs—has been investigated in numerous preclinical studies based on
cell cultures, complex cell models (e.g., patient-derived organoids), xenografts, ex vivo
explants, and animal studies [18–27]. For example, three different mice models have
revealed that mice fed a vitamin D3-deficient diet (zero or only 25 IU vitamin D3/kg)
exhibited significantly faster PCa growth and metastasis and increased severity of prostate
intraepithelial neoplastic lesions when compared with mice supplied with a therapeutic
vitamin D3 diet (1000 or 10,000 IU vitamin D3/kg) [23,85,86]. Moreover, using a human
PC3 prostate xenograft mouse model, enhanced inhibition of tumor growth was observed
when calcitriol was administered in combination with a CYP24A1 inhibitor, which inhibits
the degradation of calcitriol by reducing 24-dihydroxylase activity (Figure 1) [87].

In Table 1, the study characteristics of selected cell culture and organoid experiments
are compiled, showing the tested calcitriol concentrations and the observed biological ef-
fects. The calcitriol concentrations used in these preclinical studies were generally between
10 and 100 nmol/L; however, the calcitriol concentrations used in the experiments should
correspond to those determined in human prostate tissue before and after different doses
of vitamin D supplementation. Meaningful experimental results on the biological effects of
vitamin D can only be expected if the calcitriol concentrations used in the experiments are
comparable to those present in the prostate.

Table 1. Cellular, transcriptional, and metabolic effects in experimental calcitriol treatment studies.

Reference, Year Study Object a Calcitriol (nM)
Treatment Effects of Calcitriol

Blutt et al., [88]
2000 LNCaP cells 10–100 Cell growth inhibition

Enhanced apoptosis

Krishnan et al., [89]
2004 LNCaP cells 50 Numerous up-and down-regulated genes

Stewart et al., [90]
2005

LNCaP, DU 145, PC-3,
C4-2, LAPC-4 cells 100 Cell growth inhibition independent on IGFBP3

Bao et al., [18]
2006

LNCaP, PC-3,
DU 145 cells 100 Decreased PCa cell invasion by TIMP1

modulated MMP9

Bao et al., [91]
2008

DU 145, BPH-1, RWPE-1,
CWR22R cells 100 Antioxidative effects in non-malignant prostate

cells through G6PD activation
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Table 1. Cont.

Reference, Year Study Object a Calcitriol (nM)
Treatment Effects of Calcitriol

Kovalenko et al., [92]
2010 RWPE-1 cells 100

Multiple calcitriol-regulated tran-scripts of
anticancerogenic path-ways (WNT, Notch,

NFKB1)

Hidalgo et al., [93]
2011

Benign- and
cancer-associated prostate

fibroblasts
100 Cell-dependent VDR-mediated transcriptional

activities

Giangreco et al., [94]
2013

RWPE-1, RWPE-2, LNCaP,
primary cells isolated from

human prostate
10–100 Upregulation of tumor suppressive miRNAs

(miR-100, miR-125b)

Singh et al., [79]
2015

RWPE-1, RWPE-2, HPr1,
HPr1AR, LNCaP, C4-2,

PC-3 cells
100

Identification of VDR-regulated miRNA
patterns and patterns of miRNA and mRNA

co-regulation

Abu El Maaty et al., [22]
2017

LNCaP, VCaP, DU 145,
PC-3 cells 100 Disruption of glucose metabolism and the

tricarboxylic acid cycle

McCray et al., [25]
2021

Patient-derived benign
prostate epithelial

organoids
10–50 Inhibition of WNT activity and suppression of

DKK3

Erzurumlu et al. [95]
2023 LNCaP, 22Rv1 cells 2.5–100 Inhibition of the androgen receptor signaling

and tumor formation of LNCaP cells
a Applied cell lines according to the nomenclature suggested by Germain et al. [96]: cell lines derived from
normal prostate epithelial cells (BPH-1, RWPE-1, HPr1, HPr1AR); cell lines derived from PCa as androgen-
dependent PCa cell lines (LNCaP, LAPC-4, VCaP) and androgen-independent cell lines (PC-3, DU 145, C4-2), and
androgen-sensitive cell lines (CWR22R) that can proliferate without androgens, but show a faster proliferation
if androgen is a component in the culture medium. Abbreviations: Insulin-like growth factor binding protein 3
(IGFBP3); prostate cancer (PCa); TIMP metallopeptidase inhibitor 1 (TIMP1); matrix metallopeptidase 9 (MMP9);
glucose-6-phosphate dehyrogenase (G6PD); nuclear factor kappa B subunit 1 (NFKB1); vitamin D receptor (VDR);
microRNA (miR); dickkopf WNT signaling pathway inhibitor 3 (DKK3).

To the best of our knowledge, only two studies to date have analyzed vitamin D
metabolites in human prostate tissue samples [37,97]. Wagner et al. [97] analyzed the
vitamin D metabolite levels of 25(OH)D3 and 1,25(OH)2D3 in serum and tissue samples
from four patient groups after radical prostatectomy in a randomized clinical trial. Patients
in the control arm were without vitamin D supplementation, while treated patients received
400 IU, 10,000 IU, or 40,000 IU of vitamin D3 per day for 3 to 8 weeks before surgery. Serum
and prostate tissue levels of 25(OH)D3 and 1,25(OH)2D3 increased in a dose-dependent
manner and were highly correlated with and among each other. However, regression anal-
yses showed positive intercepts for both metabolites in prostate samples at corresponding
extrapolated zero serum concentrations. These results confirmed that there was a basal
intraprostatic vitamin D metabolism that was not determined by the corresponding serum
concentration [97]. PCa tissue samples from different prostate zones showed compara-
ble calcitriol levels of 25 to 35 pmol/kg. It is worth noting that, even in patients with
a vitamin D dosage of 10,000 IU or an extremely high dosage of 40,000 IU per day over
weeks, the calcitriol levels in the prostate did not exceed 50 and 80 pmol/kg, respectively.
In these patients, individual serum levels of calcitriol were between 60 and 190 pmol/L
and 100–210 pmol/L, respectively, corresponding to the abovementioned upper reference
range for serum calcitriol.

In the second study, Richards et al. [37] analyzed benign prostate tissue samples from
African and European American PCa patients who underwent radical prostatectomy with-
out additional vitamin D supplementation. The calcitriol levels (95% confidence intervals)
were 65–96 pmol/kg for European American patients and 43–67 pmol/kg for African
American patients. The well-concordant values of both studies support the conclusion that
calcitriol levels in benign and malignant prostate tissue samples are below 100 pmol/kg.
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Considering the reference units of liter and kg to be largely equivalent, this means that the
calcitriol concentrations used in all of the above-mentioned preclinical studies (Table 1)
exceeded the intraprostatic concentrations several times, usually by a factor ranging from
100 to 1000.

4. Vitamin D in Clinical Studies of Prostate Cancer

Both observational studies and randomized controlled clinical trials (RCT) have been
conducted to validate the effects of vitamin D on human health. In oncological clinical
studies, cancer-typical factors such as incidence, recurrence, progression, survival rate,
and mortality can serve as target criteria (endpoint, outcome) for estimating the potential
health benefits of vitamin D. These outcome parameters are examined in observational
studies in relation to baseline serum 25(OH)D concentrations, as the accepted indicator of
the vitamin D status, and in RCTs regarding intervention-type research involving vitamin
D supplementation. In the following, we refer to data from meta-analyses, which enable a
comprehensive assessment of the research question by combining the effect sizes of several
quality-tested studies.

Since the 1990s, numerous observational studies—mostly case-control studies, nested
case-control studies, and both retrospective and prospective studies—have been published
on the incidence risk of PCa. In 2011, Gilbert et al. [98] illustrated the heterogeneity of the
various vitamin D studies, which did not allow for the association between vitamin D status
and PCa risk to be conclusively proven. In 2014, Xu et al. [99] conducted a meta-analysis
based on 21 vitamin D studies involving 11,941 cases and 13,870 control participants. Men
with higher serum 25(OH)D3 concentrations were found to have a significantly increased
risk of PCa by 17%. In 2018, another meta-analysis was carried out by Gao et al. [100],
without having taken note of the study by Xu et al. [99]. Gao’s meta-analysis was based
on 19 studies, including only nested case-control studies and prospective cohort studies.
However, the findings of Xu et al. [99] were confirmed in that higher serum 25(OH)D3
levels were significantly associated with an increased PCa risk (relative risk, RR: 1.15; 95%
CI: 1.06–1.24), accompanied by a dose–response effect by 25 nmol/L (10 ng/mL) 25(OH)D3.

Travis et al. [101] conducted a collaborative analysis of individual data from 19 prospec-
tive studies to assess the relationship between serum 25(OH)D3 and PCa risk. This meta-
analysis included 13,462 men with incident PCa of different degrees of aggressiveness and
20,261 men in the control arm. Of these, 14 and 12 studies were identical to those analyzed
by Gao et al. [100] and Xu et al. [99], respectively. The serum 25(OH)D3 concentration was
positively associated with total PCa risk (odds ratio, OR: 1.22; 95% CI: 1.13–1.31) but varied
depending on the degree of PCa aggressiveness. As shown in a detailed sub-analysis,
higher serum 25(OH)D3 was related to non-aggressive PCa (OR: 1.24; 95% CI: 1.13–1.36),
but not to aggressive PCa (OR: 0.95; 95% CI: 0.78–1.15) [100].

Conversely, no association was reported between the baseline serum 25(OH)D3 level
and PCa risk in a study including 4065 men with PCa from the Danish PCa Registry [102].
In the Kuopio Ischaemic Heart Disease Risk Factor Study, the pre-diagnostic 25(OH)D3
level and PCa incidence were evaluated in 2578 men with a follow-up time of 35 years and
adjusted for other risk variables [103]. Similarly, a connection between vitamin D status
and PCa incidence was not detected.

In contrast to these PCa risk results, there have been reports on PCa-specific mortality,
progression, and recurrence in relation to serum 25(OH)D3 levels [13,17,104–108]. A dose–
response meta-analysis of seven cohort studies showed that the mortality significantly
decreased with higher 25(OH)D3 levels, with an increment for every 20 nmol/L (8 ng/mL)
(hazard ratio, HR: 0.91; 95% CI: 0.87–0.97) [17]. In a large biobank cohort of 193,842 men,
PCa patients with deficient baseline serum 25(OH)D3 (<30 nmol/L or <12 ng/mL) levels
experienced higher mortality (HR: 1.36; 95% CI: 1.06–1.75) than patients with sufficient
25(OH)D3 levels (>50 nmol/L or >20 ng/mL) [13].

Other studies have reported that higher serum 25(OH)D3 levels were associated with
a 57% reduced risk of lethal PCa or an improved prognosis [104–106]. In a study including
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3849 patients who underwent radical prostatectomy, the pre-operative serum 25(OH)D3
concentrations were not associated with histological tumor grade, pathological tumor
stage, or biochemical recurrence [107]. This finding was supported by the authors in
a prospective prostate biopsy study including 480 men with suspected PCa, of whom
222 had prostate cancer and 258 had no evidence of malignancy [108]. The mean serum
25(OH)D3 concentrations did not differ between men with PCa and men with no evidence
of malignancy and were not related to Gleason grade as a progression indicator. These
exemplary observational studies highlight the contradictory results found between vitamin D
status and outcome parameters not only in different studies but also in different meta-analyses.

Several RCTs have been conducted to evaluate the potential benefits of vitamin D sup-
plementation on pancancer incidence and mortality, but few appropriate studies have pre-
sented data on site-specific cancers. Therefore, information about the results of pancancer
outcomes in relation to vitamin D supplementation and meta-analyses are considered here
to assess the situation for PCa. The first comprehensive pancancer meta-analysis, which
was based on thirty RCTs with vitamin D alone and analyzed publications from between
1945 and 2017, was carried out in 2018 [109]. Goulao et al. [109] did not find evidence
that cancer incidence and cancer mortality were reduced with vitamin D supplementation,
independently from its dosage and type of supplement (cholecalciferol, ergocalciferol). An
updated meta-analysis by Keum et al. [110], which included studies using higher doses of
vitamin D, confirmed the failed relationship between vitamin D and pancancer incidence
(RR: 0.98; 95% CI: 0.93–1.03), but revealed an improved pancancer survival rate (RR: 0.87;
95% CI: 0.79–0.96). In the large 5.3-year VITAL trial, 12,927 and 12,944 participants received
a daily 2000 IU vitamin D3 medication or a placebo, respectively [12,111]. Vitamin D
supplementation did not significantly reduce the primary outcome of pancancer incidence
(HR: 0.96; 95% CI: 0.88–1.06) or the second endpoint of PCa incidence (RR: 0.98; 95% CI:
0.72–1.07). The most recent meta-analysis from 2023, which included 14 RCTs published
between 2003 and 2022, found non-significant effects of vitamin D on pancancer mortality
(RR: 0.94; 95% CI: 0.86–1.02) and on PCa mortality (HR: 0.30; 95% CI: 0.08–1.07) [112]. This
result was confirmed through an additional meta-analysis involving the individual patient
data of the trials used in the conventional meta-analysis. However, sub-analysis of the
10 studies with daily vitamin D administration showed a 12% lower cancer mortality in the
vitamin D group compared to the placebo group, but not in the remaining 4 studies using a
bolus regimen.

Several recent reviews have critically analyzed the possible reasons for the inconclu-
sive and conflicting outcome data of these two types of vitamin D-related clinical trials
and, likewise, between the two studies [16,83,113–115]. In addition to the analytical issues
mentioned above, typical shortcomings of the design of these clinical studies include the
number and selection of study participants, different follow-up times, different thresh-
olds for vitamin D status, unconsidered confounding variables, and missing/insufficient
adjustments of other influencing variables. Except the typical flaws in clinical studies,
vitamin D-specific seasonality must be particularly considered when evaluating vitamin D
studies. Stamp and Round [116] were among the first authors to report seasonal changes
in serum 25(OH)D concentrations with significantly lower values in winter/spring com-
pared with values in summer/autumn. They attributed these results from a two-year
follow-up study to increased vitamin D3 synthesis in the skin due to varying levels of
sun exposure. This is now a well-recognized fact [117] and must be considered in the
context of climatic, geographical (latitudes), and environmental (air pollution) factors that
influence the solar intensity for sufficient vitamin D3 synthesis and can alter the 25(OH)D3
concentrations [118,119]. Statistical evaluation can also lead to incorrect conclusions, as
shown by a very comprehensive vitamin D meta-analysis with 500,962 participants that
was published in 2021 which recently had to be corrected [10].

Furthermore, for a successful vitamin D-related study, it is particularly important
to consider specific characteristics of nutrient-related studies. Heaney [120] summarized
these special features and requirements through a guideline and defined rules for such
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studies; in particular, for vitamin D, they include (a) the measurement of vitamin D status
at baseline and repeated measurements to verify vitamin D status in the follow-up, (b) the
consideration of vitamin D deficiency as an inclusion criterion, and (c) the application of a
meaningful intervention that is capable of altering the vitamin D status. However, it should
be understood that following these requirements in clinical trials is particularly challenging,
as detected vitamin deficiencies require correction and cannot be pursued in the long term
from an ethical point of view [113]. All of these pitfalls explain the inconsistencies between
vitamin D studies in PCa patients, as mentioned above.

5. Discordance between Preclinical and Clinical Vitamin D Related Study Results in
Prostate Cancer

As discussed above in Section 3, the calcitriol concentrations used in preclinical studies
are generally 100 to 1000 times higher than the intraprostatic concentrations found under
both normal 25(OH)D3 status and with vitamin D supplementation [37,97]. Therefore, it
may be misleading to consider 100-fold higher calcitriol concentrations of 10 nmol/L in
model experiments as biologically relevant concentrations [25]. This is also illustrated by
the fact that the circulating levels of calcitriol and 25(OH)D3 are highly correlated with the
corresponding 30 to 70% lower intraprostatic tissue levels in the same picomolar concen-
tration range (Spearman’s rank correlation coefficients > 0.73, p = 0.0001) [97]. Moreover,
all study approaches based on calcitriol supplementation with extremely high peak serum
levels of 978–2420 pmol/L and even 7–11 nmol/L (partly in combination with chemothera-
peutics) in metastatic PCa patients were not successful in improving outcomes [121–123].
Performing calcitriol studies in PCa patients undergoing active surveillance has been sug-
gested [124]. However, there are no data on the intraprostatic concentrations of vitamin D
metabolites at such high serum concentrations. Similar to the androgen saturation model
postulated for PCa [125], it cannot be excluded that intraprostatic calcitriol homeostasis
is protected from serum changes and extremely high serum levels, as local calcitriol con-
centration is determined primarily through local synthesis of calcitriol from the uptaken
serum 25(OH)D3.

Therefore, we believe that the use of biologically irrelevant high concentrations of cal-
citriol in preclinical studies raises reasonable concerns regarding the postulated biological
relevance of the “myriad of biological effects” [68] and numerous subsequent biological
processes [14] observed in such experiments. This appears to be true not only for PCa but
also for other cancer entities, as calcitriol concentrations in other tissues are comparable to
those in the prostate (e.g., colon tissue with a mean value of 28 pmol/kg [126]).

It is reasonable to assume that the molecular VDR-mediated changes triggered by
extremely high calcitriol concentrations in experimental studies do not reflect the true bio-
logical situation, both quantitatively and especially qualitatively. Treatment of breast cancer
tissue slices with 0.5 nmol/L or 100 nmol/L of calcitriol and analysis with an Affymetrix hy-
bridization microarray showed clear dose–response-dependent transcriptional effects [127].
When compared to non-treated controls, 9 and 196 differentially expressed transcripts were
found at 0.5 nmol/L and 100 nmol/L, respectively [127].

Within the PCa tissue samples in the abovementioned randomized clinical trial by
Wagner et al. [97], the expression of CYP24A1—as a characteristic indicator of VDR and
calcitriol function—did not statistically differ between the subdivided samples regarding
tertile calcitriol concentrations in the ranges of 15–24, 25–33, and 34–79 pmol/kg [21]. In
contrast, in patient-derived benign prostate epithelial organoids using 10 nmol/L calcitriol
and subsequent single-cell RNA sequencing analysis, increased CYP24A1 mRNA was
found together with numerous transcripts of other pathways [25]. These data underscore
the dose–response effects of calcitriol that need to be considered in the future design of
experimental studies to determine the actual effects of calcitriol at biologically relevant
concentrations. Aside from direct tissue-specific effects, vitamin D also modulates immune
responses and inflammation in cancer [128,129], an effect that is not accountable for in
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cell line or xenograft models and may contribute to the observed discrepancies between
preclinical and clinical studies.

The discrepancies between preclinical and clinical studies highlight that preclinical
outcomes result in well-documented and biologically explainable changes at the molecular
and cellular levels, while clinical studies show inconsistent and conflicting results regard-
ing integrative outcome parameters such as incidence, progression, and mortality. This
suggests that preclinical experimental designs with non-biologically relevant high calcitriol
concentrations are a major reason for this discordance.

6. Conclusions and Outlook for Future Research

The literature data on the effects of vitamin D in the context of prostate cancer reveal
clear differences between results from preclinical and clinical studies. We have outlined
here that while preclinical studies demonstrated pronounced effects of vitamin D treatments
at molecular and cellular levels, these are not translated to consistent effects on clinical
outcomes including PCa incidence and mortality within clinical trials. A key reason for this
discordance seems to be the higher concentrations of calcitriol used in preclinical studies
which are not found naturally in human prostate. We believe that this discordance is
transferable to other cancer entities, although detailed data on tissue concentrations of
vitamin D metabolites are currently lacking.

To address this disparity and avoid misleading conclusions, future research should:
(a) collect detailed metabolite profiles of vitamin D for the various target organs of interest
under physiological and pathological (cancer) conditions, (b) conduct well-designed studies
using corresponding biologically relevant calcitriol concentrations in cancer or stem cells
derived from human organs and in patient-derived organoids, and (c) use the results to
improve the design of vitamin D clinical trials through meaningful and feasible molecular
biology analyses [130,131].
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CWR22R
androgen-sensitive cell line derived from a human PCa xenograft serially propagated
in mice that can proliferate without androgens, but show a faster proliferation with
androgen as component in the culture medium

CYP24A1 cytochrome P450 family 24 subfamily A member 1
CYP27A1 cytochrome P450 family 27 subfamily A member 1
CYP27B1 cytochrome P450 family 27 subfamily B member 1
CYP2R1 cytochrome P450 family 2 subfamily R member 1
DKK3 dickkopf WNT signaling pathway inhibitor 3
DU 145 androgen-independent PCa cell line
G6PD glucose-6-phosphate dehyrogenase
HPr1 cell line derived from normal prostate epithelial cells
HPr1AR cell line derived from normal prostate epithelial cells
HR hazard ratio
IGFBP3 insulin like growth factor binding protein 3
LNCaP androgen-dependent PCa cell line
LRP2 LDL-receptor-related protein 2
miRNA, miR microRNA
MMP9 matrix metallopeptidase 9
NFKB1 nuclear factor kappa B subunit 1
Notch Notch signalling pathway
OR odds ratio
PC-3 androgen-independent PCa cell line
PCa prostate cancer
RCT randomized controlled clinical trial
RR relative risk
RWPE-1 cell line derived from normal prostate epithelial cells
RWPE-2 androgen-dependent PCa cell line from early stage PCa
RXR retinoid X receptor
TCGA The Cancer Genome Atlas
TIMP1 TIMP metallopeptidase inhibitor 1
VCaP androgen-dependent PCa cell line
VDBP vitamin D binding protein
VDR vitamin D receptor
VDRE vitamin D reponse elements
WNT WNT signaling pathway
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