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Abstract: Over the last decades, the survival of multiple myeloma (MM) patients has considerably
improved. However, despite the availability of new treatments, most patients still relapse and become
therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM
patients’ outcome, while typically evolving over time. Because of the patchy bone marrow (BM)
infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation
of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived
liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation
without the discomfort of repeated BM aspirations. In this review, we compare the application
potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and
extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.

Keywords: liquid biopsy; multiple myeloma; mutation profiling; cell-free DNA; circulating tumor
cells; extracellular vesicles; personalized medicine

1. Introduction

Multiple myeloma (MM) is a hematological malignancy characterized by the prolifera-
tion and accumulation of monoclonal, neoplastic plasma cells in the bone marrow, generally
associated with the presence of monoclonal proteins in blood and/or urine and end-organ
damage [1,2]. The typical clinical features of MM include hypercalcemia, osteolytic bone
lesions, anemia, and renal insufficiency, often referred to as CRAB lesions. The incidence
of MM has increased over the past three decades, with over 176,000 incident cases in 2020
worldwide and is expected to further increase coinciding with the population ageing [3,4].
It is well known that the incidence of MM is higher among men and non-Hispanic black
people, which has been attributed to a higher incidence of MGUS in these populations [5,6].
Mainly because of the introduction of autologous stem cell transplantation and novel ther-
apeutic agents such as proteasome inhibitors and immunomodulatory drugs during the
past decades, survival among MM patients has considerably improved. However, patients
continue to relapse, and, in particular, those with high-risk disease characteristics including
unfavorable cytogenetic abnormalities have inferior outcomes [7–11]. The increasing use of
next-generation sequencing (NGS) technology over the last decade has shown that in many
MM patients, a complex, dynamic tumor mutation profile occurs that affects prognosis
and therapeutic response [12–17]. In addition, several studies have demonstrated a spatial
genetic heterogeneity in the BM compartment of MM patients. This may potentially lead to
an incomplete assessment of the genetic heterogeneity when using conventional single-site
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bone marrow aspirates [18–20]. As a result, there is an increasing interest in the use of
“liquid biopsies”, consisting of blood samples from which circulating tumor markers such
as circulating tumor cells (CTCs) and cell-free DNA (cfDNA) can be isolated to character-
ize the genetic tumor profile. Although this approach seems promising and creates new
possibilities in an era where precision medicine increasingly becomes the standard of care,
questions regarding feasibility and reliability also need to be addressed. In this review,
we therefore aim to summarize the current knowledge about the use of liquid biopsies for
mutation profiling in MM, discuss the challenges associated with their use, and look ahead
towards new applications of liquid biopsies in MM.

2. Molecular Characterization in Multiple Myeloma and Impact on Prognosis and
Therapy Response

The development of MM is preceded by an asymptomatic plasma cell proliferation,
called a Monoclonal Gammopathy of Unknown Significance (MGUS), representing the
earliest stage of this complex disease. Primary genetic events appear to take place in the
germinal center of lymph nodes, facilitated by a phase of somatic hypermutation and the
isotype switching of maturating B-cells. The initial cytogenetic alterations driving the de-
velopment of MGUS consist of IgH translocations that implicate and deregulate oncogenes
such as CCND1, MMSET, MAF (=non-hyperdiploid type), and trisomies of chromosomes 3,
5, 7, 9, 11, 15, 19, and 21 (=hyperdiploid type) (Figure 1) [21]. Importantly, according to the
International Myeloma Working Group (IMWG), the t(4;14), t(14;16), t(14;20), del(17/17p),
non-hyperdiploidy, and gain(1q) are cytogenetic abnormalities that are associated with in-
ferior prognosis [22]. Although these key genetic changes are already detectable in patients
with MGUS, somatic variants occur at lower frequencies and with a lower degree of com-
plexity in the early stages of plasma cell dyscrasia and are typically acquired throughout
progression towards more advanced disease stages [23–25]. At least one mutation in the
MAPK pathway, containing the oncogenes NRAS, KRAS, and BRAF, occurs in ±50% of
all MM patients [25,26]. Genes associated with the NF-kB (e.g., TRAF3, LTB, CYLD) and
DNA repair pathways (e.g., ATM, ATR and TP53) are mutated in ±20% of MM patients
and are also among the most commonly affected in MM [12,27–29]. Germline variants in
DIS3, KDM1A, ARID1A, and USP45 in families with multiple cases of MM/MGUS are
associated with an increased risk of MM development [30–32]. However, their exact role in
MM pathogenesis has not yet been elucidated.
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Figure 1. Evolving genetic profile in multiple myeloma throughout disease progression.

Currently, mutation profiling using NGS is not routinely performed in the diagnostic
work-up of MM, and genetic characterization is still mainly focused on the detection of
the above-mentioned cytogenetic alterations. Instead, the use of NGS in clinical practice
is directed towards the detection of Measurable Residual Disease (MRD) in MM via the
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detection of the tumor-specific rearrangements in the IgH, IgK, and/or IgL loci [33,34] It
has been shown that obtaining MRD negativity is strongly associated with an improved
survival outcome, with the optimal threshold for MRD sensitivity set at 10−6 [35]. However,
with whole-genome sequencing becoming increasingly accessible in clinical practice, there
is a growing interest in the characterization of mutations associated with therapy resistance
and prognostic impact. Mutations in the PSMB5 gene are implicated in resistance to
proteasome inhibitors (PI, e.g., bortezomib), while mutations in CRBN and genes of the
Cereblon pathway are associated with resistance to treatment with immunomodulatory
agents (IMiDs) [36,37]. Only very recently, Perroud et al. showed that mutations in the
MAPK pathway are associated with unfavorable outcomes in patients treated with PI/IMiD
combinations [15]. Furthermore, it has been reported that mutations in TP53, ATM, ATR,
and CCND1 confer to an inferior prognosis, while IRF4 mutations have been associated
with a favorable prognostic impact [12]. These findings highlight the potential impact
of mutation profiling to assess prognosis and the chances of therapeutic success more
accurately and guide clinicians in a personalized therapy decision-making process.

3. Liquid Biopsies: A Comprehensive and Non-Invasive Alternative to Bone
Marrow Aspirates

MM is characterized by a patchy tumor infiltration pattern in the bone marrow, and
it has been demonstrated that the cytogenetic alterations and mutations differ between
different tumor sites demonstrating spatial genetic heterogeneity [18–20,38–40]. Therefore,
single-site bone marrow aspirates do not address this spatial heterogeneity (Figure 2). The
presence of a significant degree of subclonal heterogeneity, including site-specific subclones,
adds another layer of genomic complexity to the characteristics of MM [20,23,39]. This
subclonal diversity, with the presence of subclones harboring different genetic alterations
conferring to therapy resistance, represents an important therapeutic challenge. The spatial
genetic heterogeneity in the BM of MM patients and the dynamic evolution of the mutation
profile throughout disease progression necessitate a flexible tool for characterization and
follow-up. Because of the limitation to one single bone marrow site and the invasive nature
of bone marrow aspirates, blood-based monitoring or liquid biopsies are a better tool to
track the genetic changes over time. Also, they allow for non-painful, non-invasive, and
frequently repeatable sample collection. An increasing number of studies support the
applicability of circulating biomarkers for non-invasive genetic characterization in MM.
Among the most studied biomarkers for this purpose are cfDNA and CTCs. These studies
not only showed that these biomarkers can reliably reflect the tumor BM mutation profile
but also highlighted the fact that circulating biomarkers can reveal genetic alterations not
detected in matched BM samples [38,41–49]. In the following paragraphs, we will discuss
these biomarkers and the evidence supporting their applicability in more detail.
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4. Circulating Tumor Cells (CTCs)
4.1. Characteristics

One of the hallmarks characterizing malignant tumors is their ability to spread beyond
the primary tumor site and cause disease dissemination at secondary locations. In MM,
CTCs may play a central role in this process [50–52]. With average levels between 1 and
3.5 CTCs/µL, CTCs are detectable in virtually every MM patient with active disease when
using sensitive techniques such as next-generation flow cytometry [48,50,51,53]. MM CTCs
include PCs exhibiting phenotypically more immature characteristics with a decreased
expression of integrins (CD11a, CD11c, CD29, CD49d, and CD49e) and adhesion molecules
CD56 and CD117 [50,51]. This phenotype may result in a decreased capability to interact
with the BM microenvironment, hence favoring escape into the bloodstream. Moreover,
CTCs are associated with a quiescent state and an increased clonogenic potential, favoring
the formation of secondary tumor lesions when re-entering the BM, and they might act
as MM stem cells [50,51,54]. A recent study showed the overexpression of the stem cell
marker CD44 and a decreased expression of genes related to proliferation (e.g., CDC6) in
CTCs [55]. Interestingly, CTCs showed the overexpression of genes related to hypoxia (e.g.,
DDIT4) and epithelial–mesenchymal transition-related processes (e.g., EMP3), which are
both hypothesized to contribute to the egression of CTCs out of their original BM niche
and disease spreading [55,56].

4.2. Mutation Profiling in MM Using CTCs

The level of detectable CTCs is prognostically important, and high numbers confer
to a faster disease progression and inferior survival rates in patients with MGUS, SMM,
and MM [51,57–60]. Only a handful of studies so far investigated the applicability of
CTCs for mutation profiling in MM (Table 1) [41,42,46–48]. Lohr et al. (2016) performed a
single-cell mutational analysis on BM MM cells and CTCs isolated in 9 MM-patients [47].
They reported a 100% concordance between mutations found in BM MM cells and matched
CTCs. Of note, the proportion of BM MM cells and CTCs harboring a mutation showed
considerable intra- and interpatient variation and two mutations in BRAF and NRAS were
only found in CTCs and not in matched BM MM cells. This study is, however, limited by
the small number of patients (n = 9) and limited number of genes that were investigated
and a moderate coverage depth. Mishima et al. (2017) used whole-exome sequencing
(WES) to analyze the mutation profile in eight patients with paired BM and CTC DNA
samples [46]. Although limited by the small sample size, an excellent concordance was
observed, with 90% of CTC mutations (n = 572) detectable in BM and, inversely, 93% of BM
mutations (n = 658) also detectable in CTCs. In addition, analysis of the cancer cell fraction
(CCF) showed a near-100% concordance between clonal mutations detected in BM and
CTCs, whereas 16% of the somatic variants were subclonal and only detectable in either BM
or CTCs. In contrast to these results based on a limited number of matched CTC/BM MM
cells samples used for sequencing, recent studies have expanded genetic analysis to larger
patient cohorts [42,48]. Garcés et al. (2020) performed WES on 18 matched CTC/BM MM
cell samples and reported an 82–86% concordance in the mutation profile. Interestingly,
this analysis also included eight extramedullary (EM) plasmacytoma samples that were
compared with matched CTC/BM MM cells. Here, an 87% concordance was observed
between the mutation profiles in EM tumor cells and CTCs [48]. The ability of CTCs to
permit the detection of mutations originating from the EM tumor compartment, which is
often difficult to reach to conduct a biopsy, is an example of their added value. Moreover,
CTCs might be responsible for the development of EM disease, given the high degree of
mutational concordance between EM PCs and CTCs (e.g., shared mutations in ZNF717,
MTOR, and KLHL6) [48,61]. It is, however, clear from the results discussed above that
some degree of discordance between the mutation profiles in BM-DNA and CTCs is nearly
always present. It is particularly interesting to determine whether mutations detected in
BM but absent in matched CTCs could be detected in other sample types, such as cfDNA.
This has been addressed in a very limited number of sequencing studies so far [41,42].
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Of the clonal somatic variants present in the BM, Manier et al. (2018) detected 99% in
cfDNA or CTC DNA in four patients with matched samples. However, several patients had
somatic variants that were only detected in either cfDNA or CTCs [41]. It has recently been
shown by Heestermans et al. (2022) that cfDNA allowed for the detection of 6/12 (50%) of
BM+ somatic variants that were not detected in matched CTC samples [42]. These results
highlight the fact that each biomarker can reveal unique variants that are not necessarily
detectable in other matched circulating biomarkers, adding additional complexity to the
mutational landscape in MM.

Table 1. Overview of studies reporting mutation profiling data by analyzing CTC DNA samples.
WGA: whole-genome amplification; ULP-WGS: ultra-low-pass whole-genome sequencing.

Study Number of Patients Methodology Findings Limitations

Lohr et al.,
2016 [47]

9 patients with matched
BM MM cells and CTCs

- Single-cell mutation
analysis

- Multiplex PCR—Ion
Torrent PGMTM

- 12 mutations detected
- All mutations found in

BM MM cells also
detected in matched
CTCs

- CTCs showed
additional mutations
not detected in BM MM
cells

- Single-cell analysis
less suited for
routine laboratory
practice

- Moderate coverage
depth

- Low sample
number

- Low number of
interrogated genes

Mishima et al.,
2017 [46]

29 patients, including
8 patients with matched
BM, CTC, and germline
DNA samples

- WES on 13 CTC
samples, including
paired samples

- Targeted gene
sequencing on an
additional 16 CTC
samples

- 93% concordance
between BM and CTC
mutations

- 16% of somatic
mutations are subclonal
and un-shared between
BM PCs and CTCs

- Potential bias
associated with use
of WGA

- Low number of
matched BM/CTC
samples

Manier et al.,
2018 [41]

107 cfDNA and 56 CTC
samples, including
4 patients with matched
BM-cfDNA-CTC samples

- WES on matched
samples

- ULP-WGS for
tumor fraction
estimation

- In cases with matched
BM-cfDNA-CTC, 99% of
clonal mutations in BM
also detected in cfDNA
or CTCs

- 6% of mutations
detected in cfDNA
and/or CTCs only

- Low number of
matched
BM/CTC/cfDNA
samples

- Limited
applicability of WES

Garcés et al.,
2020 [48]

53 patients with matched
BM MM cells and CTCs (8
with EM disease sample),
with mutation profiling in
18 patients

- WES preceded by
WGA in 8 patients

- WES preceded by
molecular
barcoding in
10 patients

- 82–86% concordance
between BM and CTC
mutations

- 87% concordance
between EM tumor cells
and CTC mutations

- Limited
applicability of WES
due to costs and
required expertise

Heestermans et al.,
2022 [42]

30 MM patients, including
29 patients with matched
BM DNA, cfDNA,
EV-DNA, and CTC DNA

- Targeted gene
sequencing with a
165-gene panel

- 83% concordance
between BM and CTC
mutations

- 10% of mutations
detected in CTCs but
not in BM

- Limited number of
interrogated genes

- No estimation of
tumor fraction
performed because
no WGS/WGA data
available

4.3. Biological Challenges in the Isolation of CTCs

To select and optimize a biomarker, technological challenges for isolation and use
must be examined. The low absolute CTC counts in the blood of MM patients make
their isolation and genetic interrogation challenging. In some of the studies cited above,
CTCs were isolated from peripheral blood using an immunomagnetic enrichment method
targeting the CD138 antigen [41,42,47]. Lohr et al. (2016) also targeted the CD45 antigen
in their single-cell study [47]. However, the surface expression of CD138 in CTCs is lower
compared to the clonal PCs in BM, which could hamper the efficiency of enrichment
methods targeting this specific marker [50,62]. Currently, the CellSearch® system is the
only FDA-approved method for the capture and detection of CTCs that is intended for
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application in solid tumors [63]. Foulk et al. (2017) successfully applied this platform to
isolate MM CTCs (defined as CD138+, CD38+, DAPI+, CD45−, and CD19−) and used
them for downstream genetic analysis. Although targeting more surface markers than
CD138 alone, the average recovery of spiked HMCL H929 cells was still limited to 61% [64].

Hence, the heterogeneous expression of CD138, CD38, and CD45 on malignant PCs
represents a limitation for the use of enrichment methods to capture CTCs [65]. Other
studies have used (next-generation) multiparametric flow cytometry (NGF) to sort CTCs
based on aberrant patient-specific immunophenotypic features [46,48]. NGF could be of
particular interest to detect MRD in the blood of MM patients by targeting CTCs, although
current MRD assessment strategies still rely on BM evaluation [66]. The application of
NGF requires prompt sample processing (as is the case for enrichment methods) and a
high degree of local expertise to produce reliable results. Moreover, as the phenotype of
malignant PCs can change over time after therapy exposure, this could make the detection
of CTCs with NGF in a relapse setting more difficult [67]. Given the challenges associated
with the isolation of CTCs, other circulating biomarkers like cfDNA that require less pre-
analytical sample processing might be an interesting alternative for non-invasive genetic
characterization in MM.

5. Cell-Free DNA (cfDNA)
5.1. Characteristics, Isolation Methods, and Associated Challenges

The presence of circulating nucleic acids in the blood of healthy individuals was
first described in 1948 by Mandel and Métais [68]. In 1989, Stroun et al. discovered the
presence of cfDNA originating from cancer cells in the blood of these patients, known
as circulating tumor DNA (ctDNA) [69]. The discovery of cfDNA of fetal origin in the
blood of pregnant women has led to the development of the NIPT test, which is now
routinely performed in many countries for the prenatal detection of fetal trisomies [70].
Over the last decades, cfDNA has been increasingly studied as a non-invasive biomarker
for genetic characterization and disease follow-up in MM and other cancers. The exact
origin of cfDNA and ctDNA is still under debate, although it is generally accepted that
cellular breakdown mechanisms such as necrosis and apoptosis play an important role
in their release [71,72]. The typical peak in size distribution around 166 bp of double-
stranded cfDNA fragments corresponds to the length of a nucleosome in which the DNA
is cleaved after apoptosis, which supports this hypothesis. However, ctDNA fragments
are typically shorter (<150 bp) [72]. Furthermore, it has also been suggested that the active
release of cfDNA and ctDNA, e.g., associated with extracellular vesicles, plays an important
role [72,73]. A plethora of commercially available kits for cfDNA extraction are currently
available. Most isolation principles are based on binding the cfDNA to magnetic beads
(e.g., Maxwell RSC kit® (Promega)) or to columns coated with silica gel membranes (e.g.,
QIAamp circulating nucleic acid kit® (Qiagen)) [74].

Because various (semi-)automated extraction devices are already available on the
market, cfDNA has a high application potential in a clinical laboratory setting. However, a
lack of standardization regarding the specimen collection and cfDNA extraction methods
currently exists. This represents a major challenge in widespread clinical use, although
recent harmonization efforts have been undertaken to provide guidelines for pre-analytical
handling of cfDNA [75]. The choice of using serum or plasma for cfDNA extraction has
an important impact on the results [76,77]. A higher degree of contamination with high-
molecular-weight gDNA fragments is observed in serum compared to plasma [76,77]. This
is most likely due to the release of cellular DNA from lysing WBC during the clotting
process in serum specimens. The contamination with gDNA subsequently decreases the
ctDNA detection rate and mutant allele fraction, hampering the clinical application of
ctDNA [76,77]. Hence, plasma should be chosen over serum as the specimen type for
cfDNA extraction. When considering the sample storage conditions prior to centrifugation
and cfDNA extraction, plasma cfDNA levels remain stable for 24 h when whole blood is
stored at 4 ◦C in K2-EDTA tubes [76]. In contrast, Cell-Free DNA BCT® provides a cfDNA
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stability within the unprocessed specimen up to several days, even when stored at room
temperature. Thus, using cold-stored EDTA tubes for cfDNA extraction is a valid and
cost-efficient strategy only when immediate sample processing is possible (within 24 h after
collection). If sample processing is delayed, then the use of cfDNA stabilizing tubes should
be favored.

The influence of the highly fragmented nature of cfDNA on the accuracy of commonly
used quantification methods represents another challenge. Several studies have demon-
strated that DNA fragmentation levels do not affect spectrophotometric quantification,
whereas the performance of both fluorometric and qPCR-based quantification methods are
considerably impaired in small DNA fragments with a size of around 150 bp [78,79]. An-
other limiting feature of ctDNA is its low abundancy. In most healthy individuals, cfDNA
concentrations in the blood range between 0 and 100 ng/mL, and, in cancer patients, this
generally increases to concentrations ranging between 0 and 1000 ng/mL [80]. The ctDNA
fraction only represents a part of the total cfDNA. Lower ctDNA levels are measured in
early tumor stages, and detectability may vary between patients and depend on the tumor
type [81]. Hence, the isolation, quantification, and analysis of ctDNA is indeed challenging.
However, a lot of progress has been made in the past decade in NGS technology, improving
the sensitivity of ctDNA detection and downstream analysis.

5.2. Mutation Profiling in MM Using cfDNA

The use of cfDNA for mutation profiling in MM has been investigated by several
research groups in the past few years [38,40–45,49,82–85]. Most studies so far used a tar-
geted gene-sequencing strategy [38,42–44,49,83], while ddPCR [82,84] and WES [40,41,45]
have also been used to a lesser extent. The observed proportion of variants found in
BM-DNA that are also detectable in matched cfDNA samples varies between ±30% and
100%. However, most of the studies observed a > 80% concordance between BM-DNA and
cfDNA [41–43,45,82,84]. This indicates that the BM-DNA mutation profile can be accurately
characterized using cfDNA as a proxy. BM-DNA mutations not detected in cfDNA often
have a low variant allele frequency (VAF) [42–44,49]. Hence, the detection of variants with
a low tumor fraction in cfDNA is more challenging, as the ctDNA is diluted in a larger
pool of cfDNA. On the other hand, nearly all studies report variants that are exclusively
present in cfDNA and not detected in matched BM-DNA [38,40–43,45,49,82,83]. The most
likely explanation for this is the spatial genetic heterogeneity in MM [18–20,38–40]. The
ability to capture variants from distant tumor sites not reached by a single-site bone marrow
aspirate represents a powerful advantage of using cfDNA. As EM disease is often located at
body sites that are not easily accessible for a conventional biopsy, this advantage especially
holds true for MM patients with EM disease [40]. Mithraprabhu et al. demonstrated major
differences in the mutation profiles of BM and EM MM tumor sites and matched cfDNA
in a patient with EM disease. Although a low-coverage WES approach was used, cfDNA
permitted the detection of a major amount of the variants detected in BM/EM tissue, while
also revealing unique variants detected in neither of the tumor tissues [40]. Taken together,
the combined genetic analysis of cfDNA and primary tumor gDNA represents a valid
strategy for comprehensive mutation profiling in MM patients.

5.3. cfDNA-Based Monitoring of Treatment Response and Disease Progression

Several studies have reported that the longitudinal tracking of ctDNA can be infor-
mative in detecting MM disease progression or treatment response [38,40,41,43,45,83–85].
Changes in cfDNA tumor fraction and allelic frequency in specific mutations are often con-
sistent with observable changes in standard measures of clinical progression (e.g., FLC ratio
changes). Moreover, Mithraprabhu et al. observed that changes in ctDNA level can precede
changes in serum FLC, thus permitting the earlier detection of disease progression [38]. This
finding is supported by Rustad et al., who used ctDNA monitoring and showed that relapse
could be detected three and nine months earlier in two MM patients, before serological
changes became apparent [84]. In a patient with refractory EM disease, the levels of ctDNA
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continued to rise during progression, while FLC levels even paradoxically decreased [40].
Thus, in some cases, ctDNA-based monitoring outperforms conventional biomarkers to
predict progression and trigger a change in therapy. Particularly in non-secretory MM,
where no standard serological markers are available, serial analysis of cfDNA mutation sta-
tus can be useful to evaluate response to therapy. Importantly, serial analysis of ctDNA can
also reveal the appearance of new targetable mutations, providing an additional advantage.

6. Extracellular-Vesicle-Derived DNA (EV-DNA)
6.1. Characteristics of EVs and Applicability of EV-DNA for Mutation Profiling

The application of extracellular vesicles (EVs) as diagnostic and therapeutic tools
and their role in cancer pathogenesis have gained substantial interest during the last
decade. EVs are structures surrounded by a lipid bilayer. Depending on their size and
cellular release mechanism, they classify as exosomes (30–200 nm) released by exocytosis
of multivesicular bodies or microvesicles (100–1000 nm), which are released via budding
and shedding of the plasma membrane. The largest EVs are apoptotic bodies (>1000 nm),
which are released when cells undergo apoptosis [86]. Exosomes are thought to play an
important role in tumorigenesis by acting as a signal carrier between tumor cells and the
tumor microenvironment [87]. Currently, a multitude of EV isolation protocols exist that
lack standardization. Most isolation methods involve differential centrifugation, density-
gradient centrifugation, or ultracentrifugation. However, gel-permeation chromatography,
membrane filtration, and recently developed microfluidic devices are also used, with
varying success [88]. Interestingly, Thakur et al. demonstrated the presence of dsDNA
in tumor-derived exosomes. The analysis of exoDNA originating from cancer cell lines
permitted a detection of mutations with a 100% match to the mutation profile observed in
the cell lines [89]. These results suggest that DNA derived from extracellular vesicles might
be useful as a biomarker for mutation profiling. Indeed, in recent years, several studies were
able to detect mutations in EV-DNA from patients with various cancer types [42,89–96].
Studies have successfully detected KRAS and TP53 mutations in EV-DNA from patients
with pancreatic cancer [90,91,94,95]. Similarly, Hur et al. and Wan et al. used exosome-
derived DNA in NSCLC patients for EGFR genotyping [92,96]. Of note, in several studies
EV-DNA even outperformed ctDNA in the detection of tumor-derived mutations [91,94,96].
As EV-DNA within the vesicles is protected by the lipid bilayer and EVs are secreted by
metabolically active cells, EV-DNA might be a more stable and representative biomarker to
study the tumor genetic profile. This is in contrast to cfDNA, which is unprotected and
thus prone to rapid degradation, originating mainly from dying cells [97,98].

6.2. Challenges in the Isolation of EVs and EV-DNA

No standardized method for EV(-DNA) isolation is currently available, which hampers
its clinical implementation as a diagnostic biomarker. The applicability of ultracentrifugation-
based methods in clinical practice is limited, and the use of this technique as well as
commercial isolation kits can result in the co-isolation of contaminating proteins and
cfDNA [98,99]. This contamination together with the observation that only a part of
the isolated EVs contain DNA can decrease the sensitivity of EV-DNA genotyping [99].
Thus, more research is needed to develop a method that can specifically capture EV-DNA-
containing EVs. The inability of common EV isolation techniques to enrich tumor-derived
EVs, which lowers the tumor purity of the sample, as well as the low EV-DNA yields
that are typically obtained, further limit its application potential at the moment [42,100].
However, recent advances in microfluidics technology have led to the development of
platforms such as newExoChip and OncoBean (DUO) that can specifically isolate tumor-
derived EVs [101,102]. The exact EV-DNA packaging mechanism, as well as the size and
location of the EV-DNA, is also still debated [98]. A recent study by Liu et al. found that
EV-DNA can either be attached as relatively large DNA fragments to the surface of small
EVs (<100 nm), as well as packed intravesically as smaller DNA fragments (200–1200 bp) in
larger EVs (80–200 nm) [99]. This is contradictory to earlier reports showing that the DNA



Int. J. Mol. Sci. 2024, 25, 5208 9 of 15

packed in larger EVs mainly consists of large DNA fragments with a size up to >2 Mbp [103].
Taken together, although the utility of EV-DNA as a cancer genetics biomarker has been
shown, the limitations and challenges discussed above currently limit the widespread
clinical implementation of EV-DNA as a diagnostic biomarker.

7. Towards Personalized Treatment in Multiple Myeloma Using Liquid Biopsies

The main clinical benefit of circulating biomarkers in MM is currently based on their
prognostic potential, allowing the identification of mutations linked to inferior outcomes,
as well as the detection of treatment failure and disease progression, as reviewed above.
Their appropriate use may be helpful for adapting therapeutic strategies including the
detection of targetable mutations. In MM, these mainly involve the BRAF V600E mutation,
which is present in only a minority of patients [104]. Recently, studies have reported on
selective inhibitors in RAS-mutated MM patients and the combined use of BRAF/MEK
inhibitors in BRAF-mutated MM with promising results [105–107]. Although still far from
clinical practice, circulating biomarkers could assess patient eligibility for these targeted
treatments. More data relate to the way in which mutation profiling can be used to de-
tect and predict therapy resistance [15,36,37]. Coffey et al. (2021) recently performed the
targeted sequencing of cfDNA in 16 patients with RRMM and linked these results to high-
throughput screening of drug compounds to predict response to these treatments. The
authors of this study found that mutations in DIS3, FGFR3, KMT2C, MAML2, and ZFHX4
were predictive of resistance to certain treatments, although no association was statistically
significant after multiple-testing correction [108]. The monitoring of the genetic profile dur-
ing treatment could be relevant in patients receiving CAR-T cell or bispecific T cell engager
(TCE) therapies, as these are associated with high costs and potentially severe adverse
effects. Of particular interest in this respect are two very recent studies, where resistance to
anti-BCMA CART/TCE and anti-GPRC5D TCE therapy in MM patients could be linked to
genetic (and/or epigenetic) alterations affecting the loci of these targets [109,110]. Similarly,
using serial cfDNA analysis, Sworder et al., (2023) detected several mutations appearing
de novo or clonally selected in large B cell lymphoma patients relapsing after anti-CD19
CAR-T cell therapy [111]. This study is a clear example of the usefulness of non-invasive
molecular profiling and disease follow-up and how circulating biomarkers like cfDNA can
be incorporated into a personalized treatment approach. As the number of MM patients
receiving CAR-T/TCE cell therapies is increasing, the need for frequent sampling and
molecular follow-up during treatment will become even more important, hence supporting
the use of liquid biopsies to do so.

8. Future Perspective

In the era of precision medicine, and with the emergence of novel treatment options
in MM and other cancers, there is an increasing need for a reliable and practical tool for
comprehensive tumor characterization and appropriate patient selection. The detection
of (early) relapse and/or changes in the molecular properties of tumor cells might offer
physicians useful information to select other (personalized) treatment options. Moreover, it
might help us to understand the mechanisms underlying patients’ relapse when receiving
novel immunotherapies. Liquid biopsies are a very advantageous strategy in MM, as
they allow for more frequent sampling without the discomfort of repeated bone marrow
aspirations. Because of the spatial genetic heterogeneity in the BM of MM patients, they are
needed to obtain a more comprehensive overview of tumor-related genetic abnormalities.
cfDNA appears to be the preferable biomarker for non-invasive mutation profiling in
clinical practice, as we showed in a recent comparative study [42]. Its standardized and
semi-automated isolation process, in particular, increases the clinical application potential
of this biomarker. A very recently published paper by Kogure et al. (2024) constructed a
prognostic index including tshe cfDNA mutation count and plasma cfDNA concentration,
which could separate relapsed/refractory MM patients into different risk categories [17].
This gives an example of how prognostication based on cfDNA-based mutation profiling
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could be implemented into clinical practice in the near future. Beyond genetic alterations,
MM is also characterized by distinct changes at the epigenetic level, which can have an
impact on both prognosis and therapy response [112–115]. A spatial epigenetic hetero-
geneity in the bone marrow of MM patients has already been reported in the literature,
although it is less well studied than the spatial heterogeneity at the genetic level [116].
Hence, liquid biopsies might again serve as a valuable alternative for BM aspirates to
reliably and non-invasively characterize these epigenetic alterations. This has so far been
investigated to a very limited extent in MM, and future (comparative) studies are needed
to select the optimal (circulating) biomarker for this purpose [117,118]. The application of
liquid biopsies for combined (epi)genetic characterization might be particularly relevant in
the context of treatment with CAR-T cells or TCE, as previously referred to.

9. Conclusions

In summary, in this review, we have discussed the characteristics and the applicability
of blood-derived liquid biopsies for non-invasive molecular profiling in MM patients. We
have addressed the limitations and challenges associated with their use and highlighted
their potential to assess prognosis and assist in treatment decision making for MM patients.
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