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Abstract: Knowledge of the composition of proteins that interact with plasma DNA will provide a bet-
ter understanding of the homeostasis of circulating nucleic acids and the various modes of interaction
with target cells, which may be useful in the development of gene targeted therapy approaches. The
goal of the present study is to shed light on the composition and architecture of histone-containing
nucleoprotein complexes (NPCs) from the blood plasma of healthy females (HFs) and breast cancer
patients (BCPs) and to explore the relationship of proteins with crucial steps of tumor progression:
epithelial–mesenchymal transition (EMT), cell proliferation, invasion, cell migration, stimulation of
angiogenesis, and immune response. MALDI-TOF mass spectrometric analysis of NPCs isolated
from blood samples using affine chromatography was performed. Bioinformatics analysis showed
that the shares of DNA-binding proteins in the compositions of NPCs in normal and cancer patients
are comparable and amount to 40% and 33%, respectively; in total, we identified 38 types of DNA-
binding motifs. Functional enrichment analysis using FunRich 3.13 showed that, in BCP blood, the
share of DNA-binding proteins involved in nucleic acid metabolism increased, while the proportion
of proteins involved in intercellular communication and signal transduction decreased. The represen-
tation of NPC passenger proteins in breast cancer also changes: the proportion of proteins involved
in transport increases and the share of proteins involved in energy biological pathways decreases.
Moreover, in the HF blood, proteins involved in the processes of apoptosis were more represented in
the composition of NPCs and in the BCP blood—in the processes of active secretion. For the first time,
bioinformatics approaches were used to visualize the architecture of circulating NPCs in the blood
and to show that breast cancer has an increased representation of passenger proteins involved in
EMT, cell proliferation, invasion, cell migration, and immune response. Using breast cancer protein
data from the Human Protein Atlas (HPA) and DEPC, we found that 86% of NPC proteins in the
blood of BCPs were not previously annotated in these databases. The obtained data may indirectly
indicate directed protein sorting in NPCs, which, along with extracellular vesicles, can not only be
diagnostically significant molecules for liquid biopsy, but can also carry out the directed transfer of
genetic material from donor cells to recipient cells.

Keywords: plasma DNA; nucleoprotein complexes; MALDI-TOF mass spectrometry; bioinformatics
analysis; DNA-binding motifs; cancer proteins; breast cancer
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1. Introduction

Today, cell-free DNAs are considered molecules with wide clinical applications (di-
agnosis, assessment of therapy effectiveness, disease prognosis) in various pathologies,
including cancer [1–4]. Cell-free DNA is protected from hydrolysis by endogenous nu-
cleases by packaging into membrane structures (such as apoptotic bodies [5–7]) and by
binding to proteins [8–10], including histones [11]. It should be noted that the resulting
nucleoprotein complexes (NPCs) can either circulate freely [12,13] or bind to the surface of
blood cells [14,15] and exosomes [16] by interacting with protein [17,18] and DNA [19,20]
receptors. At the same time, it is still not entirely clear what cellular processes (apopto-
sis [21–23], necrosis [23–26], active secretion [23,25–27], NETosis [23,28]) lead to the entry
of cell-free DNA into the bloodstream, and the contributions of these processes to the
generation of extracellular DNA in normal and pathological conditions. Obviously, knowl-
edge of the protein composition of circulating NPCs will provide a better understanding
of the homeostasis of cell-free DNA, its biological role in the blood, and, possibly, what
mechanisms will be triggered in target cells after the transfer of extracellular DNA into
them [29–31]. Earlier, we have shown that the NPCs from HF plasma samples contained
shorter DNA fragments (~180 bp) than BCP NPCs. However, the share of DNA in the NPCs
from cfDNA in blood plasma in HFs and BCPs did not differ significantly, nor did the share
of NPC protein from blood plasma total protein. Moreover, bioinformatic analysis after
identification of proteins by MALDI-TOF mass spectrometry revealed that, in the presence
of a malignant tumor, the proportion of proteins involved in ion channels, protein bind-
ing, transport, and signal transduction increased in the composition of blood-circulating
NPCs [32]. Since the composition of NPCs can include not only DNA-binding proteins, but
also proteins that interact with such proteins but do not bind DNA (passenger proteins),
the questions about the significance of those proteins in blood NPCs remains open. Are
DNA-binding proteins in NPCs universal (present in normal and pathological conditions)?
Is the protein composition of NPCs a footprint of parental cells or, as with sorting into
exosomes, is there a directed assembly of proteins into NPCs?

To answer these questions, we isolated native NPCs from the venous blood using
affine chromatography. The comparison groups were healthy females (HFs) and primary
luminal breast cancer patients (BCPs)—the most common cancer among women. Proteins
were identified by MALDI-TOF mass spectrometry and then bioinformatics analysis, and
mathematics modeling was used to describe the phenomenon of circulating DNA–protein
complexes in normal conditions and in cancerous conditions.

2. Results
2.1. Concentration of Plasma DNA and DNA from NPCs in the Plasma of HFs and BCPs

The DNA concentration isolated from plasma or NPCs was estimated by qPCR, specific
for LINE-1. A significant increase in the plasma DNA concentration was found for untreated
BCPs (n = 20) compared to HFs (n = 15) (median 46 versus 4 ng/mL of blood, p = 0.0026,
Mann–Whitney U test) (Figure 1a), which coincides with previous studies [15,33]. Moreover,
significant differences were found for NPC–DNA in BCPs and HFs (median of DNA was
9.9 versus 1.05 ng/mL of blood, p = 0.0041, Mann–Whitney U test) (Figure 1b). Thus,
using antibodies against histones by affine chromatography, approximately one-quarter of
cell-free DNA can be isolated.
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Figure 1. Quantification of DNA from plasma or from NPCs in the plasma of HFs and BCPs. (a) cell-
free DNA concentration; (b) NPC–DNA concentration. Tukey box plots of DNA. Median DNA con-
centration with 25–75% and non-outlier range bars indicated. 

2.2. Analysis of DNA-Binding Proteins and Passenger Proteins in Blood NPC Content 
Proteins within circulating NPCs were identified by MALDI-TOF mass spectrometry 

after separation in 10% PAGE and trypsinolysis of proteins in individual gel fragments. 
Each sample of NPCs was applied to the gel in 5 repeats; a score of 56 and the presence of 
at least 3 peptides from the protein sequence allowed the identification with high confi-
dence (p < 0.05) of 181 and 173 proteins in blood NPCs of HFs (n = 15) and untreated BCPs 
(n = 20, Table 1), respectively (Supplementary Tables S1 and S2). It should be noted that 
17 out of 43 universal proteins of NPCs were detected in three-quarters of the samples 
(Supplementary Tables S1 and S2). 
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Figure 1. Quantification of DNA from plasma or from NPCs in the plasma of HFs and BCPs.
(a) cell-free DNA concentration; (b) NPC–DNA concentration. Tukey box plots of DNA. Median
DNA concentration with 25–75% and non-outlier range bars indicated.

2.2. Analysis of DNA-Binding Proteins and Passenger Proteins in Blood NPC Content

Proteins within circulating NPCs were identified by MALDI-TOF mass spectrometry
after separation in 10% PAGE and trypsinolysis of proteins in individual gel fragments.
Each sample of NPCs was applied to the gel in 5 repeats; a score of 56 and the presence of at
least 3 peptides from the protein sequence allowed the identification with high confidence
(p < 0.05) of 181 and 173 proteins in blood NPCs of HFs (n = 15) and untreated BCPs
(n = 20, Table 1), respectively (Supplementary Tables S1 and S2). It should be noted that
17 out of 43 universal proteins of NPCs were detected in three-quarters of the samples
(Supplementary Tables S1 and S2).

Table 1. NA-binding motifs in the blood NPC proteins of HFs and BCPs.

DNA-Binding Domains
Proteins of NPCs (Gene Name)

Universal Proteins Unique Proteins
of HFs

Unique Proteins
of BCPs

Zinc finger
C2H2-type UBP22

KLF10
SLC2A4RG

ZNF479

EGR4
GAS2L3
PLAGL2
RNF222
ZNF461
ZNF75A

ZNF75CP
ZNF75D

RNA recognition motif U2AF1

ESRP1
MTHFSD
SNRNP35

SREK1
SRSF5

ZRSR2P1/ZRSR1

ENOX2
MYEF2
REXO5

Homeobox domain HOXC5
HOXA13
HOXB4
HOXC8

CDX2
HOXB9

POU5F1B
UNCX

Zinc finger,
CCCH-type U2AF1

MKRN2
TRMT1

ZRSR2P1/ZRSR1
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Table 1. Cont.

DNA-Binding Domains
Proteins of NPCs (Gene Name)

Universal Proteins Unique Proteins
of HFs

Unique Proteins
of BCPs

Basic-leucine zipper (bZIP) CREM
JUND

CHST7
JUN

Jun-like transcription factor JUND JUN

Krueppel-associated box (KRAB) ZNF479

POGK
ZNF461
ZNF75A

ZNF75CP
ZNF75D

Basic helix–loop–helix (bHLH)
domain

MSGN1
NEUROD4

HAND1
NEUROD1

Zinc finger,
PHD-type

AIRE
FBXL19

PHF1
SP110

HSR domain AIRE SP110

Nucleic acid-binding, OB-fold MCM3 NABP2

SAND domain AIRE SP110

Histone H2a/H2b/H3 H2AJ/H2AFJ

(Armadillo-type fold) MIF4G-like
domain superfamily EIF5

Anticodon-binding domain TARSL2

DNA/RNA-binding repeats in
PUR-alpha/beta/gamma PURA

F-box domain FBXL19

G-patch domain GPATCH4

High mobility group box domain HMGB4

Interferon regulatory factor
DNA-binding domain IRF2

MCM domain MCM3

Neuronal helix–loop–helix
transcription factor NEUROD4

PIN domain FCF1

TATA box-binding
protein-associated factor RNA

polymerase I subunit A-like
TAF1A

TGS domain TARSL2

Transcription initiation factor
TFIID subunit 12 domain TAF12

Translation initiation factor
IF2/IF5, zinc-binding EIF5

Zinc finger, CXXC-type FBXL19

Zinc finger, RING-type MKRN2

Nascent polypeptide-associated
complex NAC domain NACA

Brinker DNA-binding domain POGK

Bromodomain SP110

POU domain POU5F1B

HSPH1, nucleotide-binding
domain HSPH1

HTH CenpB-type DNA-binding
domain POGK
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Table 1. Cont.

DNA-Binding Domains
Proteins of NPCs (Gene Name)

Universal Proteins Unique Proteins
of HFs

Unique Proteins
of BCPs

THAP-type zinc finger THAP7

(Armadillo-type fold)
Uncharacterised domain NUC173 RRP12

Zinc finger C4-type LMCD1
TRIM68

To identify DNA and nucleotide-binding proteins within NPCs, the identified proteins
were analyzed using QuickGO 2.0 by GO nucleic acid binding (GO:0003676) and nucleotide
binding (GO:0000166). We found that 118 proteins (37%) were associated with nucleic acid
and nucleotide binding (NA-binding), of which 20 were universal (47% of all universal
NPC proteins). The share of NA-binding proteins in the composition of NPC proteins in
the blood of HFs amounted to 41%; in the composition of NPC proteins in the blood of
BCPs, it was 36% (Figure 2).
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Figure 2. Venn–Euler diagram of DNA-binding proteins in NPCs from HF and BCP blood; composed
using QuickGO 2.0 and FunRich 3.13 software.

To identify the DNA-binding domains in the identified DNA-binding proteins within
blood NPCs, the proteomes were analyzed using the Interpro web platform and the Interpro
(https://www.ebi.ac.uk/interpro/, accessed on 20 March 2024), PROSITE, Pfam (http://
pfam.xfam.org/, accessed on 20 March 2024), SMART (http://smart.embl-heidelberg.de/,
accessed on 20 March 2024), and CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.
shtml, accessed on 20 March 2024) databases (Table 1). Bioinformatics analysis identified
38 types of DNA-binding motifs, the most represented among which are zinc fingers (C2H2,
CCCH, PHD, C4, CXXC, and RING types), RNA recognition motif, Homeobox domains,
KRAB, loop–turn–loop, and leucine zippers.

In the blood of HF patients, 17 unique DNA-binding motifs were found as part of
NPC proteins, and 9 unique DNA-binding motifs were found in the blood of BCPs.

Based on the database of pairwise protein interactions “Human Integrated Protein–
Protein Interaction rEference” (HIPPIE version 2.3) [34], modeling of the architecture of
possible NPCs was performed using the analysis of proteins detected in the blood of HFs
and BCPs. Possible chains were modeled by starting with a DNA-binding protein, followed
by one or more passenger proteins. Only “linear” structures were accounted for, where
each subsequent protein is attached to the previous one; that is, the first passenger protein
is attached to the DNA-binding protein, the second passenger protein is attached to the
first passenger protein, and so on. As a result, 23 models of possible NPCs circulating in
the blood of healthy subjects and 25 models of possible NPCs circulating in the blood of

https://www.ebi.ac.uk/interpro/
http://pfam.xfam.org/
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
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patients with breast cancer were constructed (Table 2). It is to be noted that a modeled chain
of, say, four proteins implies the possibility of existence of the corresponding subchains of
two and of three proteins, starting with the DNA-binding protein, e.g., the sequence ALBU–
NECD–RL5–M3K14 implies possible existence of the subsequences ALBU–NECD–RL5 and
ALBU–NECD. Thus, only the chains of maximal lengths are reported, and 23 and 25 are
the numbers of chains of maximal lengths.

Table 2. Possible NPCs in the blood of HFs and BCPs. Symbolic gene names correspond to HIPPIE
conventions. The numbers present the Entrez Gene IDs of the genes.

NPCs in the Blood of HFs NPCs in the Blood of BCPs

U2AF1–SMD1 7307–6632 JUN–GOGA2–STRN3 3725–2801–29966

UBP22–MDM4 23326–4194 U2AF1–SMD1 7307–6632

FCF1–MAOX 51077–4199 PLAL2–CTSR1–VINEX 5326–117144–10174

U1SBP–RAB6A 11066–5870 GAS2L3–BIRC5 283431–332

U1SBP–SERPH 11066–871 B2R5B3–RM35 3014–51318

B2R5B3–HAT1 3014–8520 B2R5B3–RANG 3014–5905

SRSF5–M3K14–DNJB6 6430–9020 –10049 B2R5B3–BIRC5 3014–332

SRSF5–RM47–RUSD4 6430–57129–84881 H2BC21–UBP12 8349–219333

H2BC21–RHG30 8349–257106 H32–BIRC5 126961–332

H2BC21–PRR12 8349–57479 H4–NOL9 8370–79707

H4–GLYC 8370–6470 H4–SMD1 8370–6632

H4–HAT1 8370–8520 H4–CL043 8370–64897

H4–SMD1 8370–6632 H4–NAIF1 8370–203245

H4–IN80E 8370–283899 H4–SPAT5 8370–166378

H4–PRR12 8370–57479 H4–IN80E 8370–283899

H4–LMNB2 8370–84823 H4–RL5–M3K14 8370–6125–9020

H4–LC7L2 8370–51631 H4–RL5–NECD 8370–6125–4692

H4–FKB11 8370–51303 H4–NECD–RL5–M3K14 8370–4692–6125–9020

H4–INT9 8370–55756 H4–RANG 8370–5905

ALBU–MDM4 213–4194 H4–CSN2 8370–9318

ALBU–THRB 213–2147 H4–TRAM1 8370–23471

ALBU–QTRD1 213–79691 H4–PNISR 8370–25957

ALBU–LC7L2 213–51631 H4–ESYT2–DJC25 8370–57488–548645

ALBU–VINEX–CTSR1 213–10174–117144

ALBU–NECD–RL5–M3K14 213–4692–6125–9020

2.3. Comparative Proteomic Analysis of Circulating NPCs in the Blood of HFs and BCPs

To characterize DNA-binding proteins and passengers proteins identified in blood-
circulating NPCs, a bioinformatics analysis was performed using InterPro and InterProScan
databases versions 5.15-58 and 5.15-54,24,25, allowing us to identify the GO categories
for NPC proteins from HFs (Supplementary Table S3) and BCPs (Supplementary Table S4)
(isoforms not shown). To avoid loss of information and to fully account for the data
obtained, all identified proteins were included in the analysis (even if a protein occurred
in only one sample). The resulting lists of GO terms for 36 cellular components and
106 biological processes are provided in Supplementary Tables S5 and S6. For 12 proteins,
the GO terms were not determined for both categories (cellular components and biological
process) (Supplementary Table S7).

A comparative analysis of functional enrichment using FunRich 3.13 showed that
nuclear (61 and 69%, respectively) and cytoplasmic proteins (45 and 48% each, respectively)
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were predominant among the DNA-binding proteins of NPCs circulating in the blood of
HFs and BCPs (Figure 3a,b).
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Figure 3. GO analysis of NPC proteins by cellular components. (a,c) NPC proteins of HFs and
(b,d) NPC proteins of BCPs.

In addition to DNA-binding proteins, NPCs include proteins that do not directly
bind DNA (passenger proteins). The passenger protein analysis is no less important for
understanding the processes of NPC formation and its structure, as well as its functions and
circulation peculiarities. The comparative analysis of functional enrichment, performed
using FunRich 3.13, showed that proteins of cytoplasm (35% each), plasma membrane
(27% and 28%), and nucleus (16% and 11%) prevailed among the passenger proteins in the
composition of NPCs circulating in the blood of HFs and BCPs (Figure 3c,d).

At the same time, the share of DNA-binding proteins involved in the regulation
of nucleotide, nucleoside, and nucleic acid metabolism increases in the BCP blood (43%
in cancer and 34% in normal), and the share of DNA-binding proteins involved in the
processes of intercellular communication and signal transduction decreases (25% and 27%,
respectively, in normal, and 17% in breast cancer) (Figure 4a,b).
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Proteins regulating intercellular communication (20% and 22%, respectively) and
signal transduction (23% and 24%, respectively) were comparably represented among
the passenger proteins of blood NPCs in normal and cancer patients (Figure 4c,d); the
representation of passenger protein-mediating energy pathways was three times higher in
HFs and BCPs (16% and 5%, respectively), while proteins involved in transport processes
were lower (7% and 12%, respectively).

Thus, the composition of NPCs includes both DNA-binding proteins, predominantly of
nuclear and cytoplasmic origin, and passenger proteins of cytoplasmic and nuclear as well
as plasma membrane origin. It was found that DNA-binding proteins are mainly involved
in the processes of the regulation of nucleotide, nucleoside, and nucleic acid metabolism,
and passenger proteins are involved in the processes of intercellular communication and
signal transduction; an increase in the share of passenger proteins in the BCP blood NPCs
involved in unknown biological processes are also noteworthy. Passenger proteins appear
to bind to the complexes via DNA-binding proteins and play important roles in transport
and protection of cell-free DNA from hydrolysis by nucleases, recognition of the complex
by the immune system, internalization, and clearance of NPCs.

2.4. Role of DNA-Binding Proteins and Passenger Proteins of NPCs in Breast
Cancer Dissemination

Literature analysis and QuickGO 2.0 annotation revealed an involvement of both
normal and cancer NPC proteins in such processes as EMT, cell proliferation, invasion,
cell migration, angiogenesis, and immune response (Figure 5, Supplementary Table S8).
However, after separating NPC proteins from DNA-binding and passenger proteins, it was
found that passenger proteins are the main participants in these processes.
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Comparative analysis of NPC proteins circulating in the blood of HFs and BCPs by
individual processes revealed the following regularities:

- EMT inhibitory proteins are absent in NPCs; however, more EMT-stimulated passen-
ger proteins were detected in cancer than in normal (5 vs. 1, Figure 5a);
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- No proteins regulating the development of vasculogenesis were found in the DNA-
binding proteins of NPCs from BCP blood, whereas they were comparably represented
in passenger proteins at normal and breast cancer (Figure 5b);

- Proteins involved in the regulation of cell proliferation are more frequently detected,
both in the composition of DNA-binding proteins and in the composition of passenger
proteins of blood NPCs of BCPs, with more protein inhibitors of this process detected
in the composition of NPC passenger proteins in HF blood (8 vs. 1, Figure 5c);

- Proteins that inhibit cell migration are comparably represented in the NPCs of blood
of HFs and BCPs, while more proteins stimulating this process were detected in the
composition of passenger proteins in pathology (22 vs. 14, Figure 5d);

- Invasion-inhibitory proteins are absent in NPCs; however, more of them were detected
in cancer than normal patients (19 vs. 11, Figure 5e);

- More proteins involved in the regulation of immune response were detected in the
composition of NPC passenger proteins in the blood of BCPs than in HFs (14 vs. 8,
Figure 5f).

Thus, while the representation of DNA-binding proteins is comparable in normal and
breast cancer samples, the representation of passenger proteins, which are involved in cell
proliferation, invasion, cell migration, and immune response, is increased in pathology. In
addition, the repertoire of proteins in the composition of NPCs is fundamentally altered
(Supplementary Table S8). The obtained results indirectly indicate that only cell-free DNA
in complex with proteins possesses biological activity in both normal and pathology.

2.5. NPC Proteins Reflect the Origin of Cell-Free DNA

On the next stage, to identify proteins involved in the mechanisms of cell-free DNA
appearance in the bloodstream (apoptosis, necrosis, active secretion), the proteomes
of NPCs from the blood of HFs and BCPs were analyzed using QuickGO 2.0 using
GO:00006915 (apoptotic process, GO:00006915), GO:0070266 (necrotic process, GO:0070266),
and GO:0046903 (secretion, GO:0046903).

It was shown that six (RALB, RPS6KB1, OXTR, HOXAI3, TRAF3, MAP3K5) and three
(NAIF1, BIRC5, CASP1) unique proteins in NPCs are associated with apoptosis in blood of
HFs and BCPs, respectively (Figure 6). In addition, one necrotic-related protein (MLKL)
and three secretion-related proteins (SYT3, RALA, SLC4A5) were detected in HF NPCs,
indirectly indicating that normal cell-free DNA appears in the blood mainly as a result of
programmed cell death. Proteins involved in necrotic processes were not detected in the
composition of NPCs of the BCP blood; however, five proteins were associated with active
secretion (RALA, SLC4A5, VEGFA, SYT10, NEUROD1). These data indirectly indicate
the predominance of secreted DNA over apoptotic DNA in the blood of cancer patients
(Figure 6).
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Of the 16 proteins in the composition of NPCs associated with apoptosis, necrosis, or
active secretion, only 2 proteins were DNA-binding (HOXAI3 and NEUROD1), which, once
again, indicates the high significance of passenger proteins in DNA–protein complexes.

2.6. NPC Proteins Are Not an Imprint of Parental Cells

To determine whether the proteins we identified were found in breast neoplasms,
the list of proteins was analyzed, using FunRich 3.13 software to search publicly avail-
able databases for proteins in breast cancer—HPA and DEPC. Only three breast cancer-
associated proteins from NPCs circulating in the blood of BCPs were annotated in the HPA
database (Figure 7).
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Figure 7. Venn–Euler diagram of NPC proteins from BCP blood in dbDEPC and dbHPA, composed
using QuickGO 2.0 and FunRich 3.13 software.

Furthermore, a search for proteins identified within NPCs in the DEPC database
revealed only 23 proteins that were previously recognized as associated with breast cancer.
Thus, 84% of the proteins identified in the blood NPCs of BCPs in this study were not
previously annotated in the databases of proteins differentially expressed in tissues of cancer
patients. The obtained data may indirectly indicate the directed sorting of proteins into
NPCs, which, along with extracellular vesicles, can not only be diagnostically significant
molecules for liquid biopsy, but can also carry out the directed transfer of genetic material
from donor cells to recipient cells.

3. Discussion

In recent years, there has been increasing evidence that complexes of DNA associ-
ated with proteins and lipids are more effective than naked DNA in gene delivery to the
nucleus [35]. This phenomenon suggests that proteins included in NPCs are not only
protectors of DNA from DNAases and phosphodiesterases [36] in blood, but also tags pro-
viding targeted delivery of genetic material to target cells, and some of them (transcription
factors, enzymes, etc.) are capable of triggering various processes affecting the further fate
of cells.

The majority of researchers agree that more than 99% of DNA in the blood is of
endogenous origin [1,4,6,7], and its concentration increases under pathological conditions
(trauma [37], autoimmune diseases [38], cancer [3,4,15,31,33], etc.). In independent studies
of DNA kinetic analysis, size and ends profiling [25,39–41], strong evidence has been
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obtained that part of the cell-free DNA is a product of active cellular secretion. Our results
on the protein composition of NPC that were analyzed by STRING 12.0 software after
identification of proteins indirectly confirm the data of these authors: in BCP blood, the
representation of apoptosis proteins decreases and the representation of proteins involved in
secretion processes increases [32]. The absence of necrosis-associated proteins in NPC in the
blood of BCPs at stage I of the disease seems logical, since necrotic processes in malignant
pathologies are characteristic of the terminal stages, when severe ischemia of tumor tissues
is observed. In the following study, we showed, on smaller but more homogeneous groups
of HFs and BCPs using the Interpro web platform, PROSITE, and Pfam databases, that the
NPC protein cargo from HF blood was enriched with proteins involved in the negative
regulation of cell proliferation, and, in BCP blood, proteins involved in EMT, invasion, and
cell migration were observed [42].

The fact that affine chromatography on a sorbent with immobilized polyclonal anti-
histone antibodies in both normal and cancer allows the isolation of only a quarter of plasma
DNA indicates that, in addition to DNA fragments that are multiples of the nucleosome,
DNA is present in the blood as a part of apoptotic bodies, as well as in the form of higher
molecular weight DNA fragments that cannot be isolated using the approach used.

Using bioinformatics analysis, 38 types of DNA-binding motifs were identified in NPC
proteins in this study, which allowed us to conditionally divide NPC proteins into nucleic
acid-binding and passenger proteins, which account for 62% of all proteins. The share of
proteins regulating nucleic acid metabolism increases in the composition of DNA-binding
proteins and the share of proteins involved in the processes of intercellular communica-
tion and signal transduction decreases, while the share of transport proteins increases in
the composition of passenger proteins and the share of proteins of energetic biological
pathways decreases.

To elucidate the molecular regulatory roles underlying blood NPC-mediated tumor
progression, a bioinformatics analysis of DNA-binding proteins and passenger proteins
was performed. Currently, there is practically no information on the composition of DNA–
protein complexes circulating in the blood, especially about their architecture. Technical
difficulties in identifying blood NPC proteins are associated, first of all, with the difficulty of
obtaining native complexes without admixtures of blood plasma proteins that are not part
of such complexes. Nevertheless, we found that the representation of passenger proteins in
NPCs that are involved with EMT, cell proliferation, invasion, cell migration, and immune
response increases in cancer.

Thus, the identification of proteins and the establishment of NPC architecture are of
fundamental importance for understanding the molecular mechanisms of the processes
that ensure the transfer of genetic information and signals between cells. Establishment of
the functional role of DNA-binding proteins and passenger proteins significantly adds to
the picture of biogenesis and functional role of circulating NPCs in cancer development. In
addition, the identified DNA-binding motifs unique to tumor-specific proteins can be used
to enrich cell-free tumor DNA, which can improve the efficiency of cancer diagnosis by
“liquid biopsy” and create fundamental prerequisites for possible optimization of antitumor
therapy.

4. Materials and Methods
4.1. Patients

Blood samples from HFs (n = 15, mean age 48 ± 2.1 years) were obtained from the
Medical Scientific and Educational Center of the V. Zelman Institute of Medicine and
Psychology, Novosibirsk State University. The donor group was formed on the basis of a
questionnaire as well as a clinical examination. All women underwent an ultrasound exam-
ination of the breast and pelvic organs, mammography, low-dose computed tomography
of the lungs, and general and biochemical blood tests. Women with reproductive system
disorders, endocrine and metabolic factors, and the presence of genetic and exogenous
factors were excluded from the study.
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Blood samples from untreated BCPs (n = 20, mean age 53 ± 2.9 years) were obtained
from the Novosibirsk Regional Clinical Oncology Dispensary. The clinicopathological
parameters of BCPs are presented in Table 3.

Table 3. Clinical characteristics of untreated BCPs.

Clinical Characteristics N (%)

Tumor stage T1 20 (100%)

Lymph node status N0 20 (100%)

Distant metastasis M0 20 (100%)

Receptor status ER-positive
PR-positive

20 (100%)
20 (100%)

HER-2 status Negative 20 (100%)

Histologic grade II
III

19 (95%)
1 (5%)

Histological type Invasive ductal carcinoma 20 (100%)

Expression of estrogen (ER) and progesterone (PR) receptors and HER-2 status were
determined by the immunohistochemical examination of tissue samples after surgery, as
described [43].

4.2. The Isolation of Histone-Containing NPC from Blood Plasma

Blood plasma histone-containing NPCs were isolated using affine chromatography, as
previously described [32]. Briefly, venous blood (9 mL) was collected in K3EDTA spray-
coated vacutainers (Improvacuter, China, cat. No. 694091210), immediately mixed using a
rotary mixer, placed at +4 ◦C, and processed within 1 h after taking the blood. The blood
cells were pelleted by centrifugation for 20 min at 290× g and 4 ◦C, and then plasma-
centrifuged a second time at 1200× g for 20 min. Plasma samples were aliquoted and stored
at −80 ◦C. The aliquots were thawed once before use.

Affine sorbent with immobilized anti-histone antibodies (the rabbit polyclonal anti-
H2A; (PAQ850Hu01), anti-H2B; (PAQ006Hu01), and anti-H3 (PAA285Mi01) antibodies
(Cloud-Clone Corp. (Wuhan, Hubei, China)) was synthesized from bromocyan-activated
Sepharose, as previously described [41]. For the isolation of histone-containing NPC by
affine chromatography, plasma (0.8 mL) was loaded onto the sorbent that contained 3 mg
total immunoglobulins and 3 g CL-4B Sepharose, and incubated for 1 h at 4 ◦C. Then,
the sample was loaded onto affine sorbent again. After washing the column with PBS
containing 5 mM EDTA, PBS containing 5 mM EDTA and 0.05% Tween-20, and again
with PBS containing 5 mM EDTA, NPCs were eluted from the column in the opposite
direction with glycine buffer and neutralized with borate buffer. The NPC samples were
concentrated on Centricon 3 kDa filters for 4 h at 4000× g, +4 ◦C.

4.3. Characterization of Nucleic and Protein Components of NPCs

The DNA from plasma and from histone-containing NPCs was isolated using the
“DNA Isolation Kit” (BioSilica Ltd., Novosibirsk, Russia) according to the manufacturer’s
protocols and concentrated by precipitation with trimethylamine and glycogen, as de-
scribed earlier [15]. The concentration of DNA was measured by quantitative polymerase
chain reaction, specific for long interspersed nuclear element 1 (LINE-1) repetitive elements,
as described earlier [15]. Genomic DNA from human leukocytes served as a standard for
obtaining the calibration curves.

Individual plasma NPC samples were separated according to their molecular weight
using 10% SDS disc-electrophoresis and identified by mass spectrometry, as described
earlier [42]. Mass spectra were registered at the Center of Collective Use “Mass spectro-
metric investigations” SB RAS on an Ultraflex III MALDI-TOF/TOF mass spectrometer
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(BrukerDaltonics, Bremen, Germany) in positive mode, with the range 700–3000 Da, and
with 2,5-dihydroxybenzoic acid as a matrix. Proteins were identified by searching for appro-
priate candidates in annotated NCBI and SwissProt databases using Mascot 2.6.1 software
(Matrix Science Ltd., London, UK, www.matrixscience.com/search_form_select.html, ac-
cessed on 10 May 2023). The following parameters were used for searches: acceptable mass
deviation of the charged peptide (50 ppm)—0.05 Da; acceptable number of missed cleavage
sites—2; carbamidomethylation of cysteine residues was chosen as a fixed modification
and the presence of oxidized methionine residues was chosen as a variable modification;
and identification reliability was not lower than 95%.

4.4. Bioinformatics and Gene Ontology (GO) Analysis of NPC Proteins

The presence of DNA-binding motifs within proteins was analyzed using the Interpro
web platform and Interpro (https://www.ebi.ac.uk/interpro/, accessed on 8 January 2024),
PROSITE, Pfam (http://pfam.xfam.org/, accessed on 10 January 2024), SMART (http:
//smart.embl-heidelberg.de/, accessed on 12 January 2024), and CDD (https://www.
ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, accessed on 15 January 2024) databases. GO
profiling of NPC proteins involved in the cell migration and motility, immune response, vas-
culature development, and cell proliferation was performed using QuickGO 2.0 annotation
terms (lists of obtained proteins were searched against GO terms: cell motility (GO:0048870),
cell migration (GO:0016477), negative regulation of cell motility (GO:2000146), immune
response (GO:0006955), negative regulation of immune response (GO:0050777), vasculature
development (GO:0001944) negative regulation of vasculature development (GO:1901343),
cell population proliferation (GO:0008283), and negative regulation of cell population pro-
liferation (GO:0008285)) [44–46]. The involvement of NPC proteins in cancer invasion and
EMT was routinely analyzed by searching the PubMed database for relevant publications
for each protein.

The search for cancer prognostic proteins in the NPC proteome of BCPs was conducted
using the HPA (http://www.proteinatlas.org/, accessed on 31 May 2023) and dbDEPC 3.0
(accessed on 31 May 2023) databases for breast cancer.

Modeling of the architecture of possible NPCs was performed using the analysis
of proteins detected in the females’ blood and database of pairwise protein interactions
“Human Integrated Protein–Protein Interaction rEference” (HIPPIE version 2.3) [34].

4.5. Statistical Analysis

Statistical calculations were performed using Statistica 6.0 software. All data were
expressed either as medians with interquartile ranges or as means with standard errors. To
evaluate the differences, the Mann–Whitney U test was performed. p < 0.05 was considered
statistically significant.
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