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Abstract: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown cause, and
the involvement of fibroblasts in its pathogenesis is well recognized. However, a comprehensive
understanding of fibroblasts’ heterogeneity, their molecular characteristics, and their clinical relevance
in IPF is lacking. In this study, we aimed to systematically classify fibroblast populations, uncover the
molecular and biological features of fibroblast subtypes in fibrotic lung tissue, and establish an IPF-
associated, fibroblast-related predictive model for IPF. Herein, a meticulous analysis of scRNA-seq
data obtained from lung tissues of both normal and IPF patients was conducted to identify fibroblast
subpopulations in fibrotic lung tissues. In addition, hdWGCNA was utilized to identify co-expressed
gene modules associated with IPF-related fibroblasts. Furthermore, we explored the prognostic utility
of signature genes for these IPF-related fibroblast subtypes using a machine learning-based approach.
Two predominant fibroblast subpopulations, termed IPF-related fibroblasts, were identified in fibrotic
lung tissues. Additionally, we identified co-expressed gene modules that are closely associated with
IPF-fibroblasts by utilizing hdWGCNA. We identified gene signatures that hold promise as prognostic
markers in IPF. Moreover, we constructed a predictive model specifically focused on IPF-fibroblasts
which can be utilized to assess disease prognosis in IPF patients. These findings have the potential to
improve disease prediction and facilitate targeted interventions for patients with IPF.

Keywords: idiopathic pulmonary fibrosis; fibroblast; bioinformatics; heterogeneity; predictive model

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a parenchymal lung disease characterized by
fibroblast proliferation and excessive accumulation of extracellular matrix (ECM) [1,2].
Unfortunately, the prognosis for patients with IPF is poor, with a median survival of
approximately 3 years after diagnosis and limited treatment options available [3,4]. The
underlying causes and mechanisms of fibrotic lung diseases, including IPF, are still not
fully understood, and effective radical therapies are yet to be developed.

Numerous cell types, including alveolar epithelial cells, endothelial cells, immune
cells, and fibroblasts, have been identified as contributors to fibrosis [2,5,6]. Among these,
fibroblasts play a central role in the process of fibrogenesis, leading to the accumulation of
extracellular matrix (ECM) and compromising lung structure and function [7]. In fibrotic
lung tissue, fibroblasts demonstrate enhanced proliferative potential, increased migration,
resistance to apoptosis, and invasive capacity, as well as leading to heightened deposition
of ECM [8–10]. These characteristics significantly contribute to the pathogenesis of fibrosis,
highlighting their potential value as both prognostic factors and therapeutic targets [11].
Pulmonary fibroblasts exhibit functional heterogeneity in lung homeostasis and disease [12].
Growing evidence suggests that specific subsets of fibroblasts actively contribute to lung
pathophysiology by modulating the local immune microenvironment and producing ECM
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proteins [13–15]. The identification of these pathogenic fibroblast subsets presents new
therapeutic possibilities for various fibrotic diseases.

In recent years, the application of single-cell RNA-sequencing (scRNA-seq) technol-
ogy has significantly advanced our understanding of cellular heterogeneity in various
pathological tissues [16,17]. Through this high-throughput analysis technique, the tran-
scriptomic characteristics of fibroblasts in both normal and fibrotic lung tissues have been
described [18]. However, there is still a lack of comprehensive understanding regarding
the composition of fibroblast subsets, their gene expression profiling, and their specific
functions in fibrotic lung tissue. In addition, the clinical association of fibroblast subtypes
and their prognostic value for fibrogenesis remains to be illustrated. Here, we hypothesize
that an integrated scRNA-seq analysis of lung fibroblasts can offer a more thorough char-
acterization of fibroblast subtypes, novel insights into their biological characteristics, and
signaling pathways they may activate in fibrotic lung tissue, which in turn may have an
impact on clinical outcome.

Machine learning, a data analysis method that automatically constructs analytical
models, has been widely utilized in clinical medicine [19]. Previous studies have demon-
strated its potential in designing drugs, identifying pathologies, and developing predictive
models [20–22]. In recent years, machine learning has been applied to diagnose and treat
various diseases, including pulmonary fibrosis [23–25]. In these applications, least absolute
shrinkage and selection operator (LASSO) logistic regression analysis, a linear regression
method with regularization, is commonly utilized for high-dimensional analysis. Addition-
ally, support vector machine–recursive feature elimination (SVM-RFE) can be employed
to select optimal combinations of variables by leveraging its non-linear discrimination
capabilities and ability to model different variable quantities [26]. Hence, the identification
of biomarkers for idiopathic pulmonary fibrosis and the construction of prediction models
using machine learning algorithms are of significant importance.

In the present study, we systematically classified fibroblast populations and revealed
the molecular and biological characteristics of fibroblast subtypes in fibrotic lung tissue.
Using hdWGCNA, we further identified the co-expressed gene modules associated with
IPF-fibroblasts and addressed the valuable prognostic utility of signature genes for these
IPF-related subtypes through a machine learning-based approach, providing valuable
assistance for disease prediction and intervention.

2. Results
2.1. Single-Cell RNA Sequencing Reveals the Cellular Heterogeneity of Fibroblasts in Normal and
Fibrotic Lung Tissues

To explore the cellular composition and diversity of fibroblasts in both normal and
fibrotic lung tissues, we collected and analyzed scRNA-seq data from patients with IPF.
Specifically, we selected sequencing data from both normal and lower lobe samples, as
pulmonary fibrosis often initiates in the lower lobe in clinical practice. Uniform manifold
approximation and projection (UMAP) analyses identified eight major cell populations,
including endothelial cells, epithelial cells, macrophages, monocytes, NK cells, fibroblasts,
T cells, and tissue stem cells (Figure 1A,B). Figure 1C illustrates the expression of known
lineage markers in the eight major cell clusters in both the normal and IPF groups. We next
investigated the proportion of each cell population in the different sample sets (Figure 1D).
As expected, we observed a significant increase in the fraction of the fibroblast cluster in
the IPF group compared with the normal group.
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Figure 1. Integrated scRNA-seq analysis reveals heterogeneity of normal and fibrotic lung tissues, 
according to dataset GSE128033. (A) Cells on the UMAP plot of all 10 samples were colored as orig-
inating from normal and IPF patients. (B) Unbiased clustering of 26,129 cells reveals eight cellular 
clusters. Clusters are distinguished by different colors. (C) Heatmap showing representative differ-
entially expressed genes between each cell population. (D) Cell proportions of eight cell types orig-
inating from normal and fibrotic lung tissues. 

Then, we repeated the UMAP analysis to hierarchically cluster the fibroblasts. As 
shown in Figure S1, subclustering of fibrotic and normal lung fibroblasts further identified 
10 distinct subtypes. We demonstrated that fibroblasts of cluster 4 and cluster 5 were sig-
nificantly increased in fibrotic samples compared to normal lung samples, which were 
defined as IPF-fibroblast (Figure 2A,B). To more precisely characterize the distinctive pat-
terns of differentially expressed gene signatures in these cell subtypes, a score was as-
signed to each gene based on its relative expression in each individual cell. These genes 
were then subjected to unsupervised clustering, resulting in the formation of distinct gene 
clusters (Figure 2C). In addition, we grouped genes with similar expression trends, result-
ing in the identification of nine distinct trends with implications in various biological func-
tions, as revealed by the clustering results. It is noteworthy that genes in cluster 4, which 
exhibited high expression levels in IPF-fibroblasts, were found to be highly enriched for 
biological processes related to fibrogenesis, including extracellular matrix (ECM) organi-
zation, extracellular structure organization, and cellular response to transforming growth 
factor beta stimulus. (Figure 2C). Consistently, gene set enrichment analysis (GSEA) also 
suggested that IPF-fibroblasts expressed high levels of genes involved in the deposition 
of ECM, such as collagen fibril organization, collagen metabolic process, and collagen 
binding (Figure 2D). Moreover, the GSEA result showed a negative correlation between 
IPF-fibroblasts and pathways involving activation of immune response (Figure 2E). These 
findings suggest that IPF-fibroblasts play a critical role in the synthesis and production of 
extracellular matrix components within alveolar structures, indicating their potential cul-
pability in the development and progression of IPF. 

Figure 1. Integrated scRNA-seq analysis reveals heterogeneity of normal and fibrotic lung tissues,
according to dataset GSE128033. (A) Cells on the UMAP plot of all 10 samples were colored as
originating from normal and IPF patients. (B) Unbiased clustering of 26,129 cells reveals eight
cellular clusters. Clusters are distinguished by different colors. (C) Heatmap showing representative
differentially expressed genes between each cell population. (D) Cell proportions of eight cell types
originating from normal and fibrotic lung tissues.

Then, we repeated the UMAP analysis to hierarchically cluster the fibroblasts. As
shown in Figure S1, subclustering of fibrotic and normal lung fibroblasts further identified
10 distinct subtypes. We demonstrated that fibroblasts of cluster 4 and cluster 5 were signifi-
cantly increased in fibrotic samples compared to normal lung samples, which were defined
as IPF-fibroblast (Figure 2A,B). To more precisely characterize the distinctive patterns of
differentially expressed gene signatures in these cell subtypes, a score was assigned to
each gene based on its relative expression in each individual cell. These genes were then
subjected to unsupervised clustering, resulting in the formation of distinct gene clusters
(Figure 2C). In addition, we grouped genes with similar expression trends, resulting in the
identification of nine distinct trends with implications in various biological functions, as
revealed by the clustering results. It is noteworthy that genes in cluster 4, which exhibited
high expression levels in IPF-fibroblasts, were found to be highly enriched for biological
processes related to fibrogenesis, including extracellular matrix (ECM) organization, extra-
cellular structure organization, and cellular response to transforming growth factor beta
stimulus. (Figure 2C). Consistently, gene set enrichment analysis (GSEA) also suggested
that IPF-fibroblasts expressed high levels of genes involved in the deposition of ECM, such
as collagen fibril organization, collagen metabolic process, and collagen binding (Figure 2D).
Moreover, the GSEA result showed a negative correlation between IPF-fibroblasts and
pathways involving activation of immune response (Figure 2E). These findings suggest
that IPF-fibroblasts play a critical role in the synthesis and production of extracellular
matrix components within alveolar structures, indicating their potential culpability in the
development and progression of IPF.
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Figure 2. scRNA-seq analysis reveals heterogeneity of fibroblast subtypes in lung fibrosis. (A) Sub-
clustering of fibrotic and normal lung fibroblasts further identified nine distinct subtypes. Each fi-
broblast subcluster is visualized via a color-coded UMAP plot. (B) Cell proportions of fibroblast 
subclusters in the lung tissues of normal and IPF patients. (C) Left panels: The series of diagrams 
illustrates the pa erns of dynamic changes in representative differentially expressed genes (DEGs) 
in each fibroblast population. Middle panels: heatmap showing representative DEGs between each 
cell population. Right panels: representative enriched gene ontology (GO) terms for each cluster. 
(D,E) GSEA enrichment plots for representative signaling pathways upregulated (D) and downreg-
ulated (E) in IPF-related fibroblasts compared to other fibroblasts. 

  

Figure 2. scRNA-seq analysis reveals heterogeneity of fibroblast subtypes in lung fibrosis.
(A) Subclustering of fibrotic and normal lung fibroblasts further identified nine distinct subtypes.
Each fibroblast subcluster is visualized via a color-coded UMAP plot. (B) Cell proportions of fi-
broblast subclusters in the lung tissues of normal and IPF patients. (C) Left panels: The series of
diagrams illustrates the patterns of dynamic changes in representative differentially expressed genes
(DEGs) in each fibroblast population. Middle panels: heatmap showing representative DEGs between
each cell population. Right panels: representative enriched gene ontology (GO) terms for each
cluster. (D,E) GSEA enrichment plots for representative signaling pathways upregulated (D) and
downregulated (E) in IPF-related fibroblasts compared to other fibroblasts.

2.2. The Pseudotime Trajectory Analysis of Pathogenic Fibroblast Subtypes during Fibrogenesis

To investigate the origins of IPF-fibroblasts in the development of IPF, pseudotime
trajectory analysis of fibroblasts was further performed. Fibroblast clusters 5 and 7 were
observed at the start of the trajectory, whereas IPF-fibroblasts were found at both ends
of trajectory branches 1 and 2 (Figure 3A–C). We conducted further analysis of the dy-
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namic expression changes of genes along the trajectory to identify genes that are critical
for fibrogenesis. We identified several genes that exhibited the most significant changes in
expression during pseudotime progression in IPF-fibroblasts, including collagen triple helix
repeat-containing protein 1 (CTHRC1), dermatopontin (DPT), inhibitor beta A chain (IN-
HBA), and latent-transforming growth factor beta-binding protein 1 (LTBP1) (Figure 3D–F).
Furthermore, we conducted clustering of the top 100 genes based on their pseudotemporal
expression patterns and subsequently analyzed the functional enrichments of each resulting
cluster. As a result, we identified five distinct patterns of gene expression changes over
pseudotime (Figure 3G). The genes assigned to cluster 2 exhibited high expression levels
during the end stage and were primarily associated with extracellular matrix (ECM) organi-
zation. Conversely, genes assigned to cluster 4 displayed high expression levels during the
beginning stage and were mainly enriched in processes related to mesenchymal migration
and differentiation of glomerular mesangial cells (Figure S2A). Subsequently, we attempted
to uncover the molecular mechanisms that distinguished the two branches. Our analysis of
the gene expression dynamics revealed that, in conjunction with the fate 2 branch, the genes
assigned to cluster 2 that were activated towards the end of the transition were primarily
associated with the gene ontology (GO) terms “response to cytokine”, “negative regulation
of apoptotic process”, and “cell proliferation”, all of which align with the characteristics of
fibrotic differentiation (Figure S2B). Thus, these distinct gene expression patterns defined
a successful IPF-fibroblast transition trajectory and highlighted a functional discrepancy
within the pre-IPF-fibroblast subcluster.

2.3. Cell–Cell Communications Analyses in Lung Fibroblast Subpopulations

The availability of a single-cell dataset presented us with an exceptional opportunity to
investigate cell–cell communication facilitated by ligand-receptor interactions. In order to
elucidate the cell–cell communication network between fibroblast subpopulations and other
cell types in fibrotic and normal lung tissues, we performed an analysis using CellChat,
which was based on known ligand–receptor pairs and their cofactors [21]. Overall, IPF-
fibroblasts exhibited strong communication abilities with other non-fibrotic cell types during
the fibrogenesis process (Figure 4A). The results suggested that IPF-related fibroblasts ex-
hibit a stronger secretory ability, as indicated by their higher levels of outgoing interaction
strength compared to other fibroblasts (Figures 4B,C and S3). Notably, our study revealed
that IPF-fibroblasts are capable of directly interacting with other fibroblasts through the
adhesive ligand–receptor pairs CCL11/ACKR4 and CTGF/ITGA5 (Figure 4D,E). We further
demonstrated at the single-cell level that NK cells transmit PARs and ADGRE5-dependent
signaling to IPF-fibroblasts (Figure 4F,G). Additionally, our CellChat analysis revealed an
upregulation of pro-fibrosis signaling (such as COLLAGEN and ANGPTL) in the communi-
cation between IPF-fibroblasts and other fibroblasts, as well as an increase in GDF signaling
in the communication between epithelial cells and IPF-fibroblasts (Figure 4H–J). Collectively,
our findings suggest that IPF-fibroblasts and other cell types establish an interaction network
that supports each other’s maintenance and function.

2.4. Identification of the Co-Expressed Gene Modules Associated with IPF-Fibroblasts by
Using hdWGCNA

We utilized high-dimensional weighted gene co-expression network analysis (hdWGCNA),
a comprehensive framework for co-expression network analysis in single-cell RNA sequencing
data [22], to identify co-expressed gene modules and elucidate their functional roles within
IPF-related fibroblasts. A scale-free co-expression network was established using an optimal
soft thresholding power of 8 (Figure 5A). We identified a total of 12 distinct gene co-expression
modules, among which the blue, purple, and magenta modules were highly activated, primar-
ily in IPF-fibroblasts (clusters 3 and 4, as shown in Figure 5B,C). The correlation between each
module was further investigated (Figure 5D–F). Figures 5G and S4 presented the top 10 hub
genes of the 12 modules and the protein-protein interaction (PPI) network of the identified
hub genes in each module, respectively.



Int. J. Mol. Sci. 2024, 25, 94 6 of 16Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Trajectory analysis of fibroblast populations. (A–C) Monocle analysis for trajectory infer-
ence of the fibroblast subclusters, colored by cell cluster. The developmental trajectory of fibroblasts, 
color-coded by states (A), the associated cell subpopulations (B), and pseudotime (C). Sca er plots 
(D), violin plots (E), and pseudotime trajectories (F) show the expression of selected genes in differ-
ent cell states as the pseudotime progresses. (G) A heatmap showing the dynamic changes in gene 
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genes after the changes in pseudotime. 
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Figure 3. Trajectory analysis of fibroblast populations. (A–C) Monocle analysis for trajectory inference
of the fibroblast subclusters, colored by cell cluster. The developmental trajectory of fibroblasts, color-
coded by states (A), the associated cell subpopulations (B), and pseudotime (C). Scatter plots (D),
violin plots (E), and pseudotime trajectories (F) show the expression of selected genes in different cell
states as the pseudotime progresses. (G) A heatmap showing the dynamic changes in gene expression
of the different cell clusters (H) The pseudotime heatmap shows the changes in selected genes after
the changes in pseudotime.

2.5. Machine Learning-Based Construction of the IPF-Fibroblast-Related Predictive Model for IPF

Then, we focused on predicting the onset and progression of IPF using a predictive
model based on hub genes from three IPF-fibroblast-related modules, which could differ-
entiate IPF-related fibroblasts from other fibroblasts due to their gene significance. We
utilized two bulk RNA-seq datasets for further analysis.
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Figure 4. Cell communication analysis in fibroblast subpopulations. (A) Circle plots depict the
number and strength of ligand–receptor interactions between pairs of cell populations. (B) The
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selected inferred differential signaling networks. The direction of the arrow indicates the direction of
cell communication. The edge width represents the communication probability.

The GSE32537 dataset served as the training cohort, while the GSE14407 dataset was
used to evaluate the predictive power of the final model developed. Initially, we conducted
an analysis on the GSE32537 dataset, which consisted of 119 IPF patients. By employing the
LASSO regression algorithm, we were able to identify 24 critical genes that exhibited a strong
association with prognosis (Figure 6A,B). Subsequently, these identified genes underwent step-
wise Cox proportional hazards regression, resulting in the final selection of 14 genes (Figure 6C).
Next, we employed seven distinct machine learning algorithms and performed parameter
optimization for each model using five repetitions of tenfold cross-validation. Subsequently,
we evaluated the area under the curve (AUC) values of these models in the validation cohort.
Through these rigorous mathematical procedures, we ultimately selected the “svm” machine
learning algorithm model, which exhibited the highest AUC of 0.93 (Figure 6D,E). In addition,
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we constructed linear regression models to investigate the relationship between the expression
levels of the 14 identified genes and lung function. Notably, Figure 6F demonstrates a signifi-
cant negative correlation between the increased expression of CCDC80, COL6A1, CTHRC1,
FBLN2, FSTL1, and GSN and a decline in the percent predicted diffusing capacity for lung
carbon monoxide (% DLCO). The above results indicated the ideal predictive value of the
IPF-fibroblast-related predictive model for IPF patients.
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Figure 5. Identification of potential IPF-fibroblast-related genes associated with IPF by high-dimensional
weighted gene co-expression network analysis (hdWGCNA). (A) The selection of soft-thresholding
powers; left panels: the impact of soft-threshold power on the scale-free topology fit index; right panels:
average network connectivity under different weighting coefficients. (B) Module activities in different
fibroblast clusters. The hdWGCNA algorithm was used to estimate the module score. (C) UMAP plots as
in Figure 2A, colored by MEs for the 12 co-expression gene modules. (D) An UMAP diagram Illustrating
the co-expression network in fibroblasts. The edges show co-expression connections between genes and
module hub genes, while each node represents a single gene. Point size is scaled by kME. Nodes are
colored by co-expression module assignment. The top two hub genes per module are labeled. Network
edges were downsampled for visual clarity. (E) Gene overlap within different modules (* p < 0.05,
** p < 0.01, *** p < 0.001). (F) The matrix plot visually represents the inter-module relationships by
depicting the correlation between module eigengenes. (G) Three IPF-fibroblast-related gene modules
were obtained, and the top hub gene was presented according to the hdWGCNA pipeline.
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related gene (IFRG) scores in both normal and fibrotic lung tissue. The results revealed a 
noteworthy increase in the IFRG scores within IPF lung tissue, indicating a potential as-
sociation between the IFRGs and fibrogenesis (Figures 7A and S5). We employed NMF 
clustering to classify IPF patients into two subtypes, namely, subtype 1 and subtype 2, 
using the clustering criteria derived from the differentially expressed IFRGs (Figure 7B). 
After comparing the two subtypes, we observed that patients with type 2 had a higher 
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Figure 6. Construction of a machine learning model using bulk transcriptomic data. (A,B). LASSO
regression was used to narrow down the IPF-fibroblast-related genes associated with IPF. (A) LASSO
algorithm for selection features for IPF-fibroblasts. (B) Selection of genes with a non-zero coefficient
for the construction of a model. (C) Coefficients of the identified genes within the prediction model.
(D) Construction of the IPF-related fibroblast model through seven machine learning algorithms.
(E) ROC values of all seven algorithms were shown in the training cohort. (F) ROC curve of the “svm”
machine learning algorithm model in the validation cohort. (G) Correlation of IPF-fibroblast-related
genes and diffusion lung capacity for CO (% DLCO) in control and IPF patients.

2.6. External Validation of an IPF-Fibroblast-Related Prognostic Signature

To gain a deeper understanding of the correlation between the gene signature of IPF-
fibroblasts and the process of fibrogenesis, we conducted an analysis of the IPF-fibroblast-
related gene (IFRG) scores in both normal and fibrotic lung tissue. The results revealed
a noteworthy increase in the IFRG scores within IPF lung tissue, indicating a potential
association between the IFRGs and fibrogenesis (Figures 7A and S5). We employed NMF
clustering to classify IPF patients into two subtypes, namely, subtype 1 and subtype 2, using
the clustering criteria derived from the differentially expressed IFRGs (Figure 7B). After
comparing the two subtypes, we observed that patients with type 2 had a higher DLCO
index, indicating better lung function in this group (Figure 7C). Given that fibroblasts
associated with IPF may play a role in initiating and progressing the disease by releasing
secretory proteins, we conducted a screening process using the IFRGs to identify these IPF-
fibroblast-associated secretory proteins. Then, we evaluated the risk ratio for each secretory
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protein and identified five stable essential prognostic genes through multivariate Cox
regression (Figure 7D). We displayed the distribution of risk scores based on pseudogenes,
overall survival of IPF patients, and corresponding pseudogene expression profiles in
another GEO dataset (GSE70866) to intuitively understand the prognostic effect of identified
secretory protein-encoding genes. The results indicated that SPON2, FSTL1, CCDC80,
COL8A1, and FBLN2 demonstrated high expressions in the high-risk group (Figure 7E).
The patients in the high-risk group with the five-gene signature had a poor prognosis
(Figure 7F). Furthermore, patients with IPF who exhibited elevated levels of these five gene
expressions had shorter survival times (Figure 7J,K).
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Figure 7. External validation of an IPF-fibroblast-related prognostic signature. (A) Boxplots depict
the IPF-fibroblast-related genes (IFRGs) score levels in lung tissue of patients with IPF (n = 131) and
normal controls (n = 39). Results are expressed as means ± SD (*** p < 0.001 vs. control). (B) A The
heatmap of gene expression clusters for 131 IPF samples by unsupervised NMF illustrates two distinct
expression patterns. (C) Box plots show the differences in diffusion lung capacity for CO (% DLCO)



Int. J. Mol. Sci. 2024, 25, 94 11 of 16

between two clusters (means ± SD; *** p < 0.001 vs. IPF_subtype 1). (D) Univariate Cox analysis of
11 IFRGs encoding secretory proteins associated with overall survival. (E) The risk score distribution,
patient status, and mRNA expression heatmaps of the prognostic five-gene risk signature. (F) Kaplan–
Meier curves for patients with high- or low-risk scores. (G–K) Kaplan–Meier survival analyses of IPF
patients based on the expression of the identified genes.

3. Discussion

Despite extensive research on human idiopathic pulmonary fibrosis (IPF), the un-
derlying mechanisms responsible for the development of these diseases remain poorly
understood. In addition, the available treatments for preventing or treating IPF are limited
and often ineffective [27,28]. Fibrotic lung tissues comprise various cell subpopulations
exhibiting diverse genetic and phenotypic traits. However, the precise mechanisms un-
derlying the emergence of this heterogeneity during fibrosis development remain unclear.
Herein, we conducted a thorough analysis of the fibroblast landscape in human idiopathic
pulmonary fibrosis (IPF) and successfully identified two predominant subpopulations
primarily found within fibrotic lung tissues, which have been designated as IPF-fibroblasts.
Subsequently, we extensively investigated the distinctive characteristics and key regulatory
pathways of distinct fibroblast subtypes. This in-depth exploration not only enhances
our understanding of the pathogenesis of pulmonary fibrosis but also identifies potential
targets for clinical therapies aimed at treating these conditions.

Previous single-cell RNA sequencing (scRNA-seq) studies that examined the hetero-
geneity of various lung-resident cell populations in pulmonary fibrosis have provided
valuable insights but have only provided a limited snapshot of the overall landscape [29,30].
Through our extensive characterization of fibroblast heterogeneity, we have successfully
identified a distinct fibroblast subtype, known as IPF-fibroblast, which exhibits a predomi-
nant presence in fibrotic lung tissue. We characterize the molecular features and identify
novel markers of these fibroblast subpopulations related to IPF. We identify LTBP1, DPT,
INHBA, and CTHRC1 as core enriched genes for IPF-fibroblasts in fibrotic lung tissues;
however, their role in fibrogenesis remains largely elusive and requires further exploration.
In addition, our findings revealed that IPF-fibroblasts exhibit elevated expression levels
of genes associated with profibrotic processes, such as cellular response to transforming
growth factor beta and collagen fibril organization [31,32]. Remarkably, our observations
unveiled intriguing immunosuppressive characteristics in IPF-fibroblasts, implying their
potential role in immunoregulation within the microenvironment of fibrotic pulmonary tis-
sue. Consistent with this, previous studies have demonstrated that lung-resident fibroblasts
play a crucial role in reshaping the local immune landscape, thereby facilitating the pro-
gression of the disease [14]. These scRNA-seq data reveal the dynamic molecular features
of IPF-fibroblasts during development and provide a valuable resource for further studies.

The interactions between fibroblasts and other cell types in the lung are dynamic and
multifaceted, playing a vital role in maintaining lung homeostasis and facilitating tissue
repair processes. scRNA-seq analysis enables the identification of cell-surface receptors
and their ligands that mediate the communication between fibroblasts and other cell types
in the lung tissue. Through cell–cell communication analysis, it has been observed that
IPF-fibroblasts have the potential to promote the differentiation of normal fibroblasts into
fibrotic fibroblasts through CTGF/ITGA5 interaction [33]. In addition, we predicted that
the PARs and GDF signaling pathways, which are mediated by NK cells and epithelial cells,
respectively, would support the maintenance of the IPF-fibroblast phenotype. Furthermore,
the trajectory study of IPF-fibroblasts changing from state 1 to state 2 further supports
earlier findings and suggests that the majority of IPF-fibroblasts are probably derived from
the activation of resident normal fibroblasts [7]. These results suggest that the identified
IPF-fibroblast subpopulation might have an important role in fibrogenesis and may serve
as target cells for a fibrosis treatment.

In this work, high–dimensional weighted gene co–expression network analysis (hd-
WGCNA), which is an advanced bioinformatics strategy for cell-associated gene module
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detection [34], and LASSO analysis combined with univariate analysis were further applied
to develop a prognostic IPF-fibroblast-related gene (IFRG) signature. One of the charac-
teristics of the IPF-fibroblasts in fibrotic lung tissue is their high expression of secretory
proteins such as CCDC80, CTHRC1, COL6A1, FBLN2, FSTL1, and GSN. Previous stud-
ies suggested that some of these proteins, such as FSTL1, increased and could promote
epithelial–mesenchymal transition in the lung [35,36]. Gelsolin (GSN), a protein that severs
and caps actin filaments and plays a pivotal role in regulating actin assembly, has been
reported to be involved in fibroblast activation during the development of myocardial
fibrosis [37]. While there is currently a lack of reported evidence linking GSN to IPF, our
research indicates that it plays a significant role in the activation process of fibroblasts
associated with IPF. Furthermore, in line with our research findings, studies have revealed
that the specific subset of cells with elevated CTHCR1 expression within fibrotic lung
tissue demonstrates the highest level of collagen expression [38]. Notably, our findings
showed that the aforementioned proteins were inversely linked with the percent antici-
pated diffusing capacity for lung carbon monoxide (% DLCO), emphasizing the clinical
importance of IFRGs in pulmonary fibrosis. Based on the above findings, we first employed
seven machine learning algorithms to construct an IPF-fibroblast-related predictive model
for IPF. Then, we applied cross-validation and ROC curve analysis to assess the model’s
performance. After comparing the algorithms’ performance on the validation set, we finally
selected the algorithm with the best performance as our final model. Recently, a study
utilized machine learning to develop an IPF prediction model focused on the midkine
gene [39]. Similar to our research, this study employed three different algorithmic models
(SVM, Adaboost, and random forest) and determined, through ROC curve analysis, that the
SVM algorithm exhibited the highest accuracy. These findings align with our own research,
indicating that the SVM algorithm possesses a considerable advantage and accuracy in
constructing predictive models.

Overall, the model can effectively predict the prognosis of IPF patients, providing
valuable assistance for disease prediction and intervention.

Despite the importance of these data for advancing knowledge, we should acknowl-
edge some limitations. First, despite our best efforts to ensure the robustness of our
clustering analysis of fibroblasts in fibrotic lung tissue, larger datasets could further im-
prove and refine our clustering results. Second, being computational and omic in nature,
our work requires experimental validation of the IPF-fibroblast markers derived from our
findings for identifying and characterizing fibroblast subtypes in fibrotic lung tissues.

4. Materials and Methods
4.1. Data Acquisition

In total, four independent public datasets were downloaded from the NCBI GEO
databases (http://www.ncbi.nlm.nih.gov/geo/, accessed on 2 September 2023). Specifi-
cally, the single-cell RNA-seq dataset GSE128033 was utilized to analyze the heterogeneity
of fibroblasts in normal and fibrotic lung tissues [40]. We selected the lower lobe sam-
ples from the dataset, including normal and fibrotic lung tissues, as pulmonary fibrosis
often originates in the lower lobe in clinical practice [41]. Three bulk RNA-seq datasets
(GSE32537, GSE110147, and GSE70866) were employed for the construction and validation
of our predictive model. Essential information about the samples of the four given datasets
is displayed in Table 1. For analyses of data from a public database, patient consent and
ethics committee approval were not required.

4.2. scRNA-seq Data Processing

ScRNA-seq data processing was performed using the R ‘Seurat’ package (version:
4.3.0) as previously described [42]. Briefly, cells with gene expression levels below 300 genes
or above 6500 genes, as well as those with mitochondrial gene expression exceeding 10%,
were excluded, ensuring the inclusion of the majority of cells in the utilized datasets. The
SCTransform function was then applied to normalize and scale raw counts, followed by

http://www.ncbi.nlm.nih.gov/geo/
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principal component analysis (PCA). To mitigate batch effects across dissociated scRNA-seq
raw data, the R ‘Harmony’ package (version: 0.1.1) was employed. Clustering analysis was
performed based on the edge weights between any two cells, and a shared nearest-neighbor
graph was generated using the Louvain algorithm, implemented in the FindNeighbors and
FindClusters functions. The resulting cells were visualized using the uniform manifold
approximation and projection (UMAP) algorithm. A similar procedure was applied for sub-
clustering analysis. The Seurat “FindMarkers” function was used to identify preferentially
expressed genes within clusters as well as differentially expressed genes (DEGs) between
fibrotic- and normal-derived cells. Each cell cluster was subsequently annotated using
known cell-type marker genes. The specific expression patterns of the identified genes at
the single-cell level were visualized using the “scRNAtoolVis” package (version 0.0.5).

Table 1. Overview of the information of analyzed datasets.

Dataset Year Area Species Platform Data Type Number of Samples

Normal IPF

GSE128033 2019 United States Homo GPL18573 scRNA-seq 10 8

GSE32537 2011 United States Homo GPL6244 Bulk RNA-seq 39 131

GSE110147 2018 Canada Homo GPL6244 Bulk RNA-seq 11 22

GSE70866 2015 Germany Homo GPL14550 Bulk RNA-seq 20 212

4.3. Trajectory and Cell–Cell Communication Analysis

Unsupervised pseudotemporal analysis was conducted using the “Monocle” package
(version 2.26.0) with the DDR-Tree algorithm and default parameters to investigate the tra-
jectory of fibroblasts. Subsequently, the ‘plot_pseudotime_heatmap’ function was utilized
to generate a heatmap, visually representing the dynamic expression of module genes along
the pseudotime trajectories of fibroblasts in fibrotic lung tissues. To identify potential inter-
actions between and within fibroblasts and other cell populations, the “CellChat” package
(version 1.6.1) was employed with the default settings of the recommended pipelines [43].

4.4. Enrichment Analysis

The Seurat “FindMarkers” function was used to identify the DEGs of each cell sub-
cluster. A fold change (|FC|) greater than 2 and an adjusted p-value less than 0.05 were
used as the cut-off criteria. Based on the DEGs, the gene set enrichment analysis (ssGSEA)
and gene ontology (GO) enrichment analyses between the cell subgroups were performed
using the “clusterProfiler” package (version 4.7.1003). The functional enrichment result
was shown using the “GseaVis” package (version 0.0.8).

4.5. High Dimensional Weighted Gene Co-Expression Network Analysis (hdWGCNA)

To identify potential IPF-fibroblast-related genes associated with IPF, we performed
hdWGCNA by using the “hdWGCNA” package (version 0.1.1.9010) [34]. Briefly, metacells
were constructed separately for each sample and each cell cluster with the hdWGCNA
function MetacellsByGroups, aggregating 50 cells per metacell. For each cell population,
we first subset the Seurat object for the cell population of interest and then performed the
standard hdWGCNA pipeline by sequentially running the following functions with default
parameters: TestSoftPowers, ConstructNetwork, ModuleEigengenes, ModuleConnectivity,
and RunModuleUMAP.

4.6. Machine Learning-Based Construction of an IPF-Fibroblast-Related Predictive Model

In order to assess the predictive potential of IPF-fibroblast-related genes (IFRGs) iden-
tified by hdWGCNA in the development of IPF, we collected two transcriptome sequencing
datasets, namely, GSE32537 and GSE110147. These datasets were systematically collected
and utilized as the training and testing cohorts, respectively. The identified IFRG signature
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was utilized to build a prediction model in the training set. This was accomplished by
employing seven machine learning algorithms through the “mlr3” package (version 0.16.0).
The machine learning algorithms included in our analysis are as follows: log_reg (logistic
regression), Ida (iterative dichotomizer 3), ranger (random forest), SVM (support vector
machines), nave_bayes (naive Bayes classifier), rpart (recursive partitioning and regression
trees), and kknn (k nearest neighbors). The model generation procedure was as follows:
(a) Prognostic IFRGs (immune-related functional genes) were identified in the training
cohort using least absolute shrinkage and selection operator (LASSO) and univariate Cox
regression analyses [44]. (b) Seven machine learning algorithms were then applied to
the prognostic IFRGs to create prediction models. Each algorithm was validated using
5-times-repeated tenfold cross-validation. (c) For each model, the “timeROC” R-package
(version: 0.4) was utilized to generate ROC curves and evaluate the predictive capacity of
the model. The model with the highest accuracy was selected as the final predictive model.
(d) The predictive ability of the final model was evaluated using independent testing sets.

4.7. Non–Negative Matrix Factorization (NMF) of IPF by IFRGs and Survival Analysis

To delve deeper into the subtypes of IPF, we employed the non-negative matrix fac-
torization (NMF) algorithm from the “NMF” package (version 0.20.6) to gain additional
insights. Firstly, we chose 30 IFRGs (identified by hdWGCNA) from the GSE32537 dataset.
Following that, we employed the expression matrix of these selected genes in the NMF
analysis to identify unique subtypes of IPF. Survival analysis of the identified secretory
protein-encoding genes was conducted using the “survival” package (version 2.1.2). Sur-
vival status and risk scores of IPF patients in the high- and low-risk groups were analyzed
through the “ggrisk” package (version 1.3). Statistical significance was set at p value < 0.05.

4.8. Statistical Analysis

All statistical analyses and data visualizations were performed using the R software
(version 4.2.1). Pearson’s correlation coefficients were used to assess the correlations
between two continuous variables. For quantitative data, either a two-tailed, unpaired
Student t-test or a one-way analysis of variance (ANOVA) with Tukey’s multiple compar-
isons test was used to compare values between subgroups. p < 0.05 was considered to be
statistically significant.

5. Conclusions

Overall, our study contributes to a better understanding of the heterogeneity within
the fibroblast population in fibrotic lung tissue. The identification of distinct molecular
and biological characteristics of fibroblast subtypes, along with the prognostic utility of
signature genes, provides valuable insights into the pathogenesis of IPF. These findings
have the potential to improve disease prediction and facilitate targeted interventions for
patients with IPF.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25010094/s1, Figure S1: Fibrotic and normal lung
fibroblasts subcluster into distinct cell populations; Figure S2: Enrichment analyses of the gene
clusters; Figure S3: Cell communication analysis in fibroblast subpopulations; Figure S4: High-
dimensional weighted gene co–expression network analysis (hdWGCNA) reveals module-specific
hub genes in IPF-related fibroblasts.
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