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Abstract: A hallmark of Alzheimer’s disease (AD) are the proteinaceous aggregates formed by the
amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation
of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid
hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid
plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal
antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD
therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight
on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores,
non-human primates, transgenic rodents, fish and worms were widely exploited. This review is
based on the recent data obtained using transgenic animal AD models and presents experimental
verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ

with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.

Keywords: Alzheimer’s disease; transgenic animal model; amyloidogenesis; amyloid-beta; peptide;
isoaspartate; zinc; α4β2 nicotinic acetylcholine receptor; aggregation seeding; anti-amyloid drug

1. Introduction

A most common type of dementia in older adults, Alzheimer’s disease (AD), is a
severe neurodegenerative pathology manifested by progressive cognitive decline, such as
memory loss and suppressed logical thinking [1]. Currently, AD is defined by the following
neuropathological profile: (1) deposition of amyloid-beta peptide (Aβ) aggregates in the
form of diffuse and amyloid (neuritic, senile) plaques [2] and (2) the presence of intraneu-
ronal neurofibrillary tangles and neuropil filaments (in dystrophic neurites) comprised of
aggregated hyperphosphorylated tau protein [3,4]. These pathomorphological features are
observed in certain areas of the brain [5,6], but are particularly common in the hippocampus,
an area of the brain critical for learning and memory, where amyloid plaques, neurofibril-
lary tangles and neuropil threads appear at the earliest stages of AD [7,8]. In addition to
classical neuropathological features, AD is characterized by systemic abnormalities and
disorders of brain metabolism that appear at the molecular and biochemical levels and
include cholinergic failure [9], neuroinflammation, activation of apoptosis, mitochondrial
dysfunction, metabolic disorders and chronic oxidative stress [10].

Hereditary AD variants, which are characterized by the early onset and more rapid
progression, account for less than 1% of all cases of this pathology and are associated with
mutations [11,12] that lead to an excess of physiologically normal Aβ levels. Sporadic AD
variants, which are characterized by later onset and a relatively slow progression, affect
over 95% of patients and, similar to the inherited variants, are closely connected with the
abnormal aggregation of endogenous Aβ [2]. Compared with the patients with late-onset
Alzheimer’s disease, patients with familial AD variants have more amyloid plaques and
more developed cerebral amyloid angiopathy [13].
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Normal endogenous Aβ is a small polypeptide molecule of 39–43 amino acid residues [14].
Aβ is produced by proteolysis of the amyloid precursor protein (APP) [14] and is present in
both the brain tissue and peripheral organs [15]. The physiological roles of Aβ may include
regulation of the synaptic function, protection against infection, repair of the damaged areas
in the blood–brain barrier, and compensatory role for the effects of injury [16]. In the process
of the AD pathogenesis, soluble dimers and oligomers of Aβ appear in biological fluids of
the body. These Aβ species, when they bind to cellular receptors, cause the dysfunction
and degeneration of synapses [17]. Presumably in the later stages of AD, Aβ oligomers
stay in dynamic equilibrium with aggregated Aβ molecules of the amyloid plaques [18].
The most commonly occurring sequence in amyloid plaques Aβ42 contains 42 amino acid
residues [19]. In addition to Aβ and its chemically modified isoforms [20], amyloid plaques
include many other components, such as proteoglycans, carbohydrate-binding proteins of
the innate immune system, nucleic acids, biometal ions, lipids, and transport proteins [21].
It is believed that such components can seriously affect the processes of Aβ aggregation in
AD pathogenesis [22].

Analysis of the morphology of amyloid fibrils isolated from the brain tissue of pa-
tients diagnosed with AD showed that, despite the polymorphism of the fibrils, they all
consist of protofilaments with a similar structure [23]. The spatial structure of soluble Aβ

monomers and oligomers cannot be obtained experimentally under the physiologically rel-
evant conditions due to the spontaneous aggregation of Aβ at the concentrations required
for modern physicochemical methods [24]. It is generally accepted that the conformational
transformation and aggregation of monomeric Aβ molecules occurs via the nucleation
mechanism [25–27]. According to this mechanism, a slow and thermodynamically unfavor-
able nucleation phase is followed by the fast polymerization phase [28]. In the nucleation
phase, the stage that determines the integral rate of the entire Aβ aggregation is the forma-
tion of a stable nucleus of the polymerized protein. The nucleus must necessarily contain
Aβ in an oligomeric state, albeit additional molecular agents, which along with Aβ are
present in amyloid plaques, seem to play highly important role in the appearance of the
seed of pathological Aβ aggregation [29].

The primary current hypotheses on the etiology of AD are (reviewed in [30]) (1) “amy-
loid cascade” [31]; (2) “protein aging” [32]; (3) “cholinergic deficit” [9]; (4) “zinc dyshome-
ostasis” [33]; and (5) “inflammatory” [34]. Yet, the prevailing experimental evidence
on the pathological physiology of AD supports the amyloid cascade hypothesis for AD
pathogenesis [31,35]. This hypothesis postulates that the accumulation of Aβ aggregates in
the brain (cerebral amyloidogenesis) triggers a signaling cascade that causes pathological
transformation of the tau protein, neuroinflammation, and neurodegeneration. Conse-
quently, the appearance and spread of the extracellular Aβ aggregates (amyloid plaques) in
brain tissue is one of the main pathological signs for both sporadic and hereditary variants
of AD and, possibly, constitutes the primary pathogenetic process of AD [36].

The recently introduced Amyloid Cascade Hypothesis 2.0 (ACH2.0) interpretation
of AD states that extracellular Aβ in general and Aβ plaques in particular are largely
benign and, possibly, even physiologically protective, and that AD is actually driven by
intraneuronal Aβ (iAβ) [37–40]. The causative role of iAβ is the central postulate of the
ACH2.0, which envisions AD as a two-stage disease. In the first pre-symptomatic stage,
AβPP-derived Aβ accumulates to critical levels in a decades-long process that induces
the activation of the second, devastating symptomatic AD stage that is anchored and
driven by an agent which is independent of AβPP and sustains and perpetuates its own
production [37,38]. The crucial role of the AβPP proteolytic/secretory pathway in only
the first, pre-symptomatic stage of AD explains why the drugs targeting extracellular
AβPP-derived Aβ or its production by the AβPP proteolysis did not and indeed could not
have any effect on symptomatic AD patients. The progression of the disease is driven at
this stage by iAβ produced independently of AβPP and the drugs fail despite effectively
fulfilling their mechanistic purpose. By the same logic, the overall success of the same
drugs in the animal models suggests that no second AD stage occurs there, consistent with
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the inability to obtain full spectrum of AD pathology in those experimental systems [40].
However, the formation of amyloid plaques seems to occur through the same molecular
mechanism in both humans and the animal models of Alzheimer’s disease.

From the time of the formulation of the amyloid hypothesis of AD in the early
1990s [31] and for many years, all drugs aimed at the prevention of Aβ aggregation failed
in clinical trials [41]. As a result, until 2015 most pharmaceutical companies significantly
limited further development of the anti-amyloid drugs aimed at the treatment of AD, and
the amyloid hypothesis was discredited among a significant part of researchers [42,43].
However, full approval by the US FDA of the anti-Aβ antibody lecanemab (marketed as
Leqembi) [44] in July 2023 marked a turning point in Alzheimer’s disease research and
demonstrated the clinical benefits of anti-amyloid therapy [45–47].

This review addresses the advances in understanding the molecular mechanism of
the formation of amyloid plaque in the nervous system of model animals and offers an
analysis of the possibilities of using the structural determinants of amyloid-beta as drug
targets for anti-amyloid therapy for Alzheimer’s disease.

2. Animal Models of Alzheimer’s Disease

The vast majority of AD cases have late onset, but their clinical and histopathological
features are common with the early autosomal-dominant AD variants, which are the main
target of animal modeling [48,49]. Autosomal-dominant variants of AD are associated with
mutations in the genes that encode proteins involved in the generation of Aβ, including the
APP gene, encoding amyloid-beta precursor protein (APP), as well as the PSEN1 and PSEN2
genes, encoding presenilin-1 (PS1) and presenilin-2 (PS2). APP is a transmembrane protein
with the purported but as yet unclear roles in several aspects of the neuronal homeostasis.
Most APP mutations cluster near the sites typically cleaved by proteases: α-, β-, and γ-
secretases. PS1 and PS2 are components of the gamma-secretase complex responsible for the
proteolytic cleavage of APP. AD-associated mutations in the genes APP, PSEN1, and PSEN2
promote Aβ formation by favoring proteolytic processing of APP via the β- or γ-secretase
pathway rather than via the non-amyloidogenic α-secretase pathway. In the amyloidogenic
pathway, APP cleavage is initiated by β-secretase. Subsequent intramembrane cleavage
by γ-secretase results in the formation of 40- and 42-amino acid amyloid peptides (Aβ40
and Aβ42, respectively) The longer forms (Aβ42 or longer) display a greater tendency to
self-aggregation [50]. These proteolytic processes and subsequent modifications result in
the appearance of Aβ in the form of dimers, tetramers, oligomers, protofibrils, and amyloid
fibrils [51].

The recognized in vivo AD models can be divided into spontaneous, interventional,
and genetically modified [52,53]. Aβ accumulation and tau hyperphosphorylation can
occur spontaneously in non-human primates (NHPs). For example, baboons show only
a formation of neurofibrillary tangles, while macaques demonstrate amyloid deposition
without evidence of tau pathology. However, these NHPs have a long lifespan, and
spontaneous AD-like symptoms and pathological changes are usually observed only in
the older adults. Consequently, although the spontaneous AD models using NHPs have
research value, various factors such as high maintenance costs, low reproductive potential,
handling problems, and risk of zoonotic transmission limit the use of these models. In the
interventional models, chemicals are used to induce symptoms and pathological changes
similar to those observed in the AD pathogenesis. In particular, in the interventional AD
models, various chemicals are utilized to induce neuroinflammation [34].

The earliest animal AD models were created by disrupting the cholinergic system of the
basal forebrain in various mammalian species using surgical techniques [54], neurotoxins,
immunotoxins, and pharmacological methods. The target species included mice and
rats, rabbits and monkeys [55]. These models reproduced some symptoms of AD, such
as memory impairment, and were useful for testing the effectiveness of cholinesterase
inhibitors, which may furnish some symptomatic relief at the early stages of AD. In these
models, of course, neither plaques nor neurofibrillary tangles (NFT) were formed, nor did
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they reflect the development of the complex biochemical and cellular changes in AD. As a
result, such models gradually lost their relevance in the AD research.

The spontaneous animal AD models, unlike transgenic AD models, do not include
mutations associated with the hereditary AD variants, but are based on developing the
pathology, which is accompanied by a decline in cognitive functions in old age. Therefore,
spontaneous models can be used to evaluate the therapeutic approaches and to diagnose
sporadic AD, which is the predominant form of AD. Amyloid plaques are found in the
brains of the aged animals [56,57], indicating that this pathology is a common accompa-
niment of aging not only in humans, but also among other species. Neuritic plaques and
cerebrovascular amyloid deposits were found in the aged monkeys, dogs and polar bears
but were rarely found in aged rodents [58]. Larger animals naturally develop amyloid
plaques and/or NFT as they age, and these features may be normal in larger animals. They
were found in many species of primates, as well as in a number of large herbivores and
carnivores. This propensity to form plaques appears to be due, at least in part, to the se-
quence conservation of the amyloid-beta peptide in most mammals [59] with the exception
of rodents (mice and rats) [60]. In contrast to the simple demonstration of amyloid deposits,
though the tau-associated tangle pathology was demonstrated in some species [61], it is
much less common there than in the human brain. Thus, spontaneous animal AD models
could potentially be useful to bridge the gap between the promising rodent studies and
failed human clinical trials [62].

Evidently, there is no ideal animal model of Alzheimer’s disease, and any given
model only reflects certain aspects of the condition of a patient with AD. Mice species
are most commonly used due to their ease of breeding and genetic manipulation, as well
as the relatively low cost of maintenance [48]. However, wild-type mice do not develop
tau or Aβ pathology, possibly because the rat/mouse amyloid-beta differs from human
amyloid-beta and that of most other vertebrates by three amino acid substitutions in
the metal-binding domain 1–16, which significantly affects Aβ structural and functional
properties [63]. AD models where the genetically altered (transgenic) rodents are utilized
have provided fundamental insights into the molecular mechanisms of inherited variants
of Alzheimer’s disease [64]. Additional vertebrate species used for modeling employing
transgenic approaches include the rat (better suited for behavioral testing than mice), the
sea lamprey (which has giant driven neurons), and the zebrafish with its transparent larvae
that make neurons easier to visualize. Invertebrate species that are also used include the
fruit fly, and the roundworm (both of which are suitable for screening of the developed
drug’s effectiveness). Neurodegeneration has been successfully modeled in pigs and sheep,
with the features of AD pathology modeled in transgenic pigs [65].

Currently, there are approximately two hundred spontaneous and genetically modi-
fied AD models [66], which are based on utilizing various animals, including transgenic
mammals (which overexpress human genes involved in the formation of amyloid plaques
and neurofibrillary tangles [67]), as well as transgenic flies [68], worms [69], and fish [70].
Mice is used in the majority of the animal AD models, including transgenic, knockout, and
injection models [71]. Wild-type mice do not form senile plaques or neurofibrillary tangles
even in old age and therefore cannot be used as model animals for AD. Based on the genetic
evidence that nearly all mutations associated with inherited AD variants are associated with
alterations in Aβ production or aggregation, advances in genetic engineering technologies
have enabled the development of mouse models using the APP and PSEN1 genes. Such
models are characterized in the first place by the presence of fibrillar and diffuse amyloid
plaques. The most popular models include mice of the following lines: PDAPP, Tg2576,
APP23, J20, TgCRND8, PS2APP, APPswe/PSEN1dE9 (APP/PS1), Tg-ArcSwe, 5xFAD, A7,
and AppNL-G-F. Mice where the neuronal dysfunctions are developed in association with
the hyperphosphorylated forms of tau, as a result of transgenes with mutations in MAPT,
include the following strains: JNPL3, PS19, and rTg4510. The 3xTg mice were engineered
by co-injection of the two genes carrying the linked mutations [APP with the Swedish
mutation (KM670/671NL) and MAPT with the P301L mutation]. As a result, these mice
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develop progressive neuropathology, with intracellular and extracellular Aβ deposits and
the aggregates of phosphorylated tau characterized by conformational changes.

3. Molecular Factors Affecting Amyloid Plaque Formation in Transgenic Animal
Models of Alzheimer’s Disease
3.1. Zinc

A number of observations indicate that Aβ interactions with zinc ions are involved
in the pathogenesis of AD [72]: (1) amyloid plaques contain abnormally high amounts
of zinc ions [73]; (2) zinc binds to Aβ and causes its rapid aggregation [74], possibly by
modulating the conformational transformation of Aβ and the population shifts in the
equilibrium of Aβ polymorphic states [75]; (3) in postmortem brain tissue samples from
the patients diagnosed with AD, areas of increased zinc concentration coincide with the
sites of amyloid plaque formation [76]; (4) brain regions most affected by the AD pathology
contain dense innervation by zinc-containing axons, while brain regions less affected by
pathology contain negligible amounts of zinc-containing terminals [77]. Zinc is the second
most abundant micronutrient in the human brain (after iron) [78] and serves as an essential
structural and catalytic component for more than 10% of the proteins encoded in the human
genome [79]. Under physiological conditions, zinc is involved in modulating synaptic
plasticity, can regulate neurogenesis, neuron migration and differentiation, and plays a role
in neurotransmission [80]; it also has neuroprotective properties and can protect against
oxidative stress [81,82]. Hence, the physiological functions of zinc and Aβ largely overlap,
and during the pathogenesis of AD, zinc and Aβ constitute the main components of the
amyloid plaques and are in direct contact with each other.

The concentration of zinc ions in the amyloid plaques reaches 1 mM [73]. It is believed
that the source of zinc that accumulates in the plaques is glutamatergic synapses [83]. Free
zinc ions are present in high concentrations (up to 0.3 mM) in the presynaptic vesicles
of glutamatergic neurons of the limbic system and cerebral cortex [84]. Upon excitation,
zinc ions at a concentration of 10–100 µM enter the synaptic cleft of neurons along with
glutamate molecules, where they interact with NMDA and AMPA receptors, modulating
their function [85]. To confirm the important role of zinc located in the synaptic cleft, the
formation of amyloid plaques was analyzed in transgenic mice with the zinc transporter
ZnT3 protein inactivated, and it was found that, in such mice, plaque formation was sharply
reduced [83].

The ability of Aβ molecules to bind zinc ions in vitro was first demonstrated in 1994
using Aβ40 as an example [74]. For a long time, it was not possible to establish the mechanism
of interaction of Aβ with zinc ions owing to the rapid zinc-induced aggregation of both
the most common, in the organism, full-length variants of Aβ, i.e., Aβ40 and Aβ42, and
of the truncated at the C- terminus Aβ isoforms, particularly Aβ28 [74,86–90]. However,
the N-terminal fragment 1–16 (Aβ16), which is also present in humans as an independent
peptide [91], is an autonomous metal-binding domain of Aβ that is stable in vitro [92].
The structure of this domain was determined in the free state and in complex with a zinc
ion under physiologically relevant conditions [93]. Then, the molecular mechanism of
interaction between zinc ions and Aβ [94] has been established: (1) firstly, zinc ion is
chelated by side groups of the amino acid residues Glu11, His13 and His14; (2) followed by
folding of the N-terminal region 1–8 of Aβ16, and further by the formation of an additional
coordination bond between the zinc ion and the side group of the His6 amino acid residue;
this results in the appearance of a well-ordered compact structure of the entire 1–16 domain.

Importantly, the 11-EVHH-14 region of Aβ acts not only as the primary zinc ion recog-
nition site, but also controls the processes of zinc-induced Aβ dimerization [95,96] and
oligomerization [97]. The 11-EVHH-14 region has a relatively rigid backbone conforma-
tion in soluble Aβ monomers [93,98] and zinc-bound dimers [97]. This site corresponds
to the β-strand β2 from the N-terminal arch of the Aβ amyloid fibrils purified from
Alzheimer’s brain tissue and is solvent-exposed and accessible for interactions with the
external molecules [23]. The secondary structure of the 11-EVHH-14 region is a left-handed
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polyproline II-type helix [99], which has an increased propensity to participate in the
protein–protein interactions [100]. On the strength of these data, the 11-EVHH-14 site
represents a structural determinant of Aβ.

3.2. α4β2 Nicotinic Acetylcholine Receptor

It was established using bioinformatic approaches that the extracellular N-terminal
domain of the α4 subunit of α4β2-nAChR includes the fragment 35-His-Ala-Glu-Glu-38
(35-HAEE-38), ion-complementary to the 11-EVHH-14 region of Aβ. The fragment 35-
HAEE-38 (conservative for humans, mice and chicken) forms the interaction interface of
α4β2-nAChR with Aβ [101]. It was shown by molecular modeling that this interaction
is stabilized by ion bridges between the complementary charged side groups of the H/E
and E/H amino acid pairs. Thus, Aβ can interact with α4β2-nAChR via the 11-EVHH-
14: 35-HAEE-38 interface. Tetrapeptide Ac-HAEE-NH2, which is the synthetic analog
of the receptor side of this interface, was proven to bind Aβ and to efficiently repair the
Aβ-dependent loss of cholinergic function in α4β2-nAChR-transfected oocytes [101]. The
data suggest that Aβ:α4β2-nAChR interaction is mediated by the charge complementary
interface (Aβ) 11-EVHH-14:35-HAEE-38 (α4), and that the interaction may be involved in
Aβ aggregation seeding. So, one can rationally suggest that the absence of α4β2-nAChR
would suppress amyloid plaque formation.

Indeed, study [102] reports a number of protective effects caused by the loss of α4*-
nAChRs on the neuropathological alterations that develop over time in Tg2576 (APPswe)
mice, a widely studied mouse model of AD that expresses a human APP transgene carrying
the amyloidogenic Swedish mutation. The principal effect of α4KO was to markedly reduce
the load of Aβ plaques in neocortical areas. The plaques were reduced in number, but their
size distribution was unchanged, suggesting that fewer plaques are initially formed, but
once they are seeded, their maturation is not altered by the loss of α4*-nAChRs. This evi-
dence supports the hypothesis that α4*-nAChRs are directly involved in the seeding of the
plaques without affecting plaque maturation and the specific Aβ isoform processing [102].

3.3. Amyloid-β with the Isomerized Asp7 (isoD7-Aβ)

One of the main signs of the pathogenesis of AD is cerebral amyloidogenesis (CA), the
process of forming amyloid plaques in the patient’s brain [3,4]. The ability of Aβ aggre-
gates isolated postmortem from the brains of patients diagnosed with AD to induce the
development of cerebral amyloidosis was first shown in monkeys that were intracerebrally
injected with the corresponding autopsy material [103,104]. Further, in a series of studies
on transgenic rodent models of AD [105–108], it was established that the molecular agent
that causes the formation of amyloid plaques in the brain tissue is the conformationally
or chemically modified version of Aβ [105–112]. It was also shown that, upon induction
of CA, amyloid plaques form in model animals within 24 h, followed in 1–2 days by the
activation of microglial cells and their migration to the plaques, which is accompanied by
local changes in the axons and dendrites of nearby neurons [113]. The spread of amyloid
plaques throughout the brain occurs through the extracellular pathway [114]. As a result of
incubation in hippocampal slice culture, synthetic Aβ is converted into a pathogenic agent
that causes CA in vivo via a seeding mechanism (in the presence of small amounts of the
brain homogenate from the AD patients) [115].

The seeding mechanism of CA initiation in AD involves an important change in the
native structure of endogenous Aβ due to the interaction with pathogenic Aβ molecules [29]
present in amyloid plaques. This mechanism is corroborated by the fact that small amounts
of the pathologically altered Aβ molecules contained in the material obtained from patients
diagnosed with AD cause the transition of native Aβ molecules to pathological state [116,117].

It was established that injections of homogenized brain preparations from patients
diagnosed with AD lead to a sharply accelerated CA in model animals [29]. Of note,
amyloid-β with isomerized Asp7 (isoD7-Aβ) accounts for over 50% of all Aβ molecules in
the amyloid plaques [118] and, accordingly, such homogenates contain significant amounts
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of isoD7-Aβ. IsoD7-Aβ is formed spontaneously due to “protein aging” [32] of both the
circulating and aggregated Aβ molecules [14]. It was shown that the accumulation of
isoD7-Aβ in brain tissue is a common process in elderly subjects, but patients diagnosed
with AD have significantly higher levels of isoD7-Aβ [119]. IsoD7-Aβ42 was also shown to
be toxic to neuronal cells [120,121]. IsoD7-Aβ cytotoxicity is coupled to protein phosphory-
lation [122] and to the induction of oxidative stress, actin polymerization, and stress fiber
formation [123]. Molecular mechanism of the in vitro formation of zinc-induced oligomers
of natural Aβ isoforms [97] imply that isoD7-Aβ can act as a nucleation seed of aggregation
of the endogenous native Aβ molecules in the presence of high concentrations of free
zinc in vivo, e.g., in the clefts of cholinergic neurons, where the level of zinc ions reaches
300 µM [85,124].

Indeed, in study [125], it was shown that, unlike Aβ42, isoD7-Aβ42 when administered
intravenously to males of transgenic mouse strain B6C3-Tg(APPswe, PSEN1-dE9)85Dbo/j
(APP/PS1) caused a sharp acceleration in the development of CA. The experimental groups
included male animals that were raised in specific pathogen-free conditions and received
monthly intravenous injections of isoD7-Aβ42 (at doses of 100 µg) starting at 2 months
of age. Then, the amount of fibrillar amyloid plaques in the hippocampus, cortex and
thalamic nuclei was determined in the brain samples from 4- and 10-month-old animals. In
contrast to the 4-month cohorts of mice, in which the number of amyloid plaques in the
hippocampus and cerebral cortex was approximately 9 and 4 times higher in the animals
injected with isoD7-Aβ42 than in the intact control animals, the 10-month cohorts showed
for these areas of the brain a smaller difference of about 3 and 1.5 times, respectively. In
the thalamic nuclei, the difference between the injected and intact 10-month-old transgenic
mice was again very high, by 5.2 times, while the 4-month-old transgenic mice did not have
amyloid plaques in this area of the brain. Unlike transgenic mice, intravenous injection of
isoD7-Aβ42 to the wild-type mice did not cause the formation of amyloid plaques in the
animals, regardless of their age. Thus, it was shown that isoD7-Aβ42 plays the role as a
nucleus for the aggregation of endogenous Aβ molecules during the development of CA in
a transgenic model of AD [125].

It was later found that intracerebral administration of the metal-binding domain 1-16
of isoD7-Aβ to the transgenic 5xFAD mice substantially enhanced CA [126]. At the age of
3 months, two groups of male 5xFAD transgenic mice were given a single intracerebral
injection of isoD7-Aβ16 or Aβ16 solution using the stereotaxic procedure. Brains were
removed 1 month after the stereotaxis procedure, and the 8-µm-thick sagittal sections of
the brain were analyzed histochemically using Congo red staining. The mean number of
congophilic amyloid plaques in the group of transgenic mice treated with the isoD7-Aβ16
was 19.9 ± 2.0, while the mean number of the congophilic amyloid plaques in the group of
animals treated with Aβ16, was 12.9 ± 2.1. Hence, isoD7-Aβ16 was identified as a minimal
seed for the zinc-dependent aggregation of endogenous Aβ molecules [126].

It was demonstrated that passive immunization of the transgenic 5xFAD mice by the
specific monoclonal antibodies recognizing isoD7-Aβ resulted in a significant reduction
of isoD7-Aβ and total Aβ in the brain [127]. Amelioration of cognitive impairment was
demonstrated by the Morris water maze, elevated plus maze, pole, and contextual fear
conditioning tests. Consequently, the antibody-mediated targeting of isoD7-Aβ peptides
leads to the attenuation of the AD-like amyloid pathology.

4. Molecular Tools Switching On/Off the Aggregation of Endogenous Aβ Molecules in
a Transgenic Model of Alzheimer’s Disease
4.1. Neither Zinc Nor isoD7-Aβ, but a Mixture of Them Triggers Amyloidogenesis

Transgenic nematodes C. elegans that overexpress human Aβ are a popular animal
model in the studies of cerebral amyloidogenesis in AD [128–131]. As these nematodes
age, fibrillar amyloid plaques appear in various tissues of the body, and various functional
abnormalities are observed. However, the average life span expectancy of animals remains
almost unchanged, which indicates only a limited effect of the constitutive amyloid plaques
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on the main functions of nematodes. One explanation for the relative harmlessness of the
amyloidogenesis for nematodes may be the insufficient amounts of molecular components
that are present in the human amyloid plaques, namely, zinc ions and isoD7-Aβ. Under the
normal nematode life conditions, the concentration of zinc ions in their body cannot reach
peak values [132,133]. Also, the occurrence of isoD7-Aβ in nematodes is unlikely, since
spontaneous isomerization of Asp7 within Aβ requires substantial time [134], exceeding
the life span of these animals.

The study [135] analyzed changes in the three main experimental characteristics
associated with the development of amyloidogenesis in transgenic nematodes Caenorhabditis
elegance CL2120 (integral volume of amyloid plaques in tissues; degree of muscle paralysis;
and life expectancy) when several molecular agents (Aβ, isoD7-Aβ, and zinc ions), which
are present in amyloid plaques of the patients diagnosed with AD were added to a nutrient
medium. Any single agent by itself had no effect on the animals. A binary mixture of Aβ

and zinc ions was also harmless to nematodes. However, the concurrent addition of zinc
ions and isoD7-Aβ led to a sharp increase in the amyloid load, an increase in the degree
of paralysis and a shortening of the lifespan of animals. Therefore, it was demonstrated
in vivo that the isoD7-Aβ/zinc complex has a determinative role in triggering the chain
process of zinc-induced aggregation of endogenous Aβ molecules, associated with the
severe functional consequences for the life of experimental animals.

4.2. In Transgenic Nematodes, nAChR α4-Derived Peptide HAEE Neutralizes the Aggregation
Seeding Effect of the Zinc and isoD7-Aβ Mixture

On the basis of the molecular mechanism of zinc-dependent oligomerization of Aβ iso-
forms [97], it can be stipulated that molecular agents that can, together with the 11-EVHH-14
sites of Aβ chelate the common zinc ion, will inhibit zinc-dependent oligomerization of Aβ.
Indeed, it was shown [135] that the presence of the tetrapeptide Acetyl-HAEE-NH2 (HAEE)
completely neutralizes the negative effects of the mixture of zinc ions and isoD7-Aβ on the
quality of life of nematodes Caenorhabditis elegance CL2120. Moreover, it was determined
from the biosensor experiments based on the SPR effect, the NMR spectroscopy, and molec-
ular modeling that both the Aβ and isoD7-Aβ form a stable non-covalent complex with
HAEE, in which one zinc ion is located at the intermolecular interface 11-EVHH-14:HAEE.
Previously, using a transgenic mouse model of AD, it was shown that intravenous injections
of HAEE highly limit the development of CA in experimental animals [136].

5. Conclusions

Taken together, the above data (summarized in Table 1) point at the fundamental
role of the non-covalent complexes of zinc ion and isoD7-Aβ as a necessary and sufficient
molecular tool that, with the participation of the α4β2 nicotinic acetylcholine receptor,
triggers a chain process of pathological aggregation of the endogenous Aβ molecules. The
following integral scenario of the molecular mechanism of amyloid plaque formation in
transgenic models of AD is suggested (Figure 1). Phase 1. Due to unknown reasons (most
likely stress and aging), isoD7-Aβ appears in the brain. Phase 2. The 11-EVHH-14 region
of this chemically modified Aβ isoform interacts with the 35-HAEE-38 region of the α4
subunit of the α4β2-nAChR, resulting in the formation of an “amyloid matrix”, a stable
complex on the outer surface of the neuron formed by the isoD7-Aβ and α4β2-nAChR.
Phase 3. To the “amyloid matrix”, when there is a surge in the concentration of zinc ions
in the synaptic cleft, a molecule of the intact Aβ “sticks” according to the zinc-dependent
mechanism. The process continues: (i) from the Aβ molecule, the fragment 11-EVHH-14
participates in the interface, and from the “amyloid matrix”, the residues His6 and His13 of
the isoD7-Aβ molecule also participate; (ii) an insoluble aggregate appears, on its outer side
there is a molecule of endogenous Aβ, which acquires a pathological conformation (due
to interaction with the isoD7-Aβ from the “amyloid matrix”); (iii) according to the same
scheme, endogenous Aβ molecules newly arriving from the extracellular space “stick” to



Int. J. Mol. Sci. 2024, 25, 72 9 of 15

the Aβ molecules already aggregated on the initial “amyloid matrix”, and the amyloid
plaque grows (to a certain canonical volume).

Table 1. Molecular agents involved in the formation of amyloid plaques in transgenic animal models
of Alzheimer’s disease.

Agent Relation to the Formation of
Amyloid Plaques

Transgenic
Animal Model References

Human amyloid-beta (Aβ) The main endogenous building block of
the plaques

5xFAD mice [137]

APP/PS1 mice [138]

Tg2576 mice [139]

Caenorhabditis elegance
CL2120 [140]

Human amyloid-beta with the
isomerized Asp7 (isoD7-Aβ)

The most abundant non-enzymatically
(due to aging) modified Aβ isoform in

the plaques
5xFAD mice [127,141]

Endogenous blood component
accompanying formation of the plaques 5xFAD mice [127]

Exogenous agent accelerating formation
of the plaques

APP/PS1 mice [125]

5xFAD mice [126]

α4β2 nicotinic acetylcholine receptor
(α4β2-nAChR) Promoter of the plaques formation Tg2576 mice [102]

Zinc ions (Zn2+)
Necessary endogenous agent for the

plaques formation Tg2576 mice [83]

Noncovalent complex between
isoD7-Aβ and Zn2+

Necessary and sufficient exogenous
agent accelerating plaque formation

Caenorhabditis elegance
CL2120 [135]

Tetrapeptide
Acetyl-His-Ala-Glu-Glu-NH2 (HAEE)

Exogenous inhibitor of the plaque
formation

APP/PS1 mice [136]

Caenorhabditis elegance
CL2120 [135]
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region of the α4 subunit of α4β2-nAChR, e.g., the substance Ac-HAEE-NH2, the potential
therapeutic effect of which has already been confirmed in the animal AD models [135,136].
When interacting with an amyloid plaque, such analogs will consistently destroy inter-
molecular interfaces involving the 11-EVHH-14 fragments of Aβ due to their specific
binding to the 11-EVHH-14 regions of the aggregated Aβ molecules. In this case, the “amy-
loid matrix” itself, located at the foundation of this pathological pyramid, will eventually
be destroyed, and the neuron, which was burdened with amyloid plaques for many years
or even decades, will return to normal life.
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