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Abstract: Bacterial cellulose, as an important renewable bioresource, exhibits excellent mechanical
properties along with intrinsic biodegradability. It is expected to replace non-degradable plastics
and reduce severe environmental pollution. In this study, using dry jet-wet spinning and stretching
methods, we fabricate cellulose composite macrofibers using nanofibrillated bacterial cellulose
(BCNFs) which were obtained by agitated fermentation. Ionic liquid (IL) was used as a solvent to
perform wet spinning. In this process, force-induced alignment of BCNFs was applied to enhance
the mechanical properties of the macrofibers. The results of scanning electron microscopy revealed
the well-aligned structure of BCNF along the fiber axis. The fiber prepared with an extrusion rate of
30 m min−1 and a stretching ratio of 46% exhibited a strength of 174 MPa and a Young’s modulus
of 13.7 GPa. In addition, we investigated the co-spinning of carboxymethyl cellulose-containing
BCNF with chitosan using IL as a “container”, which indicated the compatibility of BCNFs with
other polysaccharides. Recycling of the ionic liquid was also verified to validate the sustainability of
our strategy. This study provides a scalable method to fabricate bacterial cellulose composite fibers,
which can be applied in the textile or biomaterial industries with further functionalization.

Keywords: bacterial cellulose; dry jet-wet spinning; wet stretching; alignment; mechanical properties;
ionic liquid

1. Introduction

Plastic waste has become a global concern because of its substantial accumulation in
the environment and the significant risk to various ecosystems and living organisms [1,2].
In the last decade, environmental pollution due to plastic waste has continuously increased.
Plastic production is expected to reach 500 million tons in 2025, and approximately 60%
of it will enter our environment as waste [3]. Therefore, there is a concerted effort to
prioritize and expedite the development of biomaterials to reduce the consumption of
petroleum-based polymers [4–7]. Textiles and fibers, which are globally high in demand,
are also required to develop green and sustainable products [8].

Cellulose is the most abundant and commonly utilized natural polymer for textile
fabrication because of its renewability, great mechanical strength, hydrophilicity, and good
dyeability [9–13]. It is a polysaccharide containing long linear β-(1,4)-D-glucose units with
a large amount of hydroxyl groups [14,15]. This attribute leads to the formation of a huge
hydrogen-bonding network among cellulose molecules, providing this natural polymer
with high crystallinity and excellent mechanical properties [16]. Further, the utilization of
regenerated cellulose, the product of cellulose dissolution and precipitation, and cellulose
derivatives also account for a considerable proportion in textile industry because they can
be easily processed via spinning to fabricate synthetic fibers [17]. Viscose rayon and lyocell
have become the most popular types of regenerated fibers in 2020 due to their softness and

Int. J. Mol. Sci. 2024, 25, 69. https://doi.org/10.3390/ijms25010069 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25010069
https://doi.org/10.3390/ijms25010069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2522-6711
https://orcid.org/0000-0002-6775-9850
https://doi.org/10.3390/ijms25010069
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25010069?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 69 2 of 15

wearing comfort [18]. Thus far, cellulose, regenerated cellulose and their derivatives have
been widely used in our daily life [19,20]. However, in the light of the growing demand
for biomaterials and green textiles, we need to find more accessible sources to afford such
extensive consumption of cellulose. In this context, bacterial cellulose (BC) has attracted
great attention due to its short production period [21–23]. Unlike plant-derived cellulose,
BC does not require excess chemical and physical pretreatment to remove other impurities,
such as hemicellulose, lignin, and pectin [24]. Although BC has an identical chemical
structure to plant-derived cellulose, it also exhibits a natural nanostructure and a high aspect
ratio. It is a desirable raw material for the development of advanced materials [25–28].
BC is mainly produced using two approaches: static and agitated fermentation [29]. In
static fermentation, a gelatinous pellicle can be obtained at the interface of air and culture
media, while agitated fermentation is used to prepare BC dispersions. Generally, the BC
pellicle produced through static fermentation has a higher degree of polymerization and
crystallinity, resulting in good mechanical properties. However, agitated fermentation can
be easily amplified for large-scale production and the obtained BC exhibits better water
holding capacity as compared to static cultivation [30].

Although BC exhibits such advantages, the mechanical properties of the material prod-
ucts are not only affected by the BC itself. The axial tensile strength and the elastic modulus
of single BC nanofibers can reach up to 1–3 GPa and 120–220 GPa, respectively [31,32].
However, these excellent performances are lost when BC nanofibers are assembled from
the nanoscale to the macroscale. During this transition, the arrangement and stacking
of molecules and nanofibers determine the performance of the materials. Precise align-
ment and densification of BC significantly contribute to reducing the generation of defects
and helping in conducting stress, thus providing the material with unique properties
and overcoming its weak mechanical properties [33–35]. In 2017, Hu et al. fabricated a
super strong BC macrofiber using the wet stretching and twisting methods [36]. A BC
wet pellicle was stretched to 30% deformation, followed by immediate twisting into fiber
and drying under 90 ◦C. With a well-aligned interior structure, the fibers exhibited a high
tensile strength of 826 MPa and a Young’s modulus of 65.7 GPa. A similar result was
reported by Chen et al. [37]. They first soaked a BC pellicle in an N-methyl-2-pyrrolidinone
solvent and performed wet stretching to align BC nanofibers. After drying, the product
was peeled to obtain ultrathin films that could be twisted into fibers under wet conditions.
The fiber not only exhibited high strength (886 MPa), but also had a good toughness of
59.2 MJ m−3. The same research group also prepared BC fibers by wet spinning a 2, 2,
6, 6-tetramethylpiperidine-1-oxyl-oxidized BC nanofiber suspension [38]. The fiber was
coagulated in acetone and subjected to a two-step stretching process. The tensile strength
of the final product was 659 MPa. The above studies reported the use and orientation of BC
pellicles, in which BC nanofibers are trapped and stacked more compactly at the nanoscale.
However, BC produced from agitated culture showed totally different characterization
with BC pellicle [39]. After agitated fermentation, BC is dispersed in culture medium and
randomly arranged. It is therefore difficult to assemble this BC slurry into an ordered
structure. Although BC slurry can be shaped by drying, the mechanical properties of
obtained material are very low and the orientation of BC cannot be controlled after drying
due to the completed aggregation of nanofibers [40,41]. Therefore, the use of BC slurry to
fabricate a robust material has rarely been reported.

Ionic liquids (ILs) are organic salts with melting temperatures lower than 100 ◦C [42,43].
Generally, ILs are composed of an organic cation and an organic or inorganic anion. Some
special ILs exhibit excellent solubility for polysaccharides which are generally difficult to
dissolve in normal solvents [44]. Owing to their high chemical stability and low toxicity,
ILs have become popular green media for biomass processing and biomaterial fabrication,
including pretreatment, dissolution, catalysis, and others [45]. Further, ILs exhibit negligible
vapor pressure, simplifying their recycling process and resulting in cost savings.

Recently, Tajima et al. reported a novel agitated fermentation process to prepare a
special nanofibrillated bacterial cellulose (BCNF) [46]. In this process, BCNF slurry is
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obtained directly by adding cellulose derivatives to disperse the newly produced BC. The
produced BCNF exhibited nanostructures with long aspect ratio and adjustable surface
hydrophilicity. Hydroxypropyl cellulose-containing BCNF (HPBC) can be dispersed in
common organic solvents, and this unique BCNF exhibits great potential for applications
in the field of biomaterials and composite materials. Our group has studied the cellulose
acetate composites improved by BCNFs and investigated the effects of different processes
on mechanical properties [47]. But it is still a difficult problem to directly use BCNF to
fabricate materials. ILs can break hydrogen-bonding networks between cellulose chains,
which allows the reassembly and alignment of cellulose for preparing robust materials. So
here, we considered that BCNFs may be readily wet spun into macrofibers using IL as a
solvent and the mechanical properties can be enhanced by stretching.

In this study, we prepared a BC composite macrofiber from BCNF using a combination
of dry jet-wet spinning and wet stretching methods (Scheme 1). The BCNFs were freeze-
dried and dissolved in 1-ethyl-3-methyl-imidazolium acetate (EmimAc) and dimethyl
sulfoxide (DMSO) cosolvent to obtain a homogeneous dope. Spinning was then performed
under different conditions, followed by stretching to obtain a well-aligned nanostructure of
BCNF. We evaluated the spinnability of the BCNFs and the effect of processing parameters
on the mechanical properties of BC composite macrofibers. In addition, utilizing the
dissolving ability of ILs to a variety of polysaccharides, it is expected that IL can be used
as a “container” to mix BCNFs with other polysaccharides, and the co-spinning of BCNFs
with other polysaccharides can be easily achieved.
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Scheme 1. (a) Schematic of the wet spinning process for fabrication of cellulose composite macrofibers
using nanofibrillated bacterial cellulose (BCNFs). Optical photos of the (b) gelatinous wet fiber and
(c) dry HPBC macrofiber.

2. Results and Discussion
2.1. Rheological Properties of the HPBC Spinning Dope

The rheological properties of spinning dope are significant factors of wet spinning.
Excessively high viscosity of the spinning dope makes it difficult to extrude the dope
from the cylinder. However, if the viscosity is significantly low, the shaping of the fiber
is hindered. Thus, the viscosities of the BCNF spinning dope were evaluated at different
temperatures and shear rates. As shown in Figure 1, the viscosity of dope is highly
dependent on the temperature and shear rate. The viscosity value of 4 wt% spinning dope
sharply reduced from 322 to 20.7 Pa·s with the increase in temperature from 25 to 80 ◦C. This
can be attributed to the intensified movement and unwinding of the cellulose molecular
chains at high temperatures. In addition, as the rotation speed increased, the spinning dope
exhibited typical shear-thinning characteristics required for spinning. Then, we tried wet
spinning from 60 ◦C to 80 ◦C under an extrusion rate of 15 m min−1. Unfortunately, the
diameters of obtained fibers were not uniform at the spinning temperature of 60 ◦C. And
the spinning dope was too dilute to perform wet spinning at 80 ◦C. Finally, wet spinning
was performed at 70 ◦C.
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2.2. Dry Jet-Wet Spinning of HPBC

The dry jet-wet spinning process of BCNF is illustrated in Scheme 1a. First, HPBC
was dissolved in an EmimAc/DMSO mixed solvent and prepared as a 4 wt% spinning
dope. It is noteworthy that suitable viscosity for the spinnability of high concentration
dope required elevated temperature, which may cause the degradation of BC molecules.
Therefore, 4 wt% was chosen as the fitting concentration of dope for wet spinning. IL
was used as a solvent and allowed the reassembly of BCNF. Then, the dope was extruded
from the cylinder at 70 ◦C and passed through air gap before entering in the coagulation
bath. Here, the dry-jet method was applied to obtain better orientation and enhance the
mechanical properties of the BC composite macrofibers. After coagulation, the fiber was
washed with water to remove all the IL, yielding gelatinous HPBC fibers (Scheme 1b). In
the spinning and coagulation processes, BC molecular chains reassembled and crystallized
to form new cellulose fibril network. Finally, the fiber was stretched using two rolls at
different rotation speeds and air-dried under tension. The BC chains were aggregated
and aligned during wet stretching. After drying, the oriented gelatinous fibers shrank
and formed HPBC macrofibers with uniform and compact structures (Scheme 1c). The
extrusion rates and stretching ratios of the partial fiber samples are listed in Table 1. In
this strategy, three forces contribute to the alignment of BC molecular chains: shear force
from the spinneret, gravity in the air gap, and the stretching force during wet stretching.
Through the collaborative action of these forces, a well-aligned microstructure was formed
in macrofibers, and the fiber performances were enhanced.

To understand the crystalline structure transformation of HPBC during spinning, we
performed an X-ray diffraction (XRD) analysis of the original HPBC freeze-dried powder
and HPBC fibers (Figure 2a). We observed three diffraction peaks in the pattern of the
original HPBC powder at 14.76◦, 16.80◦, and 22.90◦, corresponding to the (110), (110)
and (200) lattice planes of cellulose crystal I, respectively. This is the typical structure
of natural cellulose. However, after spinning, the HPBC fibers exhibit different peaks at
12.60◦ and 20.53◦. These two characteristic peaks correspond to the cellulose crystal II
structure. In addition, the peak shift from 1426 to 1419 cm−1 in the Fourier-transform
infrared (FT-IR) spectra of HPBC powder and HPBC fiber also indicates this crystalline
structure transformation (Figure 2b) [48]. Cellulose crystal I in HPBC was broken down by
EmimAc and reassembled into crystal II during coagulation in methanol. The crystallinity
decreased from 74% to 47% after wet spinning. However, the crystallinity increased slightly
after stretching (from 47% to 54%), suggesting that the cellulose chains had a preferred
alignment under stretching and formed a larger crystalline area.
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Table 1. Spinning parameters and mechanical properties of HPBC fibers 1.

Entry Extrusion Rate
(m min−1)

Stretching Ratio
(%)

Tensile Strength
(MPa)

Young’s Modulus
(GPa)

1 15 0 67.2 ± 11.4 5.3 ± 0.3
2 15 26 96.9 ± 22.0 8.1 ± 1.1
3 15 46 110.5 ± 18.3 8.4 ± 0.9
4 20 0 85.0 ± 12.9 7.7 ± 0.8
5 20 26 107.3 ± 10.1 8.9 ± 0.5
6 20 46 124.7 ± 18.1 9.7 ± 0.8
7 25 0 96.7 ± 6.8 7.3 ± 0.7
8 25 26 108.8 ± 7.3 8.3 ± 0.7
9 25 46 149.2 ± 26.6 11.1 ± 0.6
10 30 0 91.5 ± 17.1 7.7 ± 0.6
11 30 26 119.0 ± 19.2 9.3 ± 0.9
12 30 46 173.8 ± 8.3 13.7 ± 1.3

1 The concentration of dope was 4 wt% and spinning temperature was 70 ◦C.
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Figure 2. (a) XRD and (b) FT-IR spectra of the HPBC freeze-dried powder and HPBC fiber with an
extrusion rate of 30 m min−1 and stretching ratios of 0% and 46%. (c) Surface and (d) cross-section
SEM images of the HPBC fiber with an extrusion rate of 30 m min−1 and a stretching ratio of 0%.

The surface and cross-section morphologies of the HPBC fibers (undrawn) were ana-
lyzed using scanning electron microscopy (SEM), and the photos are shown in Figure 2c,d.
The fibers exhibited flat and smooth surface, and the cross-section of HPBC fibers showed
a circular shape. The diameter of the unstretched HPBC fiber was approximately 140 µm.
Further, the HPBC fibers became thinner after being subjected to tensile deformation
(Figure S1). The diameters of HPBC fibers with different stretching ratio were shown in
Table S1. After stretching, the fiber diameter gradually decreased to about 109 µm. These
results also suggest that the spinning process was successful and smooth.

We also measured the nitrogen content in the HPBC fibers to determine whether
EmimAc was present. The results of the elemental analysis (Table S2) revealed that the
nitrogen content in HPBC fiber was significantly low and same with HPBC freeze-dried
powder, indicating that there was no IL residue in the HPBC fiber. The water washing
process was efficient for obtaining a pure fiber product.

2.3. The Aligned Interior Microstructure of the HPBC Fiber

The internal microstructure was investigated using high-resolution SEM. As the fiber
surface was very smooth, the alignment of the HPBC nanofiber bundles was difficult to
observe. Before the SEM analysis, HPBC fibers were cut open to expose the structure of
the inner cellulose nanofiber bundles. Figure 3a shows the microstructure of the undrawn
HPBC fibers (Table 1, Entry10). The BC nanofiber bundles exhibited limited alignment
and disordered arrangement, suggesting that it was not enough to obtain a well-aligned
structure using only shear force and gravity. A certain extent of the orientation of the
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BCNF was lost during the coagulation and drying process. Therefore, a wet stretching
procedure was necessary to obtain a highly ordered arrangement of HPBC. The interior
morphologies of the drawn HPBC fibers (Table 1, Entry 12) are shown in Figure 3b,c. The
alignment of the HPBC nanofiber bundles along the fiber axis was clearly observed. During
the wet stretching process, HPBC nanofibers rotated axially and slipped between each
other, resulting in an ordered and dense arrangement. This well-aligned structure was
preserved by drying under tension, reducing the number of defects and enhancing the
mechanical properties.
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2.4. Mechanical Properties of the HPBC Fiber

The alignment structure is mainly affected by the extrusion rate and stretching ratio.
Thus, we evaluated the mechanical properties of the HPBC fibers using these two vari-
ables. Table 1 lists the results for the partial samples, and the complete data are listed in
Tables S3 and S4. Overall, both the tensile strength and the Young’s modulus of the HPBC
fibers slightly increased with the extrusion rate. A high extrusion rate contributed to better
ordered arrangement obtained from stronger shear force, resulting in higher mechanical
properties. Figure 4 shows the effect of stretching ratio on the mechanical properties of
HPBC fibers. Figure 4a shows the increase in the tensile strength and Young’s modulus
with increasing stretching ratio. The strength of the HPBC fiber increased from 91 MPa for
HPBC-0 to 174 MPa for HPBC-46, which is approximately 2 fold that of HPBC-0. Moreover,
Young’s modulus also increased from 8.4 to 13.7 GPa, indicating that the fiber has enhanced
rigidity and ability to withstand higher external forces within elastic deformation. The
results of mechanical properties for the HPBC-0 and HPBC-13 samples under different
extrusion rates showed slight differences. This may be because the stretching ratio was
low, and the interior structure of the fiber did not change significantly. From Figure 4b, the
stress–strain curves indicate that the yield point is also improved with a higher stretching
ratio. Further, as the stretching ratio increased, the density of HPBC macrofibers increased
from 1.25 to 1.42 g cm−3, indicating that the interior structure gradually became compact.
Without stretching, the hydrogen bonding interactions between random HPBC molecules
are loose and weak. In sharp contrast, the good alignment and dense structure of stretched
HPBC fiber led to increasing numbers of hydrogen bonds and decreasing numbers of
defects, resulting in the preferred mechanical properties. These results clearly demonstrate
the contribution of good alignment of HPBC to the fiber performance.

Moreover, we explored other factors that could impact the mechanical properties by
affecting the interaction between the BC molecular chains, including the washing bath,
intrinsic cellulose derivatives, spinneret diameter, and humidity. First, we attempted to
coagulate the HPBC fibers in water, methanol, ethanol, and acetone. Unfortunately, the
spinning dope could not form fibers in water or acetone. And the solvent exchange rate
of ethanol is lower than that of methanol because of its larger molecular size. After the
fibers entered the ethanol bath, fibers were conglutinated during washing. Therefore, we
collected only two samples in the study using the washing bath. The HPBC fibers were
coagulated in methanol and washed separately with water and methanol. As shown in
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Figure 5a, the HPBC fibers washed with water exhibited better mechanical properties
than the fibers washed with methanol. Water molecules can form strong interactions
with cellulose molecules compared with methanol. Therefore, water acts as a plasticizer,
promoting the sliding between HPBC molecular chains during the stretching process, thus
facilitating the alignment of HPBC and generating more hydrogen bonds among cellulose
chains. Further, when water evaporates from the fibers, the HPBC molecular chains interact
more strongly with each other due to the high surface tension of water, forming a dense
structure which could also enhance the mechanical properties.
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(d) humidity on the mechanical properties of the HPBC fiber. The extrusion rates of samples are
30 m min−1. The stretching ratio of samples in (d) is 46%. The test temperature was 21 ◦C and test
humidity for (a–c) was 40%.

The BCNF type also had a certain effect on the fiber performance. During the agi-
tated fermentation of BC production, well-dispersed BCNF can be obtained by adding
hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC), and hydroxyethyl cel-
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lulose (HEC), which are denoted as HPBC, CMBC, and HEBC, respectively (Details are
shown in Experimental section). We used these three different BCNFs to perform wet
spinning and examined the effect of these additional intrinsic cellulose derivatives on
the mechanical properties of the obtained macrofibers (Figure 5b). CMBC exhibited a
slightly higher strength (160 MPa) and Young’s modulus (12 GPa) than the other two types
of BCNF. In our study, CMC was added during the fermentation process and entangled
with newly produced BC. Thus, the carboxyl groups of CMC provided the CMBC with a
negative charge and generated charge repulsion between the CMBC molecules. This charge
repulsion suppressed the random winding of CMBC molecular chains and contributed to
the orderly arrangement of BCNF during spinning and wet stretching. Consequently, the
mechanical properties of CMBC fibers can be readily enhanced by wet stretching.

Figure 5c shows a comparison of the HPBC fibers extruded from spinnerets with
different diameters. Thin HPBC fibers exhibited lower strength with and without stretching.
This may be due to the rapid solvent exchange. In the coagulation bath, IL molecules in the
fiber were replaced by methanol, and BC regenerated and recrystallized into a gelatinous
fiber. However, the regeneration process accelerated when the fiber diameter decreased.
In this case, the cellulose molecules were fixed quickly before forming a great hydrogen-
bonding network in coagulation and the number of defects increased in fiber, resulting in a
reduction in strength.

We further studied the effect of humidity on the mechanical properties of HPBC fibers.
The stress–strain curves obtained under different humidities are shown in Figure 5d. Water
molecules can enter the interior of cellulose chains and compete for hydrogen bonds with
cellulose molecules. In a humid environment, the tensile strength and Young’s modulus
decrease owing to the decrease in hydrogen bonds by the existing water. Our results also
indicate that the strength decreased to 130 MPa with increase in humidity from 40% to
70%. The Young’s modulus was also decreased. However, after immersion in water for
5 min, the re-wet fibers exhibited a sharp decrease in modulus. Only 1.5 GPa was retained.
When the fiber was immersed in water, a large number of water molecules entered into the
fiber, thoroughly destroying the original hydrogen-bonding networks in the HPBC fibers,
resulting in a sharp reduction in Young’s modulus.

2.5. Co-Spinning of CMBC and Chitosan

In our strategy, we used IL as a solvent to prepare a homogeneous spinning dope.
However, ionic liquids show excellent solubility not only to cellulose, but also to many
polysaccharides. In this case, cellulose-based blend fibers can be easily prepared with other
polysaccharides by taking advantage of great dissolving ability of IL. IL can be used as a
“container” to blend BCNF with polysaccharides. And the cellulose derivatives in BCNF
can contribute to the increased interactions and compatibility with other molecules. In
this study, we present an example of co-spinning using CMBC and chitosan (CS). Car-
boxymethyl cellulose in CMBC can act as an adhesive for connecting BCNF and CS through
charge attraction between the carboxyl and amido groups.

CMBC and CS were first dissolved in EmimAc/DMSO cosolvent and subjected to wet
spinning with same procedure of HPBC spinning. The mass ratio was set to 9:1 (CMBC:CS)
and the molar ratio of the carboxyl and amido groups was approximately 1:1. However,
the viscosity of the CMBC-CS solution was substantially high, which may be due to the
charge attraction between carboxyl and amido groups. Thus, dissolving and spinning
temperatures were increased to 95 ◦C. The chemical composition of this blend fiber (CMCS)
was investigated by FT-IR (Figure 6a). The strong peak at 1026–1060 cm−1 can be assigned
to C-O-C linkage of polysaccharides backbone. The wide signal around 3200–3600 cm−1

is corresponding to O–H stretching vibration. The characteristic peak at 1596 cm−1 in
the CMBC spectrum was ascribed to the carboxyl groups. The signal of amide groups
was observed at 1649 cm−1 (amide I band) and 1561 cm−1 (amide II band) in the CS
spectrum. Both peaks appear in the spectrum of CMCS fiber, suggesting the existence of
two components. The mechanical properties of the blend fibers are shown in Figure 6b.
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The CMCS fibers also exhibited enhanced tensile strength and Young’s modulus with
increasing stretching ratio, which is consistent with the results of HPBC fibers. However,
the mechanical strength was not enhanced when the stretching ratio exceeded 26%. CMBC
forms strong interactions with CS via charge attraction and hydrogen bonds. Such strong
interactions may limit the rotation and slip between polysaccharide chains that occur
during wet stretching, and reduce the efficiency of alignment.
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2.6. Recycling of the IL

ILs are green, non-toxic, but expensive. Therefore, the recycling of ILs is of great signif-
icance for controlling production costs. Fortunately, most ILs have low vapor pressures and
can be readily purified from common organic solvents. After wet spinning and washing,
EmimAc was recycled via rotary evaporation and vacuum distillation. Approximately 95%
of the EmimAc was recovered. Recycled EmimAc was characterized by 1H nuclear mag-
netic resonance (NMR) and compared with fresh EmimAc (Figure 7a). From the 1H NMR
spectra, we can see that the recycled product does not contain any other cellulose-based
polymers. A small peak appeared at 2.6 ppm, which was attributed to residual DMSO. It is
difficult to remove all DMSO because of its high boiling point. Therefore, a higher degree
of vacuum is required. However, we still confirm that in our sustainable strategy, the IL
can be recycled, which can be reused by adding the necessary amount of fresh solvent.
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Figure 7b shows the mechanical properties of our BC composite fibers compared with
those of other composite fibers reported in the literatures [49–60]. The data of our study are
shown in the yellow ellipse. Our fiber can cover a wide range in both tensile strength and
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Young’s modulus, suggesting that we can control the fiber performances by adjusting the
spinning parameters and stretching ratio. In addition, the existing cellulose derivatives in
BCNF can act as bridges for combination with other functional polymers or molecules. This
type of BCNF can be dispersed in methanol, acetone, and other organic solvents, which is
advantageous for composites of BCNF and other polymers. We expect that our strategy
can be applied to the fabrication of novel functional fibers based on natural BCNF with
special molecules.

3. Materials and Methods
3.1. Materials

The BCNF slurry was obtained from Kusano Sakko Co. (Hokkaido, Japan) and freeze-
dried before use. BCNFs were prepared by rotating or agitating cultures in Hestrin and
Schramm’s medium supplemented with some water-soluble cellulose derivatives. BCNFs
fermented with hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC), and
hydroxyethyl cellulose (HEC) were denoted as HPBC, CMBC, and HEBC, respectively.
During fermentation, these cellulose derivatives incorporated on the BC microfibril surface
via adsorption and prevent the aggregation of newly produced BC. In HPBC, the content of
HPC (degree of substitution, DS = 2.8) is 26.0 wt% and the diameter of HPBC is 42 ± 8 nm.
In CMBC, the content of CMC (DS = 0.72) is 13.7 wt% and the diameter of CMBC is
27 ± 7 nm. In HEBC, the content of HEC (DS = 2.0) is 22.5 wt% and the diameter of HEBC
is 33 ± 7 nm. The lengths of three BCNFs are all in the micron range. More details can be
checked in previous article [46].

1-Ethyl-3-methyl-imidazolium acetate (EmimAc) was purchased from Kanto Chem-
ical Co., Inc. (Tokyo, Japan). DMSO and chitosan (CS) (degree of deacetylation ≥ 75%,
molecular weight: 190–375 kDa) were purchased from Sigma-Aldrich Co., LLC. (St. Louis,
MO, USA). Methanol, ethanol, and acetone were purchased from Kanto Chemical Co., Inc.
(Tokyo, Japan). All the chemicals were used without further purification.

3.2. Dry Jet-Wet Spinning of HPBC

The HPBC macrofibers were fabricated using dry jet-wet spinning process as follows.
HPBC freeze-dried powder was first dissolved in an EmimAc/DMSO cosolvent at 70 ◦C.
The solid content was 4 wt%. The weight ratio of EmimAc and DMSO was 80:20 (w/w).
After the cellulose solution became clear and homogeneous (about 4 h), it was transferred
to the cylinder of spinning machine (AIKISSLINE001, AIKI RIOTECH, Aichi, Japan). Then,
the dope was extruded from a spinneret with a diameter of 500 µm under 70 ◦C, passed
through an air gap of 6 cm, and coagulated into a methanol bath. The obtained fibers were
washed with deionized water for 2 days to remove any residue IL. The water was changed
3 times a day. After washing, the fibers were subjected to wet stretching. The extrusion
rate was varied from 15 to 30 m min−1. The spinning parameters of the partial samples are
listed in Table 1.

3.3. Wet Stretching of Macrofibers

After washing, wet stretching of macrofibers was performed using two rolls. The
first roll had a constant winding speed (v0) of 1.5 m min−1 and that of the second roll
(v1) ranged between 1.7 and 2.2 m min−1. The stretching ratio was calculated using the
following formula:

stretching ratio =
v1 − v0

v0

The HPBC fibers obtained with 0, 13, 26, 40, and 46% strains are denoted as HPBC-0,
HPBC-13, HPBC-26, HPBC-40, and HPBC-46, respectively. After stretching, the HPBC
fibers were dried under tension at 25 ◦C in air.
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3.4. Dry Jet-Wet Spinning of CMBC and HEBC

The fabrication process for the CMBC and HEBC macrofibers was the same as de-
scribed above. However, the washing bath was replaced with a methanol bath.

3.5. Dry Jet-Wet Spinning of CMBC and Chitosan (CMCS Fiber)

The preparation process for the CMCS fibers was similar to that described above. The
CMBC freeze-dried and CS powders (9:1) were dissolved in an EmimAc/DMSO cosolvent
at 95 ◦C for 14 h. Total solid concentration of the above solution was 4 wt%. After all the
biomass was dissolved, the solution was transferred to the spinning cylinder and was spun
into methanol at 95 ◦C. The obtained fibers were washed with water, wet-stretched and
dried at 25 ◦C in air.

3.6. Recycling of IL

The coagulation and washing baths were mixed in a flask and transferred to a rotary
evaporation equipment. The heating temperature was set to 50 ◦C. Interior pressure of the
flask gradually decreased from 290 to 25 hPa. The process of evaporation continued until
no more droplets were observed. The mixture was then transferred to a small flask and
subjected to vacuum distillation. The distillation temperature was maintained at 60 ◦C and
the pressure was decreased to 40 Pa. Finally, the residual liquid was collected and prepared
for 1H NMR test.

3.7. Characterization

The viscosity of the HPBC spinning dope was measured using a viscometer (TV-25,
Toki Sangyo). The tests for viscosity were performed under different rotation speeds
(0–100 rpm) and temperatures (25–80 ◦C). Attenuated total reflection (ATR)-mode FT-IR
were recorded using Nicolet iS10 (Thermo Fisher Scientific Inc., Waltham, MA, USA) in the
wavenumbers range from 4000 to 500 cm−1. The resolution was 4 cm−1 and the number
of accumulated scans was set to 64. The crystal structures and indices were determined
by XRD analysis using D2 Phaser 2nd Gen diffractometer (Bruker, Karlsruhe, Germany)
with Cu-Kα radiation (λ = 0.154 nm). The surfaces and cross-sections morphologies of the
HPBC macrofibers were examined through SEM using JSM-6510LV (JEOL, Tokyo, Japan)
at an operating voltage of 5 kV. The fiber was sprayed with Pt for 30 s before performing
SEM. The alignment morphology was observed through SEM using JSM-7610F (JEOL,
Tokyo, Japan). The fiber was cut at an inclined angle in a liquid nitrogen environment and
subsequently subjected to a Pt spray treatment before observation. Elemental analyses
were performed using a Micro Corder JM10 instrument (J-SCIENCE LAB Co., Ltd., Kyoto,
Japan). Tensile tests were performed using an EZ-SX mechanical instrument (Shimadzu
Co., Kyoto, Japan), and the mechanical properties were analyzed using the Trapezium X
software (1.5.0). The extension rate for tensile test was 5 mm min−1 and the gauge length
was 58 mm. Unless otherwise specified, the tests were conducted under 21 ◦C and 40%
humidity. Before testing, the samples were placed in a constant temperature and humidity
room for 24 h. For the re-wet sample, fibers were immersed in water for 5 min, and then
were subjected to mechanical tests immediately under 70% humidity. The cross-sectional
areas were measured using optical microscopy (VHX-7100, KEYENCE Co., Osaka, Japan).
1H NMR spectra were recorded on a JNM-ECA600 (JEOL, Tokyo, Japan) instrument using
D2O as the solvent. An approximately 7 mg sample was dissolved in 0.7 mL of D2O for
the analysis.

4. Conclusions

In this study, we used a dry jet-wet spinning method in cooperation with wet stretching
to fabricate BC composite macrofibers and investigated the effects of processing param-
eters on fiber performance. BCNFs can be easily spun into macrofibers using EmimAc
as a solvent and the mechanical properties can be enhanced by wet stretching. In this
process, the BCNF were assembled into a regular alignment and dense structure through
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the dissolution by IL and orientation by stretching, as indicated by SEM. This ordered
arrangement of BCNF effectively contributed to the transition of the excellent mechanical
properties of BC from microscopic to macroscopic level and enhanced the strength and the
modulus of the macrofibers. Moreover, IL can be utilized as a “container” to mix BCNFs
with other polysaccharides due to the excellent dissolving ability of IL to a variety of
polysaccharides. The co-spinning of CMBC with chitosan was confirmed. The intrinsically
incorporated cellulose derivatives can increase interactions and compatibility of BCNF with
other molecules for further functionalization. IL can be recycled and reused, demonstrating
the sustainability of this method. This study provides a scalable strategy for producing
functional cellulose composite fibers and promotes the development of a green future with
low-carbon emissions.
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Abbreviations
List of Abbreviation in Figure 7b:
BC bacterial cellulose
BP benzophenone
CB carbon black
CMC carboxymethyl cellulose
CNC cellulose nanocrystal
CNF cellulose nanofiber
CNT carbon nanotube
GNP graphene nanoplatelets
GO graphene oxide
MC methyl cellulose
MCC microcrystalline cellulose
MWCNT multiwall carbon nanotube
NM nanomagnetite particles
PEDOT poly(3,4-ethylenedioxythiophene)
SiNP silica nanoparticles
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