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Abstract: Injured peripheral nerves regenerate their axons in contrast to those in the central nervous
system. Yet, functional recovery after surgical repair is often disappointing. The basis for poor
recovery is progressive deterioration with time and distance of the growth capacity of the neurons that
lose their contact with targets (chronic axotomy) and the growth support of the chronically denervated
Schwann cells (SC) in the distal nerve stumps. Nonetheless, chronically denervated atrophic muscle
retains the capacity for reinnervation. Declining electrical activity of motoneurons accompanies the
progressive fall in axotomized neuronal and denervated SC expression of regeneration-associated-
genes and declining regenerative success. Reduced motoneuronal activity is due to the withdrawal
of synaptic contacts from the soma. Exogenous neurotrophic factors that promote nerve regeneration
can replace the endogenous factors whose expression declines with time. But the profuse axonal
outgrowth they provoke and the difficulties in their delivery hinder their efficacy. Brief (1 h) low-
frequency (20 Hz) electrical stimulation (ES) proximal to the injury site promotes the expression
of endogenous growth factors and, in turn, dramatically accelerates axon outgrowth and target
reinnervation. The latter ES effect has been demonstrated in both rats and humans. A conditioning ES
of intact nerve days prior to nerve injury increases axonal outgrowth and regeneration rate. Thereby,
this form of ES is amenable for nerve transfer surgeries and end-to-side neurorrhaphies. However,
additional surgery for applying the required electrodes may be a hurdle. ES is applicable in all
surgeries with excellent outcomes.

Keywords: peripheral nerve regeneration; delayed surgical nerve repair; regeneration-associated
genes; electrical stimulation

1. Introduction

Romon Y Cajal [1] recognized the contrasting capacity of injured nerves to regenerate
in the peripheral nervous system (PNS) and not in the central nervous system (CNS).
Yet, recovery of function is generally disappointing despite the contrasting support of the
regrowth (regeneration) of the nerve fibres by the SCs in the PNS and the lack of support by
the oligodendrocytes in the CNS [2,3]. Fewer than 50% of patients regain adequate motor
or sensory function after surgical repair of injured median or ulnar nerves [4]. Indeed, only
~10% of the two million Americans suffering some form of peripheral nerve injury recover
function; many having impaired motor and sensory function and frequently suffering
pain [5]. Functional recovery varies with location and severity. The most severe are the
more proximal nerve injuries [6] with brachial plexus injury being the most disabling [7].
Hand function is restored in only 1.2% of patients with multiple-traumatic injuries [7].
Typically healthy, young, economically productive adult patients need long periods of
rehabilitation, and many must make career changes [8].

The relatively neglected issue of poor functional recovery has been addressed by the
administration of drugs such as FK506 [9]. The efficacy of local FK506 delivery that has been
demonstrated in in vivo and in vitro animal studies [9–15] and its potential clinical use has
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been reviewed recently [10] and hence, will not be considered further here. Electrical stim-
ulation (ES) of muscles is a standard manipulation by physiotherapists aiming to prevent
denervation atrophy and joint fixation [16,17]. In contrast, ES for injured nerves has been
a more recent approach to promote muscle and sensory reinnervation [18–25], and these
findings of Brushart and Gordon are largely confirmed by many investigators [26–50]. This
review considers (1) how and why functional recovery is poor after peripheral nerve injury,
and (2) the efficacy of neurotrophic factors and/or brief low-frequency ES to counteract the
negative effects of delayed surgical repair as a prelude to advocate ES to promote nerve
regeneration and functional recovery after human nerve injuries. Previous reviews have
concerned one or more of these issues [9,51–61].

2. Peripheral Nerve Injury

After crush (axonotmesis) or transection (neurotmesis) nerve injuries, the neurons and
their nerve fibres proximal to the injury are separated from their peripheral targets, the
state of axotomy [51,62]. The growth-associated changes in the axotomized neurons and
denervated SCs in the distal nerve stumps that are precursors to nerve regeneration and
target reinnervation are presented prior to considering their decline with time after and
distance from nerve injury.

2.1. Chromatolysis and Gene Expression in Axotomized Neurons

Chromatolysis refers to the classical morphological changes in axotomized neurons
of the movement of the nucleus to an eccentric position and Nissl body dispersion in the
somal cytoplasm [63]. The changes reflect increased neuronal metabolism and protein
synthesis [64] as the neurons transition from normal transmitting to a growth/regenerative
state [65]. This transition is usually driven by the transcriptome in which transcription
factors coordinate the expression of multiple regeneration-associated genes (RAGs; [66,67];
see Section 2.2). Genes that translate proteins for neurotransmitter synthesis are downregu-
lated whilst RAGs are upregulated (Figure 1A; [51,65]). Upregulated cytoskeletal proteins,
tubulin and actin, are essential for transporting materials from the soma to the growth
cones for elongation of the regenerating axons [68–70]. The corresponding downregula-
tion of neurofilament protein that controls the axon calibre in peripheral nerves [51,68,71]
accounts for the reduced size of nerves proximal to the injury site, as measured elec-
trophysiologically [72] and morphologically [71,73]. The expression of neurotrophic fac-
tors, including BDNF and its receptors trkB and p75NTR, is upregulated in motoneurons
(Figure 1A; [51,52,74,75]). Several phenotypes of the heterogeneous DRG sensory neurons
and their Ia and Ib muscle and tendon afferent nerve fibres respectively, and their cutaneous
afferent nerve fibres supplying the skin, transition to a more homogenous phenotype after
axotomy [76].

2.2. Neuronal Molecular Signaling of Nerve Injury

Neuronal signaling of peripheral nerve injury occurs in a rapid phase dictated by a ret-
rograde calcium wave to the neuronal soma and a later slow signaling phase, characterized
by the retrograde transport of signaling molecules by motor proteins [77,78].

In the first rapid phase, disruption of the axonal membrane at the site of the nerve
injury exposes the cytoplasm to external ionic concentrations. Within seconds, calcium
ions enter the proximal nerve stump from the external fluid and the intracellular calcium
concentration rises as membrane depolarization activates voltage-gated calcium channels
and triggers the rapid sealing of the axon membrane at the injury site [79–82]. A wave-
front of the calcium ions propagates anterograde to reach millimolar concentrations in
the soma [83], the amplitude of which correlates with the extent of later nerve regenera-
tion [84]. Calcium is also raised throughout the stump by additional calcium entry that
follows the reversal of the sodium–calcium exchange pump by the calcium load [80]. Local
protein translation proceeds, long-range retrograde signaling is activated, and the local
cytoskeleton contributes to the formation of the growth cone [85,86]. The growth cone is
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composed primarily of a microtubule cytoskeleton and F-actin with the central domain
containing microtubules, organelles, and vesicles, and the P domain, composed of dynamic
microtubules and F-actin [87]. The F-actin bundles comprise the finger-like projections of
the filopodia.
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Figure 1. Diagrammatic illustrations of (A). the downregulation of transmitter-associated enzymes 
and the upregulation of regeneration-associated genes in axotomized motoneurons and the down-
regulation of myelin-associated genes and other molecules of the intact nerve after denervation of 
the distal stump. Denervated Schwann cells elongate and support the regeneration of axons after 
they sprout from the proximal stump of the transected nerve. (B). Diagrammatic illustration of ax-
onal regeneration over long distances in human limbs. Axons that regenerate at 1 mm/day will not 
reach denervated target muscles and sense organs for at least 500 days after a brachial nerve injury 
(downward arrow). Even median and ulnar nerve injuries at the level of the wrist (upward arrow) 
will require months for regenerating axons to reach the denervated targets. The regeneration rate 
was determined with the Tinel sign that identifies the site at which a tap on the regenerating nerve 
elicits a tingling sensation in a conscious patient. Modified from [60]. 
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Figure 1. Diagrammatic illustrations of (A). the downregulation of transmitter-associated enzymes
and the upregulation of regeneration-associated genes in axotomized motoneurons and the downreg-
ulation of myelin-associated genes and other molecules of the intact nerve after denervation of the
distal stump. Denervated Schwann cells elongate and support the regeneration of axons after they
sprout from the proximal stump of the transected nerve. (B). Diagrammatic illustration of axonal
regeneration over long distances in human limbs. Axons that regenerate at 1 mm/day will not
reach denervated target muscles and sense organs for at least 500 days after a brachial nerve injury
(downward arrow). Even median and ulnar nerve injuries at the level of the wrist (upward arrow)
will require months for regenerating axons to reach the denervated targets. The regeneration rate
was determined with the Tinel sign that identifies the site at which a tap on the regenerating nerve
elicits a tingling sensation in a conscious patient. Modified from [60].

The axonal calcium activates the nucleotide cAMP, via the calcium-dependent adenylyl
cyclase enzyme. In turn, cAMP activates the pro-regenerative kinase DLK via PKA and
the transcription factor CREB1, amongst others [84,88]. DLK is a key sensor of local injury
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that informs the soma about the injury [88,89]. JNK downstream of DLK signaling, is also
transported to the soma where it activates STAT3 and c-Jun (an immediate early gene of the
AP-1 transcription complex of Jun, c-Fos, and the ATF/CREB families [83]), to promote nerve
regeneration [90–92]. Accumulating calcium ions activate local intracellular calpain and
oxidative species, resulting in axon swelling, rapid granular disintegration of the axonal
cytoskeleton [93–96], and dieback to the first node of Ranvier [97–99]. The local calpain at
the sealed end of the stump cleaves the submembranous spectrin complex, restructures
the cytoskeleton by microtubule and actin depolymerization, and, in turn, allows the
elaboration of the growth cone [82,83,100].

The local calcium also activates many other signaling pathways. These include CaMK
that phosphorylates nuclear CREB which, in turn, later influences gene expression directly.
It does so by mediating cAMP-induced transcription [101] via PKA and MEK/Erk path-
ways [102], and the translation of the transcription factor, HIF-1a that, in turn, activates
HIF-1a-responsive genes for axonal regeneration [103].

The initial and local translational burst of mTOR controls ~250 localized axonal mR-
NAs. They transcribe proteins that are retrogradely transported to the soma, facilitated
by the local increase in tyrosinated α-tubulin in the microtubular cytoskeleton [104]. The
proteins include importin-β1, the adaptor protein that transports cytoplasmic proteins
via dynein; the retrograde motor on the microtubules [105], vimentin, STAT3, ZBP-1,
RanBP1, Ran being the Ras-related nuclear protein ligand-activated nuclear receptor; and
PPAR
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Abbreviations 
PNS  peripheral nervous system 
CNS  central nervous system 
SC  Schwann cell 
FK506  tacrolimus 
ES  electrical stimulation 
axonotmesis crush 
neurotmesis Transection 
BDNF  brain derived neurotrophic factor 
DRG  dorsal root ganglion 
cAMP  cyclic adenosine monophosphate 
DLK  dual leucine zipper-bearing kinase 
PKA  protein kinase A 
CREB1  cAMP-responsive element-binding protein 1 
JNK  JUN N-terminal kinase 
STAT3  signal transducer and activator of transcription factor 
AP-1  activator protein-1 transcription factor 
CaMK  Ca2+/calmodulin-dependent protein kinase 
MEK/Erk  extracellular signal-regulated kinase 
HIF-1a hypoxia-inducible factor 
mTOR  mammalian target of rapamycin 
ZBP-1  Z-DNA-binding protein 1 
RanBP1  Ran binding protein 1 
PPARƔ  peroxisome proliferator-activated receptor 
ER  endoplasmic reticulum 
ATF3  cAMP-dependent transcription factor 3 
SOX11  SRY-Box Transcription Factor 11 

SMAD1  
Suppressor of Mothers against Decapentaplegic family member 
1 

C/EBPβ  CCAAT/enhancer binding protein β 
p53  tumor protein p53 
GSK3β  glycogen synthase kinase 3β 
c-Myc  myelocytomatosis oncogene 
KLF4  Krüppel-like factor 4 
GSK3β  glycogen synthase kinase 3 
P13K  phophoinositide-3-kinase 
p300  HAT histone acetyltransferase p300 
C/EBP  CCAAT/enhancer binding protein 
miRNA  microRNA 

[67,77,105–108]. Luman/ATF3, an ER transmembrane basic leucine zipper transcrip-
tion factor, is also transported in an importin-dependent manner, to the soma where it is a
critical regulator of sensory axon regeneration, linking the unfolded protein response and
the ensuing endoplasmic stress response to axon repair [109,110]. The temporal phases
of the luman protein levels are coordinated with the three phases of the growth and
stress responses immediately after injury, the pre-regenerative phase, 9 to 24 h thereafter
when transcription factor activity regulates DNA replication and transcription, and the
regenerative phase at 4 days [111].

The transported proteins activate pro-regenerative pathways in the second slow sig-
naling phase of nerve injury, including translation and activation of transcription factors,
specific epigenetic modifiers, and additional signaling molecules [66,67,112].

There are >1500 transcription factors in the genome [113] of which c-Jun is markedly
increased in axotomized motor and sensory neurons [114]. Transcription factors such as
AP1, CREB, and ATF3 serve as ‘hubs’, those genes with many connections that coordinate
the activity of connected genes [115–117]. Transcription factors bind to selective DNA
promotor regions to increase or repress specific target gene transcription to coordinate
multiple RAG expression [67,116–119]. The transcription factor c-Jun that coordinates the
transcription of many RAGs was the first to be identified in a RAG network [114,120].
CREB protein regulates the transcription of BDNF and arginase 1, amongst other genes,
and drives the transcription of both the AP1 and the ATF3 hub genes [117]. One study
distilled the RAG network to ~40 transcription factors downstream of multiple parallel
signaling pathways [121], of which the calcium-dependent cAMP activates only a fraction
of injury-induced genes, at least in sensory neurons [122].

The independently identified transcription factors include ATF3 [123–126], STAT3 [127],
SOX11 [128–131], SMAD1 [132–135], C/EBPβ [136], p53 [137,138], and KLF4 [139,140]. The
cAMP-dependent transcription factor ATF-3 is upregulated rapidly in injured DRGs and
motoneurons following JNK signaling [76,123–126] and is used frequently and reliably as
a biomarker of axotomy [23,76,113,126]. Both Jun and ATF3 mediate PNS regeneration
in vitro [125] and in vivo [123,126]. Phosphorylated STAT3 stimulates growth initiation but
does not perpetuate axonal growth [127]. SOX11 is also elevated in injured nerves and
promotes their regeneration [128–130]. It does so via the activation of ATF3 and c-Jun, and
the RAGs, Arpc3 and Sprr1a [129], and by increasing the responsiveness of neurotrophic
factors [130]. Elevated SMADs are phosphorylated and accumulate in the nuclei of in-
jured DRGs and motoneurons, SMAD1 in the sensory neurons [131–134], and SMADs
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1,2, and SMAD4 in the motoneurons [135]. They act as modulators of activated GSK3β
downstream of the P13K/Akt pathway, by interacting with the transcriptional coregulator
p300 HAT to promote the expression of several pro-regenerative target genes and, in turn,
nerve regeneration [132,133,135]. C/EBPβ that is induced in injured neurons binds to the
promoters of Tα1-tubulin of the microtubules and the growth cone protein GAP-43, as an
essential transcription factor for the injury response [136]. The transcription factor p53
stimulates the regeneration of transected sciatic nerve fibres, and in p53 knockout mice,
the muscle reinnervation by injured facial nerves was reduced [137,138]. In contrast to the
other factors, KLF4 is downregulated after injury and thereby negates its inhibitory effect
on nerve regeneration [139,140].

Epigenetic modifications, or “tags”, regulate patterns of gene expression by altering
DNA accessibility and chromatin structure without altering the DNA sequence [141]. They
include miRNA (microRNA) and the non-coding RNAs, namely, long-chain and circular
RNAs. They can affect nerve regeneration by altering transcription factor access to DNA by
methylating DNA, post-translational modification of the histone protein that wraps around
nuclear DNA, or by controlling ncRNAs (noncoding RNA) that silence genes [142,143].

DNA methylation generally is associated with the repression of transcription [67].
There are >200 identified histone modifications [144] of which (PCAF)-dependent acety-
lation of H3K9ac with reduced H3K9 methylation, is an important example. Reduced
methylation relaxes the chromatin environment surrounding the promoters of several
pro-regenerative genes. In sensory neurons, this modification results in the expression of
the GAGs, GAP-43, galanin, and BDNF [145]. Acetylation requires retrograde ERK signaling.
Also, PCAF overexpression promotes axonal regeneration of the central axons of the DRG
neurons across injured spinal cord [145].

MicroRNAs (miRNA), of which lncRNA (long-chain non-coding RNAs) account for
60 to 80% of the mammalian genome transcriptome [146], are differentially expressed after
peripheral nerve injury [143,147]. They target specific mRNAs with resulting repression or
degradation of their translation. For example, miR-21 is upregulated after sciatic nerve in-
jury and, by targeting Sprouty2 (a specific inhibitor of the Ras/Raf/Erk pathway), promotes
axonal growth from adult DRG neurons [148,149]. A second example is the nerve regenera-
tion that results from miR-26a that specifically targets GSK3β to rescue regeneration, the
miR26a-GSK3β pathway regulating regeneration at the neuronal soma by controlling the
expression of the regeneration-associated transcription factor, SMAD1 [149].

2.3. Wallerian Degeneration

The isolation of the peripheral nerve fibres distal to sites of crush or transection
from their neuronal cell bodies deprives them, for all intents and purposes, from their
source of protein, lipid, glycoprotein, and carbohydrate synthesis, leading to the self-
destructive process of Wallerian degeneration [51,63,94]. The axons in the proximal nerve
stump die back to the first node of Ranvier, preventing the scarring that occurs in CNS
injury [97–99,150]. The calcium ions entering the nerves, activate calpain proximal and
distal to the injury site to mediate proteolysis with degeneration of axon segments several
hundred micrometers from the site [151,152]. When the axonal transport of NMNAT2 is
interrupted by calcium-dependent proteolysis of the cytoskeleton, the axonal NMNAT2
degrades and NMN accumulates in the nerve stump. The NMN elevates the normally
controlled SARM1 expression with the result that the SARM1 protein that is essential
for axon degeneration, rises [153]. The downstream steps to axon degeneration remain
to be determined. Meanwhile, the remaining fast axonal transport allows for continued
propagation of action potentials in the distal stump for hours and even days [93,99,154–157].

Ras/raf/ERK signaling in SCs is evident immediately after injury with ERK levels
returning to lower levels just prior to SC proliferation [158]. Raf-kinase activation drives SC
dedifferentiation as well as inducing much of the inflammatory response that is important
for nerve repair, including breakdown of the blood–nerve barrier and delayed macrophage
recruitment into the denervated nerve stump [159]. The myelin sheaths constituting ~50%
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of the total myelin [160], are broken down by SC autophagy [161–163]. The SC expression
of proinflammatory cytokines and chemokines within 3 to 5 h of nerve injury contributes
to myelin and axon breakdown and the phagocytosis of their debris within the first 3 days
of injury [164]. The cytokines, including IL-1α and LIF, their receptors IL-6R and gp130,
respectively, and TNF-α, stimulate the expression of the two cystolic forms of PLA2 [165].
These remain high for two weeks [165]. TNF-α hydrolyses the phosphatidylcholines in
the myelin membranes, releasing the potent myelinolytic agent, lysophosphotidylcholine.
Lysophosphotidylcholine also feeds back to sustain cytokine expression and the expression
of the chemokines, including MIP-1, MMP-1α or CCL2, and IL-lβ [52,166–171]. Within a
day of the nerve injury, IL-6 and TNF-α induce the expression of MMP-9 that contributes
to myelinolysis [172,173].

The recruited macrophages also express these cytokines and chemokines and are re-
sponsible for the bulk of the myelin and axonal phagocytosis over the following
~3 weeks [99,174]. They play a major role in removing inhibitory molecules, including
MAGs, from the degenerating axons [175]. Their release of nitric oxide has been implicated
in myelin breakdown [176]. Their phagocytosis of myelin debris includes the myelin that
is opsonized by complement components binding to the complement receptor type 3 on
the macrophages [177]. Antibodies to non-opsonized myelin are phagocytosed via the
macrophage Fc receptor [178]. The third macrophage receptor used in phagocytosis is
the scavenger receptor-AI,II [179]. The macrophage spectrum was separated into two
“polarizing” phenotypes, M1 and M2, with the M1 macrophages associated with pro-
inflammatory and neurodegenerative functions and the M2 macrophages broadly viewed
as anti-inflammatory and promoting cellular repair [180]. There is an early increase in M1
macrophages 1–2 days after injury, with M2 macrophages replacing these from days 3 to 7.
The majority of the accumulating M2 macrophages may be of a mixed phenotype because
these mixed-type macrophages were not included in their analysis [180,181]. In addition
to their essential role in axonal and myelin phagocytosis, the macrophages sense hypoxic
conditions and stimulate angiogenesis for a polarized vasculature that guides SCs and
elongating axons [182,183].

2.4. Schwann Cell Response to Nerve Injury

Once SCs lose their myelin, they re-enter the cell cycle, proliferate by mitosis, transition
from their myelinating to a growth state to support nerve regeneration across an injury site,
and into the denervated nerve stump [51,56,127,184]. The transient SC expression of Cdc2,
possibly induced by c-Jun [185], is involved in their proliferation and migration [186]. The
SC genes that transcribe myelin proteins, including MAP, MBP, P0, and PLP, are downreg-
ulated in the denervated distal stump, while RAGs associated with nerve regeneration, are
upregulated as the SCs dedifferentiate and acquire the ability to survive without axonal in-
teractions (Figure 1A; [187]). The SCs are programmed by c-Jun to generate repair cells that
are essential for nerve regeneration, with c-Jun accelerating the downregulation of myelin
genes, promoting myelin breakdown, and amplifying the upregulation of a broad spectrum
of repair-supportive features, including the expression of trophic factors [188–190]. As
early as 1991, the upregulation of hundreds of growth-supportive RAGs was reported in
denervated SCs [191] with more genes differentially expressed in the SCs than in sensory
neurons [192].

IL-6, synthesized in the SCs within 24 h [166,168,193,194], signals the expression of
RAGs via its receptor [167]. The SCs express NRG-1, a member of the family of glial growth
factors, and its ErbB2/3 receptor [195–198]. NRG-1 levels remain elevated for at least
30 days [199–201]. NRG-1 strongly inhibits the expression of genes involved in myelination
and glial cell differentiation, suggesting that it might be involved in the SC dedifferentiation
from the myelinating to the repair phenotype [202]. In addition, NRG-1 likely mediates,
at least in part, the second phase of SC proliferation that is stimulated when regenerating
axons contact the SCs in the Bands of Büngner [203–205]. The scaffolding oncoprotein Gab2,
is required for SC proliferation after nerve injury, its activation leading to SC migration,



Int. J. Mol. Sci. 2024, 25, 665 7 of 54

possibly through actin modulation [206,207]. In a model based on their findings, SC
migration is promoted by autocrine/paracrine activation by NRG of its SC erbB2 receptor
that results in transcriptional Gab2 expression via the Rac-JNK-cJun pathway and GAB2
phosphorylation via the paracrine HGF from fibroblasts [206]. Notch, a transmembrane
protein that is also upregulated in denervated SCs, promotes their proliferation and is
downregulated as myelination proceeds [208].

The non-coding RNAs, namely the long-chain and circular RNAs, play important roles
in SC proliferation and migration [143]. Examples of the long-chain RNAs include NEAT1
that promotes SC proliferation and migration [143], MALAT1 that elevates BDNF [209], and
Loc680254 that promotes nerve regeneration by inducing SC proliferation [210]. BC088259,
which showed the most significant upregulation after sciatic nerve injury, interacts with
vimentin to regulate SC migration [211,212]. Downregulation of some long-chain RNAs
also enhances SC proliferation and migration. An example is MEG-3 that increases SC pro-
liferation and migration and facilitates nerve regeneration through the PTEN/P13K/ADT
pathway [213]. Some circular RNAs are also upregulated in denervated nerve stumps
and are associated with SC proliferation. For example, cirRNA-Spidr targets P13K-Akt to
promote nerve regeneration after rat sciatic nerve crush injury [214].

Denervated SCs express several neurotrophic factors and their receptors within 7 days,
their levels peaking within a month. These factors include neurotrophins, NGF, and BDNF
with their p75 receptor p75NTR, NT-3, NT-4/5 and the trkC receptor, the GDNF family and
their receptors GDFRα1 and ret, and other factors including IGF-1 and IGF-II, VEGF, HGF,
PDGF-BB, FGF, TFG-β and their receptors, and PTN [52,215–220]. The expression of GDNF
and PTN is specific for the denervated SCs in the motor pathways of the quadriceps nerve
branch of the femoral nerve, whereas the remaining neurotrophic factors, HGF, BDNF,
NGF, and IGF-1 and IGF-II, are more specific for the denervated SCs that are located in the
sensory pathways of the saphenous nerve branch [216–218]. The time course of expression
varies for different trophic factors. NGF rises rapidly and then declines prior to a 5-fold
upregulation, possibly in response to macrophage release of IL-1β, persisting for at least
3 weeks [221,222]. Upregulation of BDNF is much slower, being detectable at 7 days after
nerve injury and increasing up to 28 days to levels much higher than those of NGF [52,221].
GDNF and its GDFRα1, but not its coreceptor Ret, are upregulated more quickly, reaching a
peak within 7 days [223]. The expression is not sustained, declining with time when the
distal nerve stump denervation is prolonged for >1 month ([52,224] see Section 3.2). NT-3
upregulates SC c-Jun [189] and regulates the SC levels of p75NTR [118,119,188].

2.5. Axonal Regeneration

Regenerating axonal sprouts emanate from the first node of Ranvier proximal to
the injury site [1,225,226]. The growth cones form without direct support from the cell
body and depend on axonal material in the proximal stump, including the preexisting
cytoskeletal elements of actin and tubulin [226,227]. Anterograde axonal transport delivers
most of the materials for subsequent axonal elongation [70]. The growth cones link to the
organized ECM glycoproteins at the injury site, navigate across the site, and regenerate
axons along the repair SC layer of the Bands of Büngner on the endothelial laminal sheath
in the denervated distal stumps [187]. The growing axons contact and interact with the SC
basement membrane glycoproteins. These include collagen, fibronectin, tenascin C, and
laminin, that are secreted by SCs and fibroblasts [228–232] as they progress through the
distal nerve stump via SC adaptor molecules such as N-cadherin and integrins [233–237].

A single regenerating axon can give rise to as many as 50–100 branches [238] but it
is an average of five daughter axons that regenerate, more of which regenerate into the
distal stump after crush than after transection injuries [239,240]. The remyelination of
regenerating axons is initiated by their contact with SCs that form myelin layers (lamellae)
in proportion to the size of the regenerating axons [241]. Both axonal NRG-III and SC NRG-
1 play pivotal roles in remyelination [200,242] with tyrosine phosphorylation of SC GAB1,
principally regulated by NRG-1, being essential for remyelination [206]. The internodal
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distances between the reformed myelin sheaths are shorter than normal because of the
3-fold increase in SC numbers after denervation [243] but they do lengthen with time [241].
The diameter of the regenerating axons increases in proportion to the size of their parent
nerve [244], recovering their original size if and when they make functional connections [72].
The way the excess axonal branches are removed with time is not well understood.

3. Poor Recovery of Function after Peripheral Nerve Injury and Repair

The timing of surgical intervention after nerve transection depends on whether the
transection is ragged or sharp [245–248]. Sharp injuries from knives or razors should be
repaired within 3 days but the repair of ragged transections from blast, gunshot, fracture,
or crush injuries is usually delayed for at least 3 weeks to allow the nerve ends to be
demarcated [248]. Frequently, an early surgical evaluation is made of whether any of
the nerve remains in continuity. When the nerve is transected, the nerve stumps may
be sutured to a nearby local structure to prevent their retraction and to facilitate later
surgical repair. Especially when the nerve injury is associated with comorbidities that
include vascular problems, the later repair is undertaken once the local inflammation has
subsided [249,250]. Irrespective of whether or not surgical repairs are delayed, proximal
injuries in particular, result in long delays before the regenerating nerve fibres contact distal
denervated targets (Figure 1B). Even when proximal injuries that include brachial plexus
nerve injuries, undergo early repair, many of the axotomized neurons remain without target
contacts for periods of two or more years (chronic axotomy) as they regenerate their axons
slowly over long distances at a regeneration rate of 1 mm/day. The rate was determined
with the Tinel sign that identifies the site at which a tap on the regenerating nerve elicits
a tingling sensation in a conscious patient [249,250]. The SCs in the denervated nerve
stumps are subjected progressively to chronic denervation, especially those far distal to the
microsurgical suture of the proximal and distal nerve stumps. The accepted explanation for
the observed poor recovery of function after proximal nerve injuries is that the denervated
targets deteriorate with massive muscle atrophy and, in turn, fat replacement of denervated
muscle [2].

3.1. Time-Related Decline in Nerve Regenerative Capacity

A cross-suture technique was pioneered by Holmes and Young in 1942 to examine
their hypothesis that chronic motoneuron axotomy accounts for poor functional recovery
after surgical repair [251]. After delaying the suture of the proximal stump of a cut hindlimb
nerve to a freshly denervated stump of a second different hindlimb nerve in rabbits, they
reported that the denervated muscle recovered normal levels of contractile force [251]. This
finding negated their hypothesis, leading them to conclude that chronic muscle denervation
rather than chronic axotomy was the basis for the reported poor functional recovery after
delayed surgical repair or delayed reinnervation of denervated muscles. This conclusion
has remained the accepted view ever since. More recently, we systematically examined
each of the contributions of chronic axotomy, chronic denervation of the distal nerve stump,
and chronic denervation of target musculature, to poor recovery after nerve transection
(Figure 2; [24,62,252–259]). Our surgical technique was to prolong TIB motoneuronal
axotomy or the denervation of the CP distal nerve stump prior to the cross-suture of
TIB and CP proximal and distal nerve stumps, respectively (Figure 2A,B). After at least
5 months, we determined how many motoneurons (1) reinnervated TA muscle fibres
with motor unit number estimation (MUNE), the ratio of the whole muscle to mean MU
isometric contractile forces (Figure 2C), and (2) regenerated their nerve fibers into the CP
nerve stump by retrograde dye labelling of the neurons with either of two fluorescent dyes,
FG or FR. (Figure 2D–F).
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Figure 2. Physiological and morphological measures of regenerative success after nerve injuries.
Diagrammatic illustration of surgeries in Sprague-Dawley rats for (A). prolonging proximal tibial
motoneuron (proxTIB) axotomy, leaving the distal tibial nerve denervated (distTIB), and the common
peroneal nerve (CP) intact; and (B). prolonging CP distal nerve stump (distCP) and tibialis anterior
muscle denervation and leaving the TIB nerve intact. Each of the nerve stumps were sutured to inner-
vated muscle to prevent nerve regeneration for up to 12 months prior to refreshing the chronically
axotomized proxTIB nerve stump to cross-suture it to the freshly denervated distCP. (C). Recordings
were made at least 5 months later of the electromyographic (EMG) and the isometric contractile
forces of the innervated tibialis anterior (TA) muscle and single MUs (motor units) in response to 2×
threshold stimulation of the regenerated TIB nerve and the isolated ventral root filaments. Examples
of muscle and MU twitch contractions are shown, and their contractile forces plotted in the histogram.
The number of MUs, and hence, the number of motoneurons that reinnervated the TA muscle was
calculated as the ratio of the muscle and MU forces. Retrograde labelling of (D) TIB motoneurons that
regenerated their nerve fibres into the CP distal nerve stump and (E). TIB motoneurons retrogradely
labelled from the TIB nerve (F). The numbers (+standard error) of the motoneurons retrogradely
labelled with FG or FR in several different control experiments designed to determine whether FG
and FR dyes were as effective as each other in counting motoneurons projecting their nerve fibres to
the point of dye application. Mean numbers were not significantly different (p > 0.05) such that either
dye was used to count the motoneurons as well as sensory neurons that regenerated their axons after
experimental nerve injuries. Adapted from [60].
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Contrary to early conclusions [251], chronic motoneuron axotomy had a pronounced
negative effect on the regeneration of nerve fibres: both the numbers of (MN) motoneurons
that regenerated their axons in the freshly denervated nerve stumps and the numbers of
MUs, the motoneurons whose nerves reinnervated muscle fibres, declined exponentially
with a time constant (
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) of 40 days, to reach a plateau of 33% of the numbers after immediate
nerve repair (Figure 3A,C; [62]). It was the capacity of regenerating motor nerve fibres
to reinnervate 3–5 times as many denervated fibres as they normally do [62], the same
capacity as that of intact nerve fibres sprouting in partially denervated and reinnervated
muscles [260–263], which resulted in the reinnervation of all the denervated muscle fibres
and, with their full recovery from muscle atrophy, the full recovery of the reinnervated
muscle contractile force [62]. It was the same full recovery of muscle force after reinnerva-
tion by chronically axotomized motoneurons that was the basis for the faulty conclusion
made previously in 1942 [251]. It is also the reason why the clinical assessments of rein-
nervated skeletal muscle strength by the MRC 5-point scale [264] or by revised scales [265]
are frequently misleading. These clinical assessments continue to underestimate the dele-
terious effects of chronic axotomy on nerve regeneration and muscle reinnervation. It is
interesting, as an aside, that the size of the nerve fibres that supply the enlarged MUs are
not enlarged [266] and the regenerated nerve fibres recover their normal size once they
make functional connection with denervated muscle fibres [62].

Chronic denervation of the distal nerve stump and the muscles that the intact nerve
normally supply, is even more deleterious to nerve regeneration than chronic motoneuron
axotomy (Figure 3B,D; [251,253,257–259]). The exponential decline in numbers of MUs and
freshly axotomized motoneurons that regenerate their axons into the chronically dener-
vated nerve stumps plateaued at ~5% at 180 days of chronic denervation (Figure 3B; [252]).
To determine whether poor regeneration was due to chronic SC denervation within the
distal nerve stump and/or prolonged muscle denervation, a chronically denervated au-
tograft was inserted between a freshly cut TIB proximal nerve stump and a chronically
denervated CP distal nerve stump [266]. The experiments demonstrated that it is the
chronic denervation of the SCs and not the chronic denervation of the TA muscle that
was the causative factor of poor nerve regeneration through chronically denervated distal
nerve stumps [259]. Whilst the SC basement membranes are disrupted, their columns
shrink [267–271]. As many as 90% of rat SCs die after 17 months of chronic denervation
(Figure 4A–C). The chronically denervated SCs proliferate in response to mitogens and
they support myelination in vitro ((Figure 4C–E) [267]) and in vivo [272], and support the
full recovery of regenerated nerve fibres in vivo (Figure 4F–H) after 6–25 months of sciatic
distal nerve stumps and intramuscular nerve stumps in rats and rabbits [272,273]. STAT3
has been implicated in the long-term maintenance of SCs [274], and c-Jun influences both
apoptosis and proliferation of denervated SCs [275–277].

The small number of nerve fibres regenerating through chronically denervated nerve
stumps reinnervated three times as many TA muscle fibres as normal but was not sufficient
to reinnervate many of the denervated muscle fibres [251]. In addition, the reinnervated
muscle fibres failed to recover their normal size from their denervation atrophy [252].
The atrophy proceeds as the size of the denervated fibre declines rapidly within the first
two weeks and falls more gradually thereafter to 2% of its normal size two years af-
ter chronic denervation [278]. There is also progressive mitochondrial dysfunction with
accompanying upregulation of the miRNA miR142a-5p and subsequent lysosomal degra-
dation [279]. Nonetheless, the surviving denervated fibres conserve their fascicular ar-
rangement and their functionally important proteins, including acetylcholine receptors and
N-CAMs [279–281].
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Figure 3. (A,B). The exponential decline in the regenerative capacity of rat lumbosacral tibial (TIB)
motoneurons (MNs) after chronic axotomy and prolonged Schwann cell (SC) denervation in the
common peroneal (CP) distal nerve stump. The suture of the proximal TIB nerve stump to the distal
CP nerve stump (cross-suture) was delayed for up to 6 months after cutting the TIB nerve prior to
resuture to a freshly cut CP nerve (chronic axotomy) or after cutting and delaying the suture of the
cut distal CP nerve to the freshly cut TIB proximal nerve stump. The Y-axis, the regenerative success
(%), plots the mean (+standard error) number of reinnervated MUs in the tibialis anterior muscle
(motor units (MUs), open red circles), and of TIB motoneurons that regenerated their axons into the
CP distal nerve stump (closed blue circles), expressed as a percentage of the numbers in unoperated
rat hindlimbs, and plotted as a function of the durations of A. chronic TIB axotomy and (B). chronic
CP denervation. The effects are shown figuratively in (C,D), respectively, for regeneration 4 months
after TIB–CP nerve cross suture. The motoneurons and their axons are shown in black and red for
those that did NOT and those that DID regenerate axons into the distal nerve stump, respectively.
The methods used to determine regenerative success are shown in Figure 2. Adapted from [60].



Int. J. Mol. Sci. 2024, 25, 665 12 of 54

Figure 4. Survival of chronically denervated Schwann cells (SCs) and their capacity to proliferate,
myelinate neurites and nerve fibres in vitro and in vivo, respectively, and to support recovery of
reinnervated nerve fibre size. (A). Sterile surgery to prolong SC denervation in the rat sciatic distal
nerve stump by cutting the nerve and ligating the proximal and distal nerve stumps to innervated
muscles. (B). The left sciatic distal nerve stump remained denervated for either 7 days, 7 weeks,
or 17 months and the right sciatic nerve was denervated for 7 days for direct comparison of the
data of acutely denervated nerves with the data from chronically denervated nerves. Histograms of
the mean (+standard error) of (C). numbers of non-neural cells from the sciatic distal nerve stump
after chronic denervation that increased significantly after 7 weeks and declined to low levels by
17 months (* p < 0.05, # refers to the number of non-neural cells), (D). numbers of 3H-thymidine
positive Schwann cells undergoing proliferation in co-cultures of dorsal root ganglion (DRG) sensory
neurons that declined progressively with the duration of chronic denervation, and (E). the myelinated
segments extended by co-cultures of the non-neural cells and DRG neurons.(# refers to the number
of non-neural cells) (F). Full recovery of tibial nerve size and myelin thickness after regeneration
1–3 month after chronically denervated common peroneal distal nerve stumps in vivo. For (F–H), the
scale bar = 25 µm. Adapted from [267].

We had suggested that the failure of reinnervated muscle fibres to regain their former
size after the chronic denervation that proceeded nerve repair resulted from declining
numbers of satellite cells to provide nuclei to reinnervated fibres [252]. The satellite cells are
a population of heterogenous stem cells that are normally mitotically quiescent and express
Pax7 [282–284]. They lie between the sarcolemma of the myofibres and the ensheathing
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basal lamina [285] and are activated upon nerve and/or muscle injury [284]. They divide by
asymmetrical division to produce myogenic progenitor cells, and by symmetrical division
to produce multiple satellite cells that contribute nuclei to atrophic denervated muscle
fibres as they recover their size after reinnervation [282–284]. The activated satellite cells
differentiate into myocytes and co-express Pax7 and the muscle-specific basic helix–loop–
helix protein, MyD, of the MRF family of transcription factors [282–285]. The number of
MyD-positive cells was reported to decline in chronically denervated biceps muscle of
patients as a function of the time to surgical repair of their brachial plexus injury [286].
Examination of their data, however, indicated that the data were more readily fitted
by an exponential rather than the reported linear decline. The MyD-expressing cells
declined to a low plateau rather than to zero. Earlier morphological studies of chronically
denervated frog muscles had also suggested that the proliferative capacity of the satellite
cell pool is exhaustible [287], and evidence of repeated cycles of muscle fibre degeneration
and regeneration [288] indicated but did not prove that the ultimate fate of chronically
denervated muscle fibres is their replacement by fatty and connective tissues [289]. The
question remains as to whether the explanation for incomplete recovery of reinnervated
muscle fibre diameters after chronic denervation is that the activated satellite population
in the denervated muscles is depleted with time and/or that the cells fail to divide and
express MyD.

3.2. Transient Expression of Regeneration-Associated Genes

Addressing why neuronal regenerative capacity and SC growth support decline with
time and distance, we reasoned that elevated RAG expression by axotomized motoneurons
and/or denervated SCs declines with time after chronic nerve injury, a hypothesis that
proved to be correct [224,290–292]. The parallel decline in RAG expression, which likely ac-
counts, at least in part, for poor functional recovery, is illustrated by the exponential decline
of the expression and translation of tubulin, actin, and GAP-43 in chronically axotomized
motoneurons [291] (Figure 5): p75 and p75 [290,291,293] (Figures 6 and 7), c-Jun [293]
(Figure 6), and GNDF [224] (Figure 7) in chronically denervated SCs. The elevated mRNA
levels of the growth-associated proteins in response to a second nerve section, a refreshment
injury 1–6 months after the first axotomy (Figure 5F), decayed more rapidly than after the
first axotomy (Figure 5H). Similar findings were reported for facial motoneurons [292].
Downstream of c-Jun, the expression of GDNF specifically, and not other proteins that
include NTN, PSP, and ART, declines exponentially in the chronically denervated nerve
stumps (Figure 7E), the latter genes being reduced in c-Jun-deficient mice [119,188,189]. The
transient nature of gene expression of neurotrophins and their receptors in motoneurons is
summarized in Figure 2 of an extensive review [52].

The Shh gene that is not expressed in either developing SCs or in intact nerves, is
upregulated strongly in SCs after injury [294,295] and improves nerve regeneration in
several settings [296–301]. Applied Shh elevates c-Jun in cultured SCs and the expression
of both Shh and c-Jun declined in vivo during chronic denervation [293]. Furthermore, c-Jun
activation and expression of its target p75NTR was reduced by conditional knockout of
the SC Shh gene. Inhibiting Shh signaling also reduces SC BDNF expression, motoneuron
survival after injury, and axon regeneration [294,295].
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Figure 5. Expression of mRNA of cytoskeletal proteins in sciatic motoneurons decays with time
after chronic axotomy. Time-dependent decay in the in situ hybridization signals of (A). tubulin,
(B). actin, and (C). GAP-43 mRNA (on the Y-axis) as a function of months after axotomy. A refreshment
injury irrespective of the duration of axotomy elevates the expression of (D). tubulin, (E). actin, and
(F). GAP-43 to maximum levels. The mRNA levels in the chronically axotomized motoneurons were
expressed relative to the high levels of mRNAs that were detected at a week after axotomy of the
contralateral sciatic nerve (A–G). The high levels of the in-situ hybridization signals detected in
sciatic motoneurons 7 days after sciatic nerve transection and ligation decay with time. (H). The
elevated tubulin mRNA levels after a refreshment injury decayed more rapidly than after a single
nerve transection. The scale bar at the bottom right image is 20 µm. Mean values + standard error
bars are shown with significance at * p < 0.05 and ** p < 0.01 denoted by 1 and 2 *s. Where the values
were not significant with p < 0.05, not significant is denoted by the abbreviation of ns. Adapted
from [291].
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type (WT) and c-Jun conditional knockout (cKO) mice, and of p75NTR, (D). with time after injury, 
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Figure 6. Protein levels of the transcription factor c-Jun and the neurotrophic factor receptor (p75NTR)
in mouse Schwann cells (SC) decline with time after sciatic nerve chronic denervation. The quantifi-
cation of representative Western blots with densitometry of c-Jun protein in (A). uninjured (UI) nerve
and distal nerve stumps 1–10 weeks after nerve ligation, normalized to the data at 1 week post-injury,
(B). SC cultures after two and nine passages, and (C). 1 week after injury in wild-type (WT) and c-Jun
conditional knockout (cKO) mice, and of p75NTR, (D). with time after injury, and (E). in SC cultures
after two and nine passages. The c-Jun located to the denervated SCs was verified in c-Jun cKO mice
where SC c-Jun was inactivated selectively. Mean values + one standard error bar are shown with
significance at * p < 0.05, ** p < 0.005, *** p < 0.001, and **** p < 0.0001 denoted by 1, 2, 3, and 4 *s.
Adapted from [293].

The identified c-Jun gene-regulated set of Aqp5, Gpr37L1, Igfbp2, and Olig1 is highly
enriched amongst the genes affected by chronic denervation, and it correlates with both
c-Jun levels and regeneration [293]. Igfbp2, for example, promotes Akt phosphorylation,
a pathway linked to SC proliferation and differentiation [190,199,298,299]. Gpr37L1 is a
receptor for prosaposin and prosapeptide [301] that are secreted after nerve injury and
facilitate regeneration [302]. In experiments on chronic denervation, this gene group
encompasses Cxcl5, Egfl8, Gas2I3, Megf10, and Pcdh20, all of which are upregulated in
SCs after injury [163,303–305]. Cxcl5 activates STAT3 [304], the transcription factor that is
important for maintaining repair cells during chronic denervation [274]. Gas2I3 has a role
in the cell cycle, and Megf10 in phagocytosis [306,307].
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Figure 7. The exponential decline in neurotrophic factor receptor (p75NTR) mRNA and protein in rat
Schwann cells (SCs) and the expression of glial cell neurotrophic factor (GDNF) in denervated distal
nerve stumps decline as a function of time after chronic denervation. (A). Rat sciatic nerve section
and ligation of the proximal and distal nerve stumps to nearby innervated muscle to prevent nerve
regeneration. (B,C). Progressive decline in the relative density of p75NTR immunohistochemistry
with time of chronic SC denervation. (D). Decline in the mean (+standard error) of the p75NTR
mRNA, depicted as dark grains following in situ hybridization histochemistry in intact sciatic nerve
and transected distal nerve stumps (see insert), with the duration of chronic denervation (months).
(E). The mRNA levels of GDNF, Neurturin (NTN), Persiphin (PSP), and Artemin (ART) mRNAs
measured by semiquantitative PCR with GAPDH as an internal control and expressed as the change
in the transected distal nerve stumps vs the sham-operated control sciatic nerves, plotted as a function
of chronic denervation. * p < 0.05 Adapted from [224,290].

4. Exogenous and Endogenous Neurotrophic Factors
4.1. Exogenous Application of Neurotrophic Factors

The demonstration that NGF evoked dramatic neurite outgrowth from sympathetic
and DRG (dorsal root ganglion) neurons NGF [308]) generated many in vitro and in vivo
studies which advocated that growth factors, including BDNF and GDNF, promote nerve
regeneration [52,53,59]. These studies used several outcomes measures of nerve regenera-
tion to evaluate the effects of exogenous neurotrophic factors, including axon counts distal
to the site of injury, the ‘pinch test’ that evaluates sensory nerve regeneration in animals by
identifying the most distal point of the regenerating nerves at which a nerve pinch with
fine forceps elicits an intake of breath in the lightly anesthetized animal [309–315], and
walking track analysis to evaluate motor nerve regeneration [316]. While having some
clinical relevance, the relevance of these measures for nerve regeneration is negated by
their failure to consider the outgrowth of several axonal sprouts from the proximal stump
of injured nerves in the PNS [51,256,263] and CNS [317]. Thereby, the positive effects of
neurotrophic factors on how many axotomized neurons (1) regenerate their axons, (2) rein-
nervate denervated targets, and (3) result in functional recovery, have been overestimated.
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Hence, we adopted retrograde labelling of neurons to examine how many regenerated their
axons into the distal nerve stump in response to exogenous application of neurotrophic
factors in addition to counting the regenerated axons in the distal stump.

BDNF and/or GDNF Retrograde labelling revealed that the reduced numbers of
chronically axotomized TIB motoneurons regenerating their axons into a freshly dener-
vated CP distal nerve stump were elevated significantly by the exogenous growth factors
(Figure 8; [256]). BDNF was effective only in low doses and not at high doses due to the
binding of BDNF to both trkB and p75NTR receptors on the motor nerve membranes,
trkB and p75NTR, mediating positive and negative effects on nerve regeneration, respec-
tively [255,256]. GDNF on the other hand, was effective at all doses, acting via ret and
GFR-α1 receptors [256]. Whilst GDNF administration to the cross-sutured TIB–CP nerves
promoted nerve regeneration after delayed but not immediate repair [256], a 2- and/or
4-week delivery of GDNF encased in polymeric microspheres, to the suture sites of a 10 mm
long ANA (acellular nerve graft) placed between CP nerve stumps (Figure 8D; [318]), was
effective in elevating the numbers of CP motor and sensory neurons that regenerated
their axons to normal levels (Figure 8E,F; [318]). Unfortunately, though, the regeneration
enhancing effects of GDNF and BDNF were confounded by their propensity to promote
outgrowth and regeneration of multiple axonal sprouts after nerve repair [256]. This was
the reason why we considered increasing endogenous rather than exogenous neurotrophic
factors to promote nerve regeneration.

4.2. Endogenous Neurotrophic Factors

A striking accelerated and amplified expression of BDNF and its trkB receptor in
axotomized neurons that was evoked by a 1 h period of low-frequency (20 Hz) electrical
stimulation (ES) was followed by accelerated and amplified expression of tubulin and an
accompanying reduction in neurofilament expression (Figure 9 [75]). The time course of
the gene expression suggests causation between neurotrophic factor upregulation, RAG
expression, and accelerated nerve regeneration, as discussed in Section 5.
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Figure 8. Exogenous delivery of brain- and glial-cell-derived neurotrophic factors, BDNF and GDNF,
respectively, was effective in improving nerve regeneration after chronic axotomy, but it increased
axon sprouting in the distal nerve stump. (A,A1). The TIB (tibial nerve) in the rat was cut and
ligated. (A2). After two months, the proximal stump of the TIB nerve was cross-sutured to the freshly
denervated CP (common peroneal) nerve stump, and (A3). a mini-osmotic pump was placed on the
back of the rat for constant infusion of low dose BDNF (2 µg/day for 28 days). (A4). Following a
2-month period of chronic axotomy, fluororuby (FR) was administered to the CP distal nerve stump
20 mm from the cross-suture site for retrograde labelling of the TIB motoneurons that had regenerated
their axons into the denervated CP distal nerve stump. (B). The mean (+one standard error (SE)) of
the number of motoneurons that regenerated their axons counted in all 50 µm longitudinal sections
of the ventral horn of the spinal cord and with a correction factor of 0.6 applied, were significantly
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reduced two months after chronic axotomy. Both GDNF and BDNF were effective in increasing
motoneuron regeneration to normal levels and the combination of factors elevated the levels even
more. (C). Transmitting electron micrographs of Schwann cells (SCs) and their axons revealed (a).
one SC per intact nerve, but (b–d). increased numbers of SCs around each regenerated nerve in the
distal nerve stump 2 months after TIB–CP cross-suture and administration of (b). saline, (c). GDNF,
or (d). GDNF and BDNF administration via a cuff around the suture site linked to a mini-osmotic
pump. The increased numbers of SCs around each regenerated nerve are pointed out by arrows
in the micrographs. (D). Local delivery of GDNF to the suture sites of an acellular nerve allograft
(ANA) interposed between the CP proximal and distal nerve stumps. GDNF was encapsulated with
an efficiency of 78 + 3% and GDNF loading of 0.72 + 0.08 µg/mg of microspheres (MS; diameters
of 45 + 5 µm), placed onto the suture sites, and held in place by surrounding them with 2 µL gels
placed below and above the suture sites that adhered to one another. (E). The mean (+SE) number of
retrogradely labeled CP motoneurons (retrogradely labelled 10 mm from the ASA eight weeks after
surgery) that regenerated their axons through the ANA plotted for control conditions of no delivery
system (DDS) and empty MSs and experimental conditions of GDNF delivery in combinations of 2-
and 4-week formulations. (F). Numbers of sensory neurons counted in every fifth dorsal root ganglia
20 µm section. Irrespective of the nature of GDNF delivery, all motor and sensory neurons regenerated
their axons through the ANA in eight weeks as compared to ~50% of them that regenerated through
the ANAs that did not deliver GDNF. Statistical significance at p < 0.05 and p < 0.01 is denoted by a *
and a **, respectively. Adapted from [256,318].

Figure 9. The time course of gene expression of BDNF (brain-derived neurotrophic factor) and its trkB
receptor, and of the regeneration-associated genes, tubulin, and GAP-43, after axotomy. Transection
and surgical repair of the rat femoral nerve and (A). sham or (B). 1 h 20 Hz electrical stimulation (stim)
of the proximal stump. (C). Dark-field micrographs of in situ hybridization (ISH) with 35S-labeled
oligonucleotides complementary to tubulin after sham and stim. Scale bar, 50 µm. Means + standard
deviation of ISH signals/motoneuron of (D). BDNF, (E). trkB, (F). tubulin, (G). GAP-43, and (H).
neurofilament in individual rats are plotted as a function of time after femoral nerve axotomy after
sham and stim. Adapted from [75].
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5. Neuronal Activity and Nerve Regeneration
5.1. Reduced Activity and Synapse Withdrawal

We addressed the question of whether the decline in regenerative capacity of chroni-
cally axotomized neurons over time/distance is due to reduced neuronal activity and, in
turn, to their reduced interaction with denervated SCs in the distal nerve stump. Cross-
correlation techniques to examine cat hindlimb neural activity during treadmill walking
before and after nerve injury with and without surgical repair revealed a fall in motor and
sensory nerve activity that results from synaptic withdrawal from motoneurons and by
the loss of contact of the sensory nerves with their denervated sense organs, respectively
(Figure 10A,B; [319]). The reduced motor activity and demonstrated synaptic depression in
axotomized motoneurons [319–321] accounted for the decline in the excitatory VGLUT1-
positive glutamatergic and inhibitory GAD67-positive GABAergic synaptic boutons on the
motoneurons [322–327] (Figure 10C–E; [58]) that were linked to astrocytic activation [328].
Synaptic loss was reversed by daily treadmill exercise implemented 3 days after nerve
transection and surgical repair but not later, the reversal depending on slow, continuous
exercise in males and interval training exercise (short high-speed sprints followed by rest
periods) in female mice [329,330] (Figure 10D,E; [58]). The efficacy of exercise is likely
BDNF dependent because synapses withdraw from intact motoneurons in conditional
BDNF knockout transgenic mice [331]. These findings (1) elucidate the profound reduction
in neural activity that results from the withdrawal of synapses from axotomized motoneu-
rons and the loss of sensory neural activity after injury, and (2). describe how appropriate
patterned treadmill exercise prevents withdrawal in a BDNF-dependent manner.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 21 of 53 
 

 

 
Figure 10. (A) decline in electrical activity in motor nerves after axotomy coincides with a loss of 
synaptic contacts from the axotomized motoneurons and increased motor activity restores the syn-
aptic contacts. The relative amplitude of (A). motor and (B). sensory cross-correlation peaks nor-
malize to pre-operative values, decline with an exponential time course over the first month of ax-
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(open boxes), but reach a stable plateau if nerve regeneration is prevented by nerve ligation (x’s). 
(C). A one µm thick confocal image of a retrogradely CTB-AF545-labeled motoneuron with im-
muno-histochemical visualization of VGLUT1 (vesicular glutamate transporter 1)-containing excit-
atory synapses, arising mainly from primary afferent neurons, and GAD67 (glutamic acid decar-
boxylase 67)-containing inhibitory synapses were used to measure the percentages of the neuronal 
perimeter in contact with the synapses. The silencing of motoneurons by axotomy is due to the 
withdrawal of (D). glutamatergic and (E). GABAergic synaptic contacts from the neurons. The with-
drawal of both synapses is prevented by continuous treadmill exercise in males and by interval 
training in females. Adapted from [58,319]. 
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Figure 10. (A) decline in electrical activity in motor nerves after axotomy coincides with a loss
of synaptic contacts from the axotomized motoneurons and increased motor activity restores the
synaptic contacts. The relative amplitude of (A). motor and (B). sensory cross-correlation peaks
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normalize to pre-operative values, decline with an exponential time course over the first month of
axotomy and begin to recover when nerve regeneration is encouraged after nerve repair by resuture
of cut nerve stumps (open triangle) and by suture of proximal nerve stumps to denervated muscle
(open boxes), but reach a stable plateau if nerve regeneration is prevented by nerve ligation (x’s).
(C). A one µm thick confocal image of a retrogradely CTB-AF545-labeled motoneuron with immuno-
histochemical visualization of VGLUT1 (vesicular glutamate transporter 1)-containing excitatory
synapses, arising mainly from primary afferent neurons, and GAD67 (glutamic acid decarboxylase
67)-containing inhibitory synapses were used to measure the percentages of the neuronal perimeter
in contact with the synapses. The silencing of motoneurons by axotomy is due to the withdrawal of
(D). glutamatergic and (E). GABAergic synaptic contacts from the neurons. The withdrawal of both
synapses is prevented by continuous treadmill exercise in males and by interval training in females.
Adapted from [58,319].

5.2. Staggered Nerve Regeneration

The rat femoral nerve, introduced as a model to study peripheral nerve regenera-
tion [332], was used later for counting retrogradely labeled motoneurons that had regen-
erated their axons to demonstrate (1) ‘staggering’ of regenerating axons across the site
of femoral nerve transection and microsurgical repair (Figure 11); [20]), and (2) preferen-
tial reinnervation of the quadriceps motor branch by motor nerves and of the cutaneous
sensory branch by sensory nerves (Figure 12A; [20,22,333]). The staggering was evident
by the lengthy 8–10-week period for all the motoneurons to regenerate their axons to the
25 mm distance to fluorescent dye application (Figure 12A), a much longer time period than
expected from the 3 mm/day regeneration rate [334] and the 4 week period for all these
motoneurons to regenerate axons across the femoral nerve suture site (Figure 11F; [21]).
There was some delay attributed to the 10-day period for the longitudinal alignment of
laminin and SCs across the suture site [335].

5.3. Preferential Reinnervation and Growth Factors

The preferential upregulation of PTN and GDNF in denervated SCs (Figure 13C; [216,218])
accounts for the preferential growth of regenerating femoral motor nerve fibres in their
appropriate motor nerve branch (Figure 13A,D (D: green and purple dotted lines); [20,336]).
PTN and GNDF expression increases 4 days after denervation (Figure 13C) when few
motoneurons regenerate axons across the surgical repair site (Figure 13B) and randomly
reinnervate appropriate and inappropriate branches at 2 and 3 weeks (Figure 13D, blue
and red dotted line).). By 14 days, when the growth factor expression is maximal in motor
SCs (Figure 13C), ~70% of the femoral motoneurons have regenerated axons across the
suture line (Figure 12A). By 4 weeks, the axons grow preferentially into the endoneurial
tubes that previously surrounded motor nerve fibres and continue to do so with the
growth factors remaining (Figure 13C,D, D: green and purple dotted lines). There is a
similar explanation for the preferential reinnervation of sensory pathways by sensory
neurons [336]. Studies of the growth of motor axons into femoral nerve branches in NCAM-
/- knockout mice demonstrated that N-CAM is also required for preferential reinnervation
of the motor branch with motor axons expressing polysialylated NCAM that reduces
axon–axon adhesion [337].
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Figure 11. Motor nerve regeneration is staggered. (A). The femoral nerve in the rat was cut 20 mm
from its branches to the quadriceps muscle and to the skin. It was repaired immediately with a
microsurgical technique. The regeneration of axons into the two branches was evaluated 2 to 10 weeks
later by application of fluorescent dyes, RR (rubyred) for 1–2 h to one branch and FG (fluorogold) to
the other branch, 5 mm from the point of their division from the femoral nerve. (B). Motoneurons that
were retrogradely labelled with either or both dyes are the sum of those that regenerated their axons
into either branch as well as both the branches. The number of these motoneurons that regenerated
their axons over the distance of 25 mm was ~55% of all the motoneurons in the femoral motoneuron
pool, the number increasing with an exponential time course to reach the 350 motoneurons of the
control intact nerve (shown by the shaded horizontal lines that represent + standard errors of the
mean values). The 10 weeks required for all the motoneurons to regenerate the 25 mm distance to the
site of dye application was surprisingly long when a latency of at least 2 days and a regeneration rate
of 3 mm/day is considered [334]. Based on the latency and regeneration rate, a 2-to-3-week period of
regeneration would be expected for all the motoneurons to regenerate their axons. (C). The possible
explanation that axon outgrowth across the surgical site is staggered, with some axons even growing
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backwards into the proximal nerve stump, proved to be correct. The Schwann cells that multiply after
nerve injury and line the distal nerve stump are known to migrate into the injury site and are shown
in red. (D). To determine whether this explanation accounts for the observed slow regeneration of
nerve fibres, those axons that had regenerated just across the suture line of the femoral nerve repair
site were retrogradely labelled by crushing the distal nerve stump 1.5 mm from the surgical site for
(E). microinjection of FR. (F). The number of the retrograde labelled motoneurons that regenerated
the axons increased slowly over a period of 4 weeks after femoral nerve repair surgery. Silver staining
of (G). staggered the regeneration of axons in the distal stump, and (H). the tortuous paths taken
by the axons within the proximal stump are consistent with Cajal’s early findings and with later
observations of the outgrowth of fluorescent axons from the proximal stump of thy-1-YFP transgenic
mice into a denervated distal nerve stump of a non-transgenic wild-type litter mate [28,58]. Adapted
from [58].

Figure 12. Low-frequency (20 Hz) electrical stimulation (ES) promotes nerve regeneration by ac-
celerating axon outgrowth across the site of transection and surgical repair. (A). The number of
retrogradely labelled femoral motoneurons (Motoneuron) with fluorogold (FG) and fluororuby (FR:
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analogous to ruby red) fluorescent dyes applied to the motor quadriceps (M) and sensory saphenous
(S) nerve branches, respectively, were counted 2 to 10 weeks after microsurgical repair of the femoral
nerve. Following early random reinnervation of both branches and a small number of regenerating
axons into both branches (B), there was preferential reinnervation of the M branch with a significant
(p < 0.05) increase in the mean (+standard error) numbers of motoneurons regenerating their axons
preferentially into the M branch, occurring over a period of 8 to 10 weeks. The inappropriate
regeneration of axons into the S branch remained constant throughout. The delivery of continuous
daily 20 Hz ES (100 µs, 2× supramaximal electric pulses, for 1 h, 1, 7, or 14 days) proximal to the
repair site, resulted in (B). a dramatic and statistically significant (p < 0.05) elevation in the number of
motoneurons regenerating their axons into the M nerve branch within 3 weeks. The efficacy of the
ES depended on the retrograde conduction of action potentials to the motor and sensory neurons
because (C). tetrodotoxin (TTX) application proximal to the site of ES that completely blocked the
progression of ES-induced action potentials resulted in (D). elimination of the ES acceleration of
preferential reinnervation of the M branch. (E). The dramatic accelerated reinnervation of the two
femoral nerve branches is illustrated by the comparison of the total mean number (+SE) of the
motoneurons regenerating their axons 25 mm into the M and S branches and both after ES (closed
circles) and sham ES (open circles). (F). The effect of the ES was to accelerate axon outgrowth across
the repair site because the mean number (+SE) of femoral motoneurons that regenerated their axons
just across the repair site, recorded by injecting FR into the femoral nerve 1.5 mm distal to the repair
site (see insert), increased significantly by ES (closed circles) as compared to sham ES (open circles
statistical significance at p < 0.05 is indicated by * s. Adapted from [20–22].

5.4. Low-Frequency Electrical Stimulation Accelerates Axon Outgrowth

That continuous 20 Hz ES and a 15–60 min 20 Hz ES of a crushed nerve acceler-
ated muscle reinnervation [18] and the plantar extensor reflex [19], respectively, led us
to determine whether ES accelerates nerve regeneration itself and not the formation of
functional neuromuscular connections. We delivered bipolar continuous electrical pulses
at a 2x-threshold voltage and 20 Hz frequency to the femoral nerve proximal to the site
of femoral nerve transection and microsurgical repair [20]. Continuous and shortened
periods of 1 to 3 h 20 Hz ES dramatically shortened the period for all the motoneurons
to regenerate their axons across the suture site and into the motor and sensory nerve
branches, maintaining the preferential reinnervation of the motor branch by regenerating
motor axons (Figure 12A,B; [20]). The ES effect was mediated by action potentials con-
ducted to the neuronal soma, the effect being eliminated by preventing the action potential
conduction to the soma with a TTX block central to the ES site (Figure 12C,D; [20,23]).
The sensory neurons did not show a preference for the cutaneous sensory branch of the
femoral nerve in the experiments of Geremia et al. [23], but significant preference was
demonstrated by those of Brushart et al. [22]. In addition to impulse conduction, BDNF,
which is upregulated by ES [75], is essential, the ES-induced enhancement of the specific
regeneration of femoral motor axons into the motor branch blocked by an infusion of a
BDNF antibody (Figure 14). That ES did not increase the rate of slow axonal transport, and
hence, regeneration rate, the efficacy of ES in promoting nerve regeneration was attributed
to accelerated axonal outgrowth across the suture site and not to an increase in the rate of
regeneration ES [21] in contrast with the conditioning lesion (CL) that accelerates axonal
outgrowth and regeneration rate (Section 5.7).
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Figure 13. Preferential motor reinnervation of the motor branch of the femoral nerve is accounted 
for by differential expression of neurotrophic factors in the denervated distal nerve stump. Numbers 
of rat femoral motoneurons that regenerate their axons (A). 25 mm from the site of transection (in-
jury) and surgical into appropriate muscle (black bars), inappropriate sensory cutaneous branches 
(white bars), and both branches (grey bars), and (B). across the repair site. (C). The fold-increase in 
the mRNA of PTN (pleiotrophin) and GDNF (glial cell-derived neurotrophic factor) in the distal 
nerve stumps of transected and repaired femoral nerve expressed relative to that of intact nerves 
increases and decreases as a function of days of the denervation of the distal nerve stump. (D). Dia-
grammatic representation of motoneurons regenerating their nerve fibres into appropriate and in-
appropriate muscle and cutaneous pathways, respectively, as well as into both. Adapted from [336]. 
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Figure 13. Preferential motor reinnervation of the motor branch of the femoral nerve is accounted for
by differential expression of neurotrophic factors in the denervated distal nerve stump. Numbers of
rat femoral motoneurons that regenerate their axons (A). 25 mm from the site of transection (injury)
and surgical into appropriate muscle (black bars), inappropriate sensory cutaneous branches (white
bars), and both branches (grey bars), and (B). across the repair site. (C). The fold-increase in the
mRNA of PTN (pleiotrophin) and GDNF (glial cell-derived neurotrophic factor) in the distal nerve
stumps of transected and repaired femoral nerve expressed relative to that of intact nerves increases
and decreases as a function of days of the denervation of the distal nerve stump. (D). Diagrammatic
representation of motoneurons regenerating their nerve fibres into appropriate and inappropriate
muscle and cutaneous pathways, respectively, as well as into both. Adapted from [336].

The efficacy of ES in promoting nerve regeneration [20–24] has been
confirmed [18,19,26–43] and reviewed [53,56–61]. There are additional studies demon-
strating that ES (1) accelerates nerve regeneration through a nerve isograft of 10 mm in
Lewis rats [46] and through 10 and 20 mm nerve autografts in Sprague-Dawley rats [47],
(2) increases the number of macrophages and neutrophils in the denervated distal nerve
stumps as well as the number of M2 macrophages within autografts [46,50], (3) shifts the
macrophage phenotype in a locally demyelinated peripheral nerve from the proinflam-
matory M1 toward the predominantly pro-repair M2 type [338], (4) accelerates Wallerian
degeneration and upregulates BDNF and NGF in denervated SCs [339], and (5) together
with testosterone administration promotes facial nerve regeneration and functional re-
covery of whisking and blink reflexes after crush injury in castrated male rats [33,36] in
association with a more rapid and sustained upregulation of BDNF than either alone [36].
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Figure 14. BDNF (brain-derived neurotrophic factor) is essential for the efficacy of ES (20 Hz elec-
trical stimulation for one hour) in accelerating nerve regeneration. (A). The infusion of the BDNF 
antibody, α-BDNF, into the intrathecal space of a rat lumbar spinal cord 3 days prior to (B). ES via 
electrodes placed proximal to the surgical site of femoral nerve transection and microsurgical repair 
site and the application of the fluorescent dyes, fluororuby and fluorogold, to each of the femoral 
motor and cutaneous sensory branches for retrograde labelling of those motoneurons that regener-
ated their axons into either or both the branches at 3 weeks after surgical repair. (C). The motoneu-
rons were counted and a correction factor applied. The mean numbers (+standard errors) of moto-
neurons that regenerated their axons 25 mm into the appropriate and inappropriate motor and sen-
sory nerve branches, respectively, were plotted for the motoneurons subjected to ES (stim) and sham 
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Figure 14. BDNF (brain-derived neurotrophic factor) is essential for the efficacy of ES (20 Hz electrical
stimulation for one hour) in accelerating nerve regeneration. (A). The infusion of the BDNF antibody,
α-BDNF, into the intrathecal space of a rat lumbar spinal cord 3 days prior to (B). ES via electrodes
placed proximal to the surgical site of femoral nerve transection and microsurgical repair site and
the application of the fluorescent dyes, fluororuby and fluorogold, to each of the femoral motor and
cutaneous sensory branches for retrograde labelling of those motoneurons that regenerated their
axons into either or both the branches at 3 weeks after surgical repair. (C). The motoneurons were
counted and a correction factor applied. The mean numbers (+standard errors) of motoneurons
that regenerated their axons 25 mm into the appropriate and inappropriate motor and sensory
nerve branches, respectively, were plotted for the motoneurons subjected to ES (stim) and sham
ES. ES accelerated the regeneration of motor nerves into the appropriate motor branch without
affecting either the regeneration into the inappropriate motor branch or into both branches (see also
Figure 12D,E). This accelerated motor nerve regeneration was blocked by infusion of the α-BDNF.
The number of motoneurons that regenerated their axons inappropriately into the sensory branch of
the femoral nerve or those that regenerated their axons into both branches was not changed by the
infusion of α-BDNF. Control data after α-BDNF administration to sham-stimulated femoral nerves,
indicated, but could not prove with our insufficient numbers for statistical analysis, that the antibody
infusion had no effect on nerve regeneration. These unpublished data were obtained in collaboration
with Drs. Verge and Pettersson at the University of Saskatchewan. Significance at p < 0.05 is denoted
by a *.

The efficacy of daily 1.5 h periods of ES over 6–8 weeks in promoting muscle rein-
nervation and functional recovery after direct nerve repair [48,340] or via an isograft [49]
was the same as that after a 1 h or 2-week period of ES [20,32]. The positive effects of
transcutaneous ES [341] and 20 min nerve ES after delayed nerve repair [44] were as low
as 10% of the effect of the 1 h ES [20]. Also, a reported effective 10 min ES [342–344] was
not supported by any significant recovery after a sciatic nerve isograft repair in a later
study [345].

5.5. ES Promotes Axon Outgrowth after Delayed Surgery

ES also reverses the regression of the regenerative capacity of chronically injured
nerves (Figure 15; [24]). After ligating either the CP proximal nerve stump and/or the distal
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TIB stump for two months prior to cross-suture repair, ES elevated the numbers of motor
and sensory neurons that regenerated their axons to the same levels as after immediate cross-
suture (Figure 15B,C; [24]). The ES increased both the number of regenerated nerves and
those that reinnervated muscle (Figure 15B,C; the lowest two histograms), demonstrating
that ES of chronically injured nerves accelerated both their regeneration and their target
reinnervation. Neuronal excitation with bioluminescent optogenetics also accelerated nerve
regeneration and muscle reinnervation after immediate and delayed nerve repair [346].
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Figure 15. One hour 20 Hz electrical stimulation (ES) promotes nerve regeneration and target
reinnervation after delayed nerve repair. (A). Surgeries: The common peroneal nerve (CP), and/or
tibial (TIB) nerve were cut and cross-sutured either (a). immediately or 2 months after (b). prolonged
CP axotomy and/or distal TIB nerve denervation (c,d). and the proximal nerve stump was subjected
to either sham or ES. Histograms show that the mean (+standard errors) numbers of motoneurons in
(B,a–d). and sensory neurons in (C). that regenerated their axons 20 mm into the distal nerve stump,
2 and 4 weeks after 20 Hz ES, were significantly greater than the mean numbers after sham ES, the
significance of p < 0.05 denoted by a *. The different colors used in the histograms in (a–d) denote data
obtained from each of the 4 different surgeries carried out. The open symbols in the histograms show
the data collected from each experiment. The lowest and 5th set of histograms in e. show the number
of regenerating motor nerves and those that had reinnervated tibialis anterior muscle, (obtained in
final acute recording made of muscle and motor units), 5 months after delayed nerve repair. The
labels underneath each of the 5 rows of histograms under the heading of (B). Motoneurons, apply for
the 5 rows of histograms under the heading of (C). Sensory neurons. Adapted from [24].
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5.6. Exercise and Axonal Regeneration

The rationale for examining whether exercise like ES promotes nerve regeneration
was the ES-induced accelerated rise in BDNF, trkB, and NT4/5 expression in axotomized
motoneurons (Figure 9D,E; [28,32,75]). Many studies using several different exercise
protocols reported enhanced sensory and motor nerve regeneration [25,32,347–359]. Daily
exercise, like ES, accelerates muscle reinnervation by regenerating nerves, with combined
exercise and ES being the most effective paradigm in the early phase of regeneration [32].
Other studies reported significantly greater axon outgrowth after a 2-week period of
moderate daily exercise was initiated 3 days after surgical repair of a transected nerve, as
compared to immediate ES [353,354,358].

That androgen receptor signaling regulates the expression of BDNF mRNA [360]
spurred investigations of the effects of daily testosterone administration with and without
ES on nerve regeneration [33,36,359]. Either testosterone or ES was found to promote
facial nerve regeneration and recovery of whisking [33], the combination of both having
the most prolonged and maximum effect [33,36,359]. English and colleagues, who had
reported that daily exercise prevented a loss of synaptic contacts on axotomized motoneu-
rons (Figure 10D,E; [329,330]), showed that the androgen receptor antagonist, flutamide,
eliminated both the ES and the exercise effects of increasing the length of regenerating
axons in mouse hindlimbs [359].

Misdirection and abnormal antagonistic muscle activation are problems even after
enhanced nerve regeneration by ES and/or exercise and/or testosterone administration.
The problem is particularly severe after large nerve transection injuries. For example, after
rat sciatic nerve injury, 71% of regenerating CP motor nerves reinnervated two muscles
after crush injury, 42% after autograft repair, and 25% after autograft repair, but recovery of
ankle motion and balance was incomplete in all cases [361]. Poor recovery is consistent with
the random reinnervation of distal stumps after sciatic nerve transection and microsurgical
repair [362] in contrast to the emerging preferential reinnervation of the motor branch
of the femoral nerve by regenerating motor nerves (Figure 12A; [20,333,335,363]). ES
exacerbates the misdirection of regenerating sciatic nerve fibres [364] with reduced TIB
nerve contribution to the innervation of the triceps surae muscles [364] and, in contrast
to the positive effect of daily treadmill exercise [365], also exacerbates the shifting of the
normal rostral position of CP motoneurons to a more caudal position [364]. Yet, even when
CP and TIB nerve branches and not the parent sciatic nerve are surgically repaired to reduce
axon misdirection, the normal reciprocal flexor extensor muscle activation is replaced by
their coactivation [364–367].

5.7. Conditioning Lesion and Conditioning ES

We reported that ES of an intact adult sciatic nerve performed 7 days prior to excision
of DRGs enhanced their neurite outgrowth (Figure 16; [368]), akin to that seen after a
conditioning lesion (CL). A CL is a crush of an intact nerve 1–7 days prior to a more
proximal nerve crush or transection injury that elevates cAMP levels and increases both
the outgrowth of regenerating axons and their regeneration rate [369–377]. Thereafter, the
question was asked of whether such a conditioning ES of the intact nerve prior to nerve
injury and repair may mimic the effects of a CL on nerve regeneration in vivo [378–385].
The comparisons of CES and ES revealed that the former, referred to in their publications as
functional ES, was superior to the latter [378–385]. The CES increased the numbers and the
distance over which neurofilament-positive regenerating axons grew into the distal stump
to promote muscle and intraepidermal skin reinnervation [379–385] in crushed [376,377]
and transected and coapted nerves [378,379], after immediate [380] and delayed nerve
repairs [382], and after bridge repairs of transected nerve stumps [385]. The CES also
led to superior recovery of motor and sensory function [377–385]. The authors pointed
out that CES could be applied in delayed repair of chronic nerve injuries after major
polytrauma that necessitates emergency life or limb management [Section 3], but most
require two consecutive surgeries for electrode placement prior to surgical repair. The same
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issue arises in distal nerve transfer surgery where a ‘donor’ nerve branch of a redundant
muscle is cut and sutured to the distal stump of a non-functional ‘recipient’ nerve to restore
function [386–391]. Oberlin’s transfer to restore elbow flexion is a classic example with a
transected ulnar nerve fascicle supplying the flexor carpi ulnaris muscle, sutured to the
distal stump of the musculocutaneous nerve branch to biceps brachii muscle [386].
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Figure 16. Electrical stimulation of the intact adult sciatic nerve of the rat at 20 Hz for 1 h (ES) in vivo
before excising dorsal root ganglion (DRG) sensory neurons and plating them on a laminin substrate
in vitro promotes their neurite outgrowth. An intact sciatic nerve 1 day after (A). no ES and (B). ES.
An intact sciatic nerve 7 days after (C). no ES and (D). ES. (E). The mean + standard error of the
lengths of the longest neurites (in µm) for the control and experimental DRG neurons that were
not and were stimulated, respectively. The ES of intact sciatic nerves promoted neurite extension
from plated DRG neurons. This promoted neurite extension is akin to the effect of a nerve crush
conditioning lesion (CL) that is made 7 days prior to the transection and suture of the nerve proximal
to the CL, which accelerates nerve regeneration. The neurons were immunostained with β-tubulin III.
The calibration bar = 50 µm. Statistical significance at p < 0.05 is denoted by a *. Adapted from [368].

It remains to be determined if CES could be applied to end-to-side neurorrhaphies
where an intact nerve fascicle is inserted into a denervated distal stump at the time of the
repair of the original nerve repair. The procedure aims to ‘protect’ the stump to enable,
particularly over long distances, more successful regeneration and, in turn, muscle reinner-
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vation [392–396]. Nerve regeneration through a denervated rat facial nerve was enhanced
by ‘protection’ with end-to-side sensory nerves [395–397]. Another CES application may be
in side-to side neurorrhaphies [398–401]. In rats where one or three nerve autografts were
placed as cross-bridges between an intact nerve and a chronically denervated distal nerve
stump, significantly more motor and sensory neurons regenerated axons after delayed
nerve repairs [400].

5.8. Drug-Induced cAMP Elevation Mimics the Effect of Electrical Stimulation (ES) on
Nerve Regeneration

Administrating rolipram, a specific PDFE4 inhibitor that raises cAMP [402] to a re-
paired CP nerve, mimics ES in promoting axon regeneration and muscle reinnervation
(Figure 17; [403]). These findings are consistent with previous investigations demonstrating
that elevating cAMP with forskolin, a stimulant of adenylate cyclase that generates cAMP,
increases the rate of peripheral nerve regeneration [311] and that forskolin and dcAMP
together promotes spinal nerve regeneration through an SC graft [404].

Figure 17. (A). We asked the question as to whether cAMP mediates the effect of ES on axon
regeneration by administering rolipram to the site of injury and surgical repair to block phosphodi-
esterase 4 that hydrolyses cAMP. (B). Rolipram (1:1 saline/dimethyl sulfoxide [DSMO]) or vehicle
(1:1 saline/DMSO) was delivered via an Alzet pump at a rate of 0.4 µmol/g/h to the site of the cut
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and sutured the CP (common peroneal) nerve that was surrounded by a 3 mm long silicone silastic cuff
of 0.7 mm interior diameter. The mean (+standard error) number of CP motoneurons that regenerated
across the suture site (expressed as a percentage of the numbers of intact CP motoneurons on the
contralateral side) were retrogradely labelled with rubyred (RR) (C). 3 mm, and (D). 10 mm from
the suture site. (E). MUNE (the estimated number of MUs (motor units) that equals the ratio of the
muscle and mean MU twitch forces of the reinnervated TA (tibialis anterior) muscle after the CP
nerve suture repair) expressed as a percentage of MUNE in muscles with intact innervation. There
was a significant increase in the number of CP motoneurons that regenerated their axons into the
distal nerve stump (C). 3 mm past the CP nerve suture site after 7 (*** p < 0.01) and after 14 days
(*** p < 0.01), (D). 10 mm past the suture site after 14 days and (E). reinnervated TA muscle after
5 months (* p < 0.05). Adapted from [403].

5.9. ES Promotes Sensory Nerve Outgrowth in the Central Nervous System

The high levels of cAMP in neonatal CNS neurons permit them to regenerate their ax-
ons after injury in contrast to adult CNS neurons that do not [405,406]. That cAMP elevation
by a CL of the sciatic nerve promotes the regeneration of transected sensory nerve fibres
in the spinal cord, the elevated cAMP mimicking the CL in vivo and in vitro [375,407,408],
prompted our investigation of the efficacy of ES of the intact sciatic nerve in promoting
regeneration of their transected sensory nerves in the CNS. Using CTB to label and vi-
sualize axon outgrowth across the T8 lesion site, ES of the sciatic nerve in vivo at 20 Hz
but not 200 Hz elicited outgrowth but did not accelerate regeneration rate in contrast to
a CL that stimulated both outgrowth and regeneration rate (Figure 18; [403]). The high-
frequency ES was tested because the large sensory neurons transmit at high frequencies,
albeit transiently [409].

Whilst a CL or 20 Hz ES both elevated cAMP equally in DRG neurons and promoted
a significant increase in the axon outgrowth across a spinal cord lesion, the CL promoted
significantly longer extensions of the axons than the 20 Hz ES [403]). This finding is quite
consistent with the known effect of the CL increasing axonal outgrowth and lengthen-
ing [369–373] in contrast to the ES effect of promoting only axonal outgrowth [21]. The
discrepancy between the findings of the same cAMP elevation by both CL and ES, with the
greater effect of the CL in promoting CNS axon outgrowth, indicates that the CL effect is
mediated, at least in part, by other mechanisms. This includes non-neural cell contribution.
A possible molecular candidate to account for the reliance of the greater efficacy of the
CL is oncomodulin, a small calcium-binding protein whose mRNA is highly expressed in
neutrophils, the first responders of the innate immune system [410,411] that are recruited
rapidly into an injured eye [412]. Oncomodulin binds to retinal ganglion cells with high
affinity in a cAMP-dependent manner, increases the level of phosphorylated CREB, and
stimulates the cells to regenerate long axons beyond the site of the optic nerve injury [413].
The outgrowth was more extensive than other known trophic agents. Moreover, oncomod-
ulin also acts upon peripheral sensory neurons to promote neurite outgrowth, although
neutrophils do not participate in the response of the neurons to injury [413].
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Figure 18. Electrical stimulation (ES) promotes regeneration of transected sensory nerves in the
central nervous system (CNS). (A). Figurative drawing of the surgical transection at the thoracic eight
dorsal column of the central axons of the lumbosacral dorsal root neurons whose peripheral axons
in the sciatic nerve were (1) either crushed or cut as the conditioning lesion (CL) or left intact. The
intact nerve was electrically stimulated for 1 h at (2), 20 Hz, and (3) at 200 Hz with the ES in-tensity
adjusted to 2× the motor threshold for eliciting gastrocnemius muscle contractions. A 1% solution of
cholera Toxin B (CTB) was injected into the sciatic nerve 14 weeks later to label CNS sensory nerves
in vivo. (A). Insert. The mean (±standard error (SE)) cAMP levels in L4 to six dorsal root ganglion
neurons were significantly raised 24 h after crush and cut CLs and 20 Hz ES but not after 200 Hz,
despite the transient high firing rates of sensory nerves. (B). The camara lucida drawings of spinal
cord 25 µm sagittal sections of CTB-immunocytochemical identification of axons show the longest
axons (shown by arrows) growing beyond the lesion site (in grey) after the CL with shorter axons
growing after 20 Hz ES. The letters a–d that denote (a). sham, (b). CL, (c). 200 Hz and (d). 20 Hz
correspond with the same conditions, whose data is displayed in the The X–Y plots of the cumulative
sum of the mean (±standard error) numbers of regenerated axons that advanced into the lesion site
as a percent of all the labeled axons proximal to the lesion, The plots show the significant increase
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in both the extent and distance of axon outgrowth after the CL and the significant increase in the
extent but not the distance of axon outgrowth after 20 Hz ES groups. There was no significant increase
in either extent or distance of axon outgrowth in the 200 Hz ES group, despite the increased cAMP
recorded after 200 Hz. Significant values (p < 0.05) are denoted by *s. The scalebar = 250 µm in (B).
Adapted from [368].

5.10. ES Signaling Pathways

A schematic representation of the intracellular signaling pathways activated by ES
is given in Figure 19. ES elevates cAMP in axotomized neurons [403] that, via PKA and
CREB [101], initiate expression of neurotrophic factors and their receptors, and of the
cytoskeletal proteins, tubulin and actin, as examples of regeneration-associated proteins.
Thereby, ES promotes axon outgrowth to accelerate regenerating nerves towards their den-
ervated targets. Neurotrophins feedback to amplify the cAMP pathway with for example,
BDNF-mediated Erk activation producing a transient inhibition of PDE4 activity [414].
Thereby, cAMP is elevated to threshold levels and, in turn, promotes axon outgrowth after
immediate or delayed nerve repair of injured peripheral nerves. The positive effect of ES in
promoting axonal regeneration after delayed nerve surgery is likely due to the release of
mitogens such as neuregulin from the stimulated proximal nerve stump. These mitogens
and possibly nutrients available at the site, promote SC proliferation and migration, shifting
SCs from their atrophic state to a growth-permissive state. SC neurotrophic factors and
p75NTR may present the factors to the regenerating axons to further enhance their growth.
Details of the pathways of the efficacy of ES in promoting nerve regeneration and target
reinnervation await further experimentation.

5.11. ES Accelerates Human Nerve Regeneration and Muscle Reinnervation

Studies of the efficacy of ES in promoting nerve regeneration and muscle reinnervation
in rats were extended to patients suffering severe carpal tunnel syndrome (CTS). In these
patients, the number of functionally intact MUs in the muscles of the thenar eminence was
~50%. of the normal mean number (+standard error) of 288 + 23 [415]. ES immediately
after carpal tunnel release surgery (CTRS), which released the ligament over the crushed
median nerve, had a profound positive effect of promoting all the axotomized nerves to
regenerate and reinnervate the muscles of the thenar eminence within 6–8 months when
the small increase in the reinnervation by the corresponding unstimulated nerves in the
control group of patients had not reached statistical significance (p > 0.05) even 12 months
after CTRS (Figure 20; [416]). This is particularly striking considering that over a distance
of 100 mm, the regenerating axons should reach the median eminence musculature within
~3–4 months at a reported rate of 1 mm/day [248,250] for human motor and sensory nerves,
respectively. Chan and his colleagues went on to demonstrate the significant acceleration
of sensory nerve regeneration in human subjects after surgical repair of transected digital
nerves in the hand [417] as well as after ulnar nerve compression at the elbow [418]. In
summary, the demonstrated efficacy of low-frequency ES to accelerate nerve regeneration
in human subjects as well as in animals, indicates the potential to promote successful
outcomes after injuries in patients.



Int. J. Mol. Sci. 2024, 25, 665 34 of 54
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 34 of 53 
 

 

 
Figure 19. Schematic representation of the intracellular signaling pathways activated by brief (1 h 
20 Hz electrical stimulation (ES)). ES increases calcium influx (not shown) and, in turn, activates 
adenyl cyclase to elevate cAMP levels. Cyclic AMP, in turn, acts via PKA to phosphorylate CREB in 
the nucleus leading to transcription of proteins, including neurotrophins and the cytoskeletal pro-
teins tubulin and actin that are essential for axonal elongation during regeneration. The neurotro-
phins also feedback to further increase cAMP (via ERK with transient inhibition of phosphodiester-
ase 4 to prevent hydrolysis of cAMP to 5′AMP—not shown). Thereby the transcription of regenera-
tion-associated genes is amplified to promote axonal outgrowth. The ES of the injured nerve proxi-
mal to the site of nerve repair likely leads to the release of mitogens such as neuregulin that pro-
motes Schwann cell (SC) proliferation and transition from the myelinating to a growth-permissive 
state. The ES is also effective after chronic nerve injury, presumably by the same mechanism. The 
growth permissive state of the SCs includes the transcription of neurotrophic factors that likely po-
tentiate axon regeneration via their amplification of neurotrophic factor expression by the neurons. 
These feedback loops likely aid in promoting accelerated regeneration and target reinnervation. 
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Figure 19. Schematic representation of the intracellular signaling pathways activated by brief (1 h
20 Hz electrical stimulation (ES)). ES increases calcium influx (not shown) and, in turn, activates
adenyl cyclase to elevate cAMP levels. Cyclic AMP, in turn, acts via PKA to phosphorylate CREB in
the nucleus leading to transcription of proteins, including neurotrophins and the cytoskeletal proteins
tubulin and actin that are essential for axonal elongation during regeneration. The neurotrophins
also feedback to further increase cAMP (via ERK with transient inhibition of phosphodiesterase 4
to prevent hydrolysis of cAMP to 5′AMP—not shown). Thereby the transcription of regeneration-
associated genes is amplified to promote axonal outgrowth. The ES of the injured nerve proximal
to the site of nerve repair likely leads to the release of mitogens such as neuregulin that promotes
Schwann cell (SC) proliferation and transition from the myelinating to a growth-permissive state.
The ES is also effective after chronic nerve injury, presumably by the same mechanism. The growth
permissive state of the SCs includes the transcription of neurotrophic factors that likely potentiate
axon regeneration via their amplification of neurotrophic factor expression by the neurons. These
feedback loops likely aid in promoting accelerated regeneration and target reinnervation.
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Figure 20. Brief (1 h) 20 Hz electrical stimulation (ES) of injured human nerves accelerates muscle
reinnervation. (A). Diagrammatic representation of the recording of CMAPs (compound muscle
action potentials) in the muscles of the median eminence above and below the ligament of the carpal
tunnel. Only patients with severe CTS (carpal tunnel syndrome) with (B). reduced numbers of
innervated MUs (motor units) exemplified by reduced CMAP amplitudes recorded both above and
below the nerve were included in the study of the regenerative effect of ES. (C). Patients with a
reduced CMAP amplitude recorded below in the wrist but not above the released nerve, evident of
conduction block and not MU loss, were excluded. (D). The ligament over the median nerve was
released (CTRS: carpal tunnel release surgery). (F). Immediately after surgery, the median nerve was
subjected to ES. (E). A maximum (2× threshold) electrical stimulus above the carpal tunnel evoked
(G). a CMAP and the minimal stimuli evoked all-or-none single MU action potentials (S-MUAP) at
points along the median nerve to estimate MU number (MUNE) from the ratio of the CMAP and
mean of at least 20 recorded S-MUAPs. Histograms of the mean (+standard error) MUNE recorded
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before and after CTRS in (H). control subjects (without ES, clear histograms) and (I). the subjects
with stimulation (with ES, closed red histograms). Diagrammatic illustration of (J). the sluggish
growth of axons across the nerve crush site in the Control subjects that likely accounts for the (K). the
regenerating nerve fibres not reaching the muscle to increase the numbers of reinnervated MUs, (L).
axonal growth accelerated across the carpal tunnel crush site by electrical stimulation at 3 months, and
(M). regenerating nerves progressing through the distal stumps to reinnervated denervated muscle
fibres in the thenar eminence by 6 months, accounting for the restoration of the full complement of
MUs by 12 months after CTRS and stimulation. Adapted from [416].

6. Conclusions

The rapid decline in electrical activity in motor and sensory nerves during the first
month after their injury is associated with and likely caused by the loss of both excitatory
and inhibitory synapses on the motoneurons in the spinal cord and by the disconnection of
the sensory neurons from their input from the skin and muscles. The concurrent decline
in the regenerative capacity of the axotomized neurons and the support of denervated
SCs with their declining expression of growth-associated-genes (GAGs) account for the
progressive decline in functional recovery with time and distance. Brief ES, by promoting
axon outgrowth, accelerates nerve regeneration and target reinnervation after both acute
and chronic nerve injuries in animals and in humans. The same ES applied prior to a
nerve injury acts as a conditioning ES (CES) to promote both axon outgrowth and the
regeneration rate. The ES effect after acute injury is accounted for by (1) preventing the
loss of synaptic contacts on axotomized motoneurons, (2) GAG upregulation in response to
increased intracellular cAMP, and (3) feedback of expressed neurotrophins that amplify
the expression of cAMP. After chronic nerve injuries where synaptic contacts on the mo-
toneurons have already been withdrawn, the ES-induced increase in cAMP, via CREB and
GAG expression, promotes axonal regeneration and target reinnervation. The mitogens,
including neuregulin, that are released from regenerating axons, increase SC proliferation
and their transition to a growth-permissive state. Thereby, they amplify the neuronal
growth response.

The ES efficacy has potential for clinical application. CES may be applicable to enhance
nerve regeneration in nerve transfer surgeries and end-to-side neurorrhaphies, should open
surgery be unnecessary to apply electrodes for CES. Finally, our findings that delayed nerve
repair is deleterious for functional recovery emphasize the importance of ensuring minimal
delay between the diagnosis of nerve injury, repair, and ES application. Thereby, we might
anticipate improved outcomes of nerve surgeries in the future.
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