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Abstract: The gut microbiome is well known for its influence on human physiology and aging.
Therefore, we speculate that the gut microbiome may affect muscle strength in the same way as
the host’s own genes. To demonstrate candidates for gut microbes affecting muscle strength, we
remodeled the original gut microbiome of mice into human intestinal microbiome through fecal
microbiome transplantation (FMT), using human feces and compared the changes in muscle strength
in the same mice before and three months after FMT. After comparing before and after FMT, the
mice were divided into three groups based on the observed changes in muscle strength: positive,
none, and negative changes in muscle strength. As a result of analyzing the α-diversity, β-diversity,
and co-occurrence network of the intestinal microbial community before and after FMT, it was
observed that a more diverse intestinal microbial community was established after FMT in all groups.
In particular, the group with increased muscle strength had more gut microbiome species and
communities than the other groups. Fold-change comparison showed that Eisenbergiella massiliensis
and Anaeroplasma abactoclasticum from the gut microbiome had positive contributions to muscle
strength, while Ileibacterium valens and Ethanoligenens harbinense had negative effects. This study
identifies candidates for the gut microbiome that contribute positively and those that contribute
negatively to muscle strength.

Keywords: muscle strength; gut microbiome; fecal microbiome transplantation; Eisenbergiella massiliensis;
Anaeroplasma abactoclasticum; Ileibacterium valens; Ethanoligenens harbinense

1. Introduction

In general, humans have a complex and massive microbial community consisting
of 100 trillion microbes in the intestine, called the gut microbiome [1]. Recent studies
have shown that the gut microbiome plays an important role in overall health, including
digestion, immunity, and even mental health [2–5]. Gut microbial imbalance causes a
variety of diseases, including inflammatory bowel disease, gastrointestinal malignancies,
cancer, cholelithiasis, autism, sarcopenia, cachexia, hepatic encephalopathy, allergy, obesity,
diabetes, atherosclerosis, metabolic syndrome, Alzheimer’s disease, Parkinson’s disease,
etc. [6–15]. Although current research clearly shows that the gut microbiome influences
the host’s digestive, immune, and mental health [16], the impact of the gut microbiome on
physiology has not been thoroughly investigated.
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Considering the results of current research on the function of the gut microbiome,
there is a strong possibility that the gut microbiome may affect the muscle strength of its
host as much as the host’s own genes do [17]. However, the role of the gut microbiome in
muscle strength has shown mixed results. Initial studies did not show a positive role of the
gut microbiome in the maintenance of whole-body lean mass [16]. Whole-body lean mass
was decreased by 7–9% in young germ-free mice after transplantation of fecal samples from
conventionally raised mice [16]. In contrast to the initial research, subsequent research
showed that the gut microbiome increased skeletal muscle mass, reduced muscle atrophy
markers, improved the oxidative metabolic capacity of the muscle, and elevated expression
of the neuromuscular junction assembly genes Rapsyn and Lrp4 [18–20]. Furthermore,
transplantation of the gut microbiome from young mice to old mice has been shown to
increase muscle fiber thickness and grip strength [21].

There is some evidence to suggest that the gut microbiome may be associated with
muscle function. This evidence suggests that the gut microbiota composition and diversity
can be a determinant of skeletal muscle metabolism and functionality. [22] Longitudinal
studies have explored the connection between a physically active lifestyle or long-term
exercise interventions and the gut microbiota [23].

Additionally, studies in mice have shown that altering the composition of the gut
microbiome can affect motor behavior [24,25]. Studies in humans have also suggested a
link between the gut microbiome and physical activity [26,27].

Although these studies suggested a possible association between the gut microbiome
and muscle strength, there is no direct evidence linking the gut microbiome to muscle
strength. Mammalian phenotypes, such as muscle strength, are influenced by both genes
and the gut microbiome [22–30]. Genetic variation among individuals means that eval-
uating the effect of the gut microbiome on muscle strength is greatly influenced by the
genetic background of the host. In particular, human studies, in which individual genetic
backgrounds cannot be controlled, have limitations in accurately evaluating the effects of
the gut microbiome. In contrast, mouse studies, where genetic factors can be controlled,
allow for a more accurate evaluation of the effects of the gut microbiome by eliminating
the influence of genetic factors [31].

When evaluating the effect of the gut microbiome on muscle strength, it is difficult to
be sure whether the results are due to genetic factors or the influence of the gut microbiome.
To overcome these difficulties, this study developed a new gut microbiome analysis method.
This method reconstructed the gut microbiome through fecal microbiome transplantation
(FMT) under identical environmental conditions and then compared the muscle strength
of the same individual mice before and after FMT, eliminating the genetic background.
This method more accurately determined the influence of gut microbes alone on muscle
strength, excluding genetic and environmental factors.

2. Results
2.1. Randomly Colonizing Conventional Mice with Human Gut Microbiome via FMT Had
Differential Effects on Muscle Strength

The ongoing debate regarding the regulation of muscle strength by intestinal bacteria
prompted us to explore a new approach to identify the specific bacteria responsible. We
performed a novel in vivo experiment utilizing the concept of subgroup analysis, which
can help find the causes of complex problems in large datasets. This study aimed to identify
the intestinal bacteria that regulate muscle strength through randomized subgroup analysis.
We depleted the gut microbiome of conventional mice (C57BL/6) with a mixture of three
broad-spectrum antibiotics and antifungal and randomly colonized human gut microbiome
by feeding them fresh fecal samples (Figure 1A).
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Figure 1. Grouping of mice based on changes in muscle strength before and after FMT. (A) A sche-
matic diagram of the experimental design. (B) The comparison of rotarod performance of the exper-
imental mice before and after FMT. (C) Changes in muscle strength of the experimental mice after 
FMT. (D) Representative histological images of H and E-stained muscle tissue (scale bar = 100 µm) 
from the mice with strong, medium, and weak muscle strength (SMS, MMS, and WMS, respec-
tively). The values in the figure are expressed as the mean ± standard error of the mean (SEM) and 
the level of significance is indicated by asterisks (*): * p < 0.05, ** p < 0.01; *** p < 0.001; “n.s.” stands 
for “not significant” and indicates a p-value greater than 0.05. 

The effect of FMT on muscle strength in conventional mice was vastly different 
among mice, as shown in Figure 1B,C, probably due to the human gut microbiota ran-
domly colonizing the mice gut. To rule out genetic factors and evaluate the impact of the 
gut microbiome alone on muscle strength changes, we replaced the original gut microbi-
ome with the human gut microbiome via FMT and then monitored the rotarod records in 
the same mice. Changes in muscle strength in mice over the three-month experimental 
period can be classified into three categories: the group with increased muscle strength, 

Figure 1. Grouping of mice based on changes in muscle strength before and after FMT. (A) A
schematic diagram of the experimental design. (B) The comparison of rotarod performance of
the experimental mice before and after FMT. (C) Changes in muscle strength of the experimental
mice after FMT. (D) Representative histological images of H and E-stained muscle tissue (scale
bar = 100 µm) from the mice with strong, medium, and weak muscle strength (SMS, MMS, and WMS,
respectively). The values in the figure are expressed as the mean ± standard error of the mean (SEM)
and the level of significance is indicated by asterisks (*): * p < 0.05, ** p < 0.01; *** p < 0.001; “n.s.”
stands for “not significant” and indicates a p-value greater than 0.05.

The effect of FMT on muscle strength in conventional mice was vastly different among
mice, as shown in Figure 1B,C, probably due to the human gut microbiota randomly
colonizing the mice gut. To rule out genetic factors and evaluate the impact of the gut
microbiome alone on muscle strength changes, we replaced the original gut microbiome
with the human gut microbiome via FMT and then monitored the rotarod records in the



Int. J. Mol. Sci. 2024, 25, 662 4 of 16

same mice. Changes in muscle strength in mice over the three-month experimental period
can be classified into three categories: the group with increased muscle strength, in which
the holding time on the rotarod increased by 23.5 ± 5.7 s (Strong Muscle Strength; SMS;
n = 10); the group with unchanged muscle strength, in which the holding time on the
rotarod remained within the range of 1.6 ± 0.8 s (Medium Muscle Strength; MMS; n = 10);
and the group with decreased muscle strength, in which the holding time on the rotarod
decreased by −16.1 ± 3.2 s (Weak Muscle Strength; WMS; n = 10) (Figure 1B,C). Muscle
strength changes in each group were confirmed through histological examination, which
revealed high levels of muscle fiber accumulation in the SMS, intermediate accumulation
in the MMS, and the lowest accumulation in the WMS (Figure 1D). The blood glucose
levels and lipid profiles did not change significantly either before or after FMT in mice
(Figure S1). These results suggest that different subsets of the human gut microbiome
randomly replaced the original gut microbiome in each mouse, resulting in different effects
on muscle strength.

2.2. After Performing FMT with Human Feces, Different Types of Gut Microbial Communities
Were Established in Each Experimental Mouse

The diverse effects on muscle strength following FMT with human feces led us to
compare changes in the gut microbiota composition before and after FMT in mice. We
sequenced the V3–V4 regions of the 16S rRNA genes of the gut microbiome of each mouse
before and after replacement using the MiSeq platform (Illumina). We filtered out sequence
reads that potentially contained incorrect primer or barcode sequences, sequences with
more than one ambiguous base, low-quality sequences, or chimeras, which comprised
approximately 0.001% of the total reads. The filtered 16S rRNA sequences were used
to identify individual microbes by matching them with the SILVA reference database
(region V3–V4) (https://www.arb-silva.de/ (accessed on 20 July 2021)). The identified
16S rRNA sequences were classified into nine phyla: Bacteroidetes (48.471%), Firmicutes
(37.456%), Verrucomicrobia (10.197%), Proteobacteria (1.924%), Patescibacteria (0.337%),
Actinobacteria (0.907%), Tenericutes (0.48%), Cyanobacteria (0.228%), and Lentisphaerae
(0.002%) (Figure 2 and Table S1). The operational taxonomic units (OTUs) were further
classified down to species level.

Comparisons of OTUs showed clear differences before and after FMT in all mice,
indicating the success of replacing the original gut microbiome with the human microbiome,
as shown in Figure 2. The composition of the replaced gut microbiome was very different
among the groups, classified by individual differences in muscle strength before and after
FMT (Figures 3 and S2, Tables S2–S7). Before FMT, the main bacteria that constituted
the original gut microbiomes at the phylum level were Bacteroidetes (56.093% in SMS,
53.922% in MMS, and 63.633% in WMS), Firmicutes (40.116% in SMS, 42.569% in MMS, and
33.938% in WMS), and Patescibacteria (3.24% in SMS, 2.791% in MMS, and 2.03% in WMS);
at the class level, Bacteroidia (56.093% in SMS, 53.922% in MMS, and 63.633% in WMS),
Clostridia (36.684% in SMS, 38.674% in MMS, and 29.873% in WMS), and Bacilli (2.489%
in SMS, 2.499% in MMS, and 3.37% in WMS); at the order level, Bacteroidales (56.093% in
SMS, 53.92% in MMS, and 63.628% in WMS), Clostridiales (36.684% in SMS, 38.674% in
MMS, and 29.873% in WMS), and Lactobacillales (2.489% in SMS, 2.499% in MMS, and
3.37% in WMS); and at the family level, Muribaculaceae (54.598% in SMS, 50.66% in MMS,
and 61.67% in WMS), Lachnospiraceae (24.471% in SMS, 24.611% in MMS, and 19.667%
in WMS), and Ruminococcaceae (9.72% in SMS, 10.737% in MMS, and 7.399% in WMS).
However, the composition of bacteria changed three months after FMT: at the phylum
level, Bacteroidetes (52.068% in SMS, 43.928% in MMS, and 49.416% in WMS), Firmicutes
(36.244% in SMS, 37.628% in MMS, and 38.496% in WMS), and Verrucomicrobia (7.552%
in SMS, 14.915% in MMS, and 8.123% in WMS); at the class level, Bacteroidia (52.068%
in SMS, 43.928% in MMS, and 49.416% in WMS), Clostridia (30.437% in SMS, 32.948% in
MMS, and 32. 293% in WMS), and Verrucomicrobiae (7.552% in SMS, 14.915% in MMS, and
8.123% in WMS); at the order level, Bacteroidales (56.093% in SMS, 53.92% in MMS, and
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63.628% in WMS), Clostridiales (36.684% in SMS, 38.674% in MMS, and 29.873% in WMS),
and Lactobacillales (2.489% in SMS, 2.499% in MMS, and 3.37% in WMS); at a family level,
Muribaculaceae (40.613% in SMS, 33.303% in MMS, and 40.784% in WMS), Lachnospiraceae
(16.383% in SMS, 18.101% in MMS, and 19.08% in WMS), and Ruminococcaceae (12.561% in
SMS, 13.346% in MMS, and 11.583% in WMS) (Tables S2–S7). These results indicate that the
human gut microbiome is not only more diverse but also that its composition significantly
differs from that of mice.
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Figure 2. Changes in the gut microbiome before and after FMT. (A) The α-diversity, (B) β-diversity,
and (C) abundance bar plot analyses revealed that the composition of the gut microbiome in the
mice was significantly altered following FMT. Before the FMT, 0 m represents the baseline, while 3 m
represents 3 months after the FMT.
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Figure 3. The composition of the gut microbiome in experimental mice before and after FMT. The
relative changes in the gut microbiome composition were analyzed at the (A) phylum, (B) class,
(C) order, (D) family, (E) genus, and (F) species levels. The average abundance values of each group
were calculated to obtain their respective abundance values. S, M, and W represent the SMS group,
MMS group, and WMS group, respectively.

2.3. Changes in Muscle Strength Were Correlated with Changes in the Gut Microbiome Composition

After confirming the correlation between individual differences in the composition
of the replaced gut microbiome and muscle strength, the diversity of the gut microbiome
of each mouse was analyzed. The α-diversity metrics showed that different subsets of
the human gut microbiome were replaced in each group of mice (Figure 4 and Table S8).
The α-diversity indices, which take into account both richness (ACE and Fisher’s alpha)
and evenness (Shannon, Simpson, and InvSimpson), showed little difference among the
three groups. Comparing before and after FMT, the evenness indices before and after FMT
were similar, but the richness indices increased after FMT, suggesting that although the
compositional characteristics of the human and mouse gut microbiomes are similar, the
human gut microbiome is more diverse. Additionally, the richness and evenness diversity
indices of mice with stronger muscle strength (SMS) were higher than those of the other
two groups, indicating that the gut microbiome was more diverse in SMS.
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Figure 4. The α-diversity indices of the gut microbiome of the SMS, MMS, and WMS groups. The
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Shannon diversity, and Simpson, are shown for both before (0 m) and after (3 m) FMT for each of the
SMS, MMS, and WMS groups. S, M, and W represent the SMS group, MMS group, and WMS group,
respectively. * p < 0.05, *** p < 0.001.
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In addition to α-diversity analyses, β-diversity analyses also confirmed that the re-
placed gut microbiome was significantly more diverse than the original gut microbiome of
each mouse. Both β-diversity metrics measured via non-metric multidimensional scaling
(NMDS), and principal coordinate analysis (PCoA) plots showed that the compositions
were more diverse after FMT (Figure 5A,B and Table S9).
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Figure 5. The β-diversity comparison of the gut microbiome of the SMS, MMS, and WMS groups.
(A) Non-metric multidimensional scaling (NMDS) plots are shown, depicting the differences in the
gut microbiome before (T0, left) and after (T3, right) FMT in the SMS, MMS, and WMS groups,
based on Bray–Curtis distances calculated using operational taxonomic units (OTUs). (B) Principal
coordinates analysis (PCoA) based on the Bray–Curtis distance from the PERMANOVA analysis
(betadisper function) in the gut microbiome before (T0, left) and after (T3, right) FMT in the SMS,
MMS, and WMS groups. (C) Heatmaps of the microbial composition of the SMS, MMS, and WMS
groups before (T0, left) and after (T3, right) FMT are shown, based on the Bray–Curtis distance
matrix measured at the phylum level. S, M, and W represent the SMS group, MMS group, and WMS
group, respectively.
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To investigate the effect of the gut microbiome on muscle strength, we conducted a
comparison involving unsupervised hierarchical clustering of the most abundant opera-
tional taxonomic units (OTUs). This comparison was based on the Bray–Curtis distance
of the gut microbiome, along with assessments of changes in muscle strength before FMT
(T0) and three months after FMT (T3). It was shown that gut microbiome replacement via
FMT affected the three groups of mice differently. An unsupervised hierarchical cluster
analysis before FMT (T0) revealed no differences between each mouse group (Figure 5C,
left). However, a hierarchical cluster analysis clearly revealed differences across groups in
muscle strength changes after FMT (Figure 5C, right). These showed the gut microbiome
composition, grouping individual mice according to differences in muscle strength.

2.4. Different Microbial Communities Were Established in Each of the Three Groups of Mice
after FMT

Microbial compositions showed that the replaced gut microbiomes of the three groups
following muscle strength changes were different, even though the original gut micro-
biomes were not different from each other (Figure 3). Similarly, a co-occurrence network
analysis showed that the microbial communities became more diverse after FMT in all
three groups (Figure 6 and Table S10). Before FMT, 21 communities were identified in SMS,
28 in MMS, and 31 in WMS, but after FMT, the communities expanded to 74 in SMS, 60 in
MMS, and 58 in WMS. The number of nodes and edges within the microbial communities
were significantly increased in all three groups before and after FMT. We found that the
number of microbial communities was higher in SMS than in MMS and WMS after FMT,
which suggests that muscle strength is associated with a more diverse gut microbiome.
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Figure 6. The co-occurrence network analysis using the ReBoot algorithm for the SMS, MMS, and
WMS groups. The color-coded network graphs indicate the co-occurring and mutual exclusion
interactions between operational taxonomic units (OTUs). Black letters in the nodes correspond
to the class level of the OTUs. Transparent shapes represent network communities determined
via the Louvain modularity algorithm. (A,B) The SMS groups before FMT (T0) and after FMT(T3),
respectively. (C,D) The MMS groups before FMT (T0) and after FMT(T3), respectively. (E,F) The
WMS groups before FMT (T0) and after FMT(T3), respectively.
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2.5. Gut Microbes That Influence Muscle Strength Were Identified at the Species Level

Although the above gut microbiome analyses revealed a clear correlation between the
gut microbiome composition and muscle strength, it did not identify the specific bacterial
groups responsible for either promoting or reducing muscle strength (Figures 3–6). We
utilized the concept of fold change at the log2 scale and a linear correlation to analyze
the abundance of intestinal microbes in relation to muscle strength (Figure 7). Among
the bacterial species, Eisenbergiella massiliensis and Anaeroplasma abactoclasticum were the
most abundant in the SMS, indicating a positive correlation with muscle strength. In
contrast, Ileibacterium valens and Ethanoligenens harbinense were the most abundant in WMS,
indicating a negative correlation with muscle strength. Bacteria associated with strong
muscle strength were classified into the phyla Firmicutes and Tenericutes, whereas those
associated with weak muscle strength belonged to the phylum Firmicutes.
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Figure 7. The key taxa changes between SMS and WMS via differential abundance analysis. (A) The
log2-fold change in abundance of the most abundant species in the gut microbiome of the SMS and
WMS groups was analyzed using DESeq2 differential abundance analysis. Each point represents
a comparison of species between the two experimental groups. (B–E) The normalized abundances
of four significantly different bacterial species of interest that were identified from the differential
abundance analyses are shown. Scatter plots represent the % abundances of each individual species.
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3. Discussion

It is well known that the gut microbiome plays an important role in the host’s energy
extraction from food and increases villous blood vessel formation [32,33]. Moreover, recent
studies have shown that the gut microbiome has a significant impact on various physio-
logical processes, including metabolism, digestion, immunity, and brain function [2–5]. In
addition, the gut microbiome acts as an important epigenetic factor regulating host gene
expression [34–38].

Considering the diverse roles of the gut microbiome, it is expected to also play an
important role in determining muscle strength in the host. However, previous studies have
not shown a clear link between the gut microbiome and muscle strength. In contrast to the
initial study that found a negative association between the gut microbiome and muscle
strength [16], later studies have shown that the gut microbiome can actually enhance muscle
strength [18–20]. The gut microbiome is a complex ecosystem composed of hundreds or
thousands of species of bacteria and fungi [39]. The number of microorganisms in the
gut microbiome can varies from person to person. Considering the diversity of each
individual’s gut microbiome and the vast amount of gut microorganisms, the composition
of the gut microbiome can manifest in many different combinations. That is, some gut
microbiomes may have a negative effect on muscle strength while others may have a
positive effect [40,41]. As a result, it is not surprising to see mixed evidence for the
association between muscle strength and the gut microbiota in previous studies. In terms of
bacterial species that may positively impact muscle mass, oral gavage with Lactobacillus casei
or Bifidobacterium longum increased the muscle mass/body weight ratio without affecting
body weight [42]. Recent findings from another research group contribute to the elucidation
of the gut–muscle axis in older adults. This group identified higher levels of Prevotellaceae,
Prevotella, Barnesiella, and Barnesiella intestinihominis in older adults in conjunction with
higher muscle strength (defined as high-functioning, HF), when compared with older
adults that had reduced muscle strength (defined as low-functioning, LF) [43].

There are uncontrolled limitations to using metagenomics to compare gut microbiomes
between control and experimental groups. To overcome these limitations, a new method for
gut microbiome analysis was developed in this study. This method involves transplanting
the human fecal microbiomes into mice and observing phenotypic changes in the same
individual mice. Subset analysis is a very useful method for finding subtle differences that
are not found in a large dataset. Therefore, we took a valuable approach by transplanting
the human gut microbiome (large dataset) into mice and subsequently analyzing the
transplanted microbiome in mice (subset data). Additionally, by comparing phenotypic
changes, such as changes in muscle strength, within the same individual mouse while
controlling for genetic factors that influence muscle strength, we can reveal the unique
influence of the gut microbiome on phenotypes [31].

Our results showed that the gut microbiome has a dual effect on muscle strength:
some gut microbiomes have a positive effect on muscle strength, while others have a nega-
tive effect (Figure 1). Alpha and beta diversity, phylogenetic analyses and co-occurrence
network assessments have confirmed that the gut microbial community differs in terms
of the composition and diversity of gut microorganisms, affecting changes in muscle
strength (Figures 2–6). These findings indicated that the gut microbiome that influence
muscle strength differs between groups. Our findings demonstrate that the gut microbiome
contributes either positively or negatively to muscle strength, which clearly explains the
mixed results of previous research on the association between muscle strength and the gut
microbiome [18–21].

Additionally, through FMT-based gut microbiome subset analysis, we also identified
specific gut microbes that are either positively or negatively associated with muscle strength
(Figure 7). As depicted in Figure 7, E. massiliensis and A. abactoclasticum had a positive
effect on muscle strength, whereas I. valens and E. harbinense had a negative impact. A.
abactoclasticum is an obligate anaerobic bacterium [44]. Although A. abactoclasticum has
been isolated from healthy chickens and cattle, they have not yet been found in humans. E.
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massiliensis is a gram-negative, obligate anaerobic bacterium that was isolated from the stool
of an overweight person [45]. Notably, the two bacteria that had a negative effect on muscle
strength, I. valens and E. harbinense, were found in lean individuals [46,47]. This finding of
bacteria being positively associated with muscle strength in overweight individuals and
vice versa in lean individuals seems to align well with human physiology.

As a result, the gut microbiome remodeled through FMT in each group also differed.
Fold-change comparison showed that Eisenbergiella massiliensis and Anaeroplasma abacto-
clasticum from the gut microbiome had positive contributions to muscle strength, while
Ileibacterium valens and Ethanoligenens harbinense had negative effects. Therefore, this study
successfully demonstrated that in vivo subset analysis of the human gut microbiome using
animal models is a useful approach for studying complex and heterogeneous populations
comprised of trillions of microorganisms, and we believe that this concept can be applied
to identify gut microbiome associated with other human phenotypes or diseases [48].

4. Materials and Methods
4.1. Study Design and Animal Experiments

Thirty 47-week-old C57BL/6 mice were purchased from the Animal Facility of Aging
Science at the Korea Basic Science Institute (Gwangju, Republic of Korea) and acclimated for
one week. The mice were housed individually to avoid exposure to feces from other mice.
The mice were maintained under a specific light/dark cycle and temperature and had access
to sterile food and water in a sterile environment. After one week of acclimation, the mice
were weighed, feces and blood collected, and rotarod performed for pre-FMT recordings.
To deplete their endogenous gut microbiota, the mice were treated the water containing
antibiotics (1 g/L ampicillin, 0.5 g/L kanamycin, and 0.5 g/L cefoxitin; Sigma-Aldrich, St.
Louis, MO, USA) and an antifungal (0.5 g/L nystatin) for one week.

The optimized media for collecting human fecal samples were prepared as previously
described [49]. To collect diverse human gut microorganisms, fecal samples from 10 healthy
volunteers were collected and mixed in the optimized media. The mixed fecal media were
prepared on the scheduled day for oral gavage and stored at room temperature in anaerobic
containers to preserve as many microorganisms as possible. This mixed human fecal media
were used to perform FMT in mice. FMT was performed twice a week for a total of three
months by administering 20 µL of the mixture to the mice via oral gavage. After 3 months
of FMT, all mice were weighed, feces and blood were collected, and rotarod performed
individually for post-FMT recording.

The changes in the muscle strength of the mice over the three-month experimental
period can be grouped into three categories: the group with increased muscle strength
(Strong Muscle Strength; SMS; n = 10); the group with unchanged muscle strength (Medium
Muscle Strength; MMS; n = 10); and the group with decreased muscle strength (Weak
Muscle Strength; WMS; n = 10).

4.2. Rotarod Test

The rotarod apparatus (B.S Technolab INC, Seoul, Republic of Korea) was used to
evaluate the motor coordination, strength, and balance of the mice [50]. The apparatus
consisted of a base platform and a rotating rod with a diameter of 3.5 cm and a non-slippery
surface. The rod was placed at a height of 30 cm above the base. The mice were placed
on the rotating rod, which was gradually increased in speed, and the time it took for the
mouse to fall off was measured. The mice underwent three trials per day at 30 rpm for three
consecutive days. The mice were tested on the fourth day. During testing, each animal
underwent three trials at a fixed speed of 30 rpm. The mean latency to fall off the rotarod
was recorded and used in the subsequent analyses.

4.3. Biochemical Parameter Analysis

Blood glucose levels were measured using a portable blood glucose meter (Accu-
Chek Active; Roche Diagnostic GmbH, Mannheim, Germany). Total cholesterol (TCHO),
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triglyceride (TG), and high-density lipoprotein cholesterol (HDL-CHO) levels in mice
serum were measured enzymatically using commercial assay kits (Asan Pharmaceutical
Co., Seoul, Republic of Korea), as previously described [49]. Additionally, the low-density
lipoprotein cholesterol (LDL-CHO) levels were calculated using the Friedewald’s equation
[(LDL-CHO) = (TCHO) − ((HDL-CHO) − (TG)/5)].

4.4. Histological Analysis

The histological analysis was performed as described previously [49]. In brief, at
the end of the experiment, muscle tissues were prepared from mice, fixed in 10% neutral
buffered formalin, embedded in paraffin. After serial 6 µm thick sections, tissue sections
were deparaffinized using hot water and stained with hematoxylin and eosin (Vector
Laboratories Inc., Newark, CA, USA). H and E-stained tissue sections were observed under
a light microscope (AmScope, T690C-PL, Irvine, CA, USA), and images were taken with a
microscopic digital camera (AmScope, MU-1803, Irvine, CA, USA).

4.5. DNA Extraction and 16S rRNA Gene Sequencing

Total bacterial genomic DNA from fecal samples from each mouse was extracted using
the phenol-chloroform isoamyl alcohol extraction method, as described previously [51]. In
brief, fecal samples were suspended in lysis buffer (200 mM NaCl, 200 mM Tris-HCl (pH
8.0), 20 mM EDTA) via bead-beating. Genomic DNA was isolated through successive phe-
nol:chloroform:isoamyl alcohol, 3M sodium acetate, and isopropanol treatments, washed
with 70% ethanol, and dissolved in TE buffer (10 mM Tris-HCl (pH 8.0) and 1 mM EDTA).
The concentration and purity of the extracted DNA were measured using a BioSpec-nano
spectrophotometer (Shimadzu Biotech, Kyoto, Japan), and the integrity was assessed on a
1% (w/v) agarose gel.

16S rRNA gene sequencing analyses of the gut microbiome DNA samples were
performed by a commercial company (ebiogen, Inc., Seoul, Republic of Korea). Briefly,
each sample was prepared according to the Illumina 16S rRNA gene sequencing library
protocol, and the genes were amplified using 16S V3–V4 primers; 16S Amplicon PCR
Forward Primer with a sequence of 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG-
ACAGCCTACGGGNGGCWGCAG-3′ and 16S Amplicon PCR Reverse Primer with a se-
quence of 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT-
CTAATCC-3′. Subsequent limited-cycle amplification steps were performed to add the
multiplexing indices and Illumina sequencing adapters. The final products were nor-
malized and pooled using PicoGreen, and the size of the libraries was verified using the
Agilent TapeStation DNA ScreenTape D1000 system (Agilent Technologies, Santa Clara,
CA, USA). Finally, the pooled libraries (2 × 300) were sequenced using the MiSeq platform
(Illumina, San Diego, CA, USA). The amplicon errors were modelled in merged fastq
using DADA2 (ver.1.10.1). Noise sequences were filtered, errors in marginal sequences
were corrected, chimeric sequences and singletons were removed, and sequences were
de-duplicated [52]. The taxonomy profile data were deposited in the repository at figshare
(https://doi.org/10.6084/m9.figshare.21838947) accessed on 9 January 2023.

4.6. Data and Statistical Analyses

All Data and statistical analyses were performed as described previously [51]. Briefly,
to classify bacterial species, the Q2-Feature classifier that was trained based on the SILVA
reference (region V3–V4) database (https://www.arb-silva.de/ (accessed on 20 July 2021))
after setting the de-noise-single function as the default parameter.

The q2-diversity, with the sampling depth option, was used for diversity calculations
and statistical tests. We used a minimum sequencing quality score threshold of 20 and
a rarefaction depth of 11,510. After checking the quality of the sequencing results, the
sequencing results in the “table.qza” file were filtered using the threshold in QIIME 2.
The metagenomic data OTUs and taxonomic classification tables were imported into the
phyloseq (1.28.0) package in R version 3.6.1 for visualization of alpha and beta diversity.

https://doi.org/10.6084/m9.figshare.21838947
https://www.arb-silva.de/
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Statistical analysis was performed using the Kruskal–Wallis rank-sum test for alpha di-
versity. To detect statistical differences in beta diversity metrics between groups, we used
permutational multivariate analysis of variance (PERMANOVA) in the vegan package in R.
ADONIS was used with 999 permutations in the vegan package in R to quantify the effect
size of variables explaining the Bray–Curtis distance. All p-values were corrected using
Benjamini and Hochberg’s adjustment, and significance was declared at p < 0.05.

4.7. The α-, β-Diversity Analyses and Relative Abundance Evaluation of Gut Microbiome

The α-diversity analysis was performed as previously described [51]. We used the
phyloseq (1.28.0) and metagenomeSeq (1.16.0) packages to identify the central taxa present
in each group, then metadata, OTUs, and taxonomic classification tables were imported into
the phyloseq package, and the data were processed according to the instructions [53,54].
Subsequently, the phyloseq class objects were converted to metagenomeseq objects and
normalized using cumulative sum scaling (CSS) built specifically for metagenomic data in
the BioConductor package metagenomeSeq (1.16.0). For further analysis and visualization,
normalized data were converted to phyloseq class objects in R.

Normalized OTU data were used for abundance calculations and each taxonomic level
was calculated for plotting. To clearly visualize abundance data, taxa were collected as
“other” if their relative abundance was less than 5%, excluding phylum and class levels.

The β-diversity was computed for non-metric multidimensional scaling (NMDS)
and multidimensional scaling (MDS) from log-transformed OTU data using Bray–Curtis
dissimilarity in the vegan package, as described previously [51].

4.8. Construction of Heatmap

Heatmaps and cluster analyses were generated using the relative abundances of all
OTU values in the Heatplus (2.30.0) package from Bioconductor and the vegan package
in R, as described previously [31,55]. Average linkage hierarchical clustering and Bray–
Curtis distance metrics were used for cluster analysis and heatmap generation, respectively.
To collect the most abundant taxa for heatmap generation, we performed unsupervised
prevalence filtering with a 5% threshold on all samples.

4.9. Co-Occurrence Network Construction

To observe the microbial co-occurrence relationships through muscle strength changes,
co-occurrence networks were created using a permutation-renormalization-bootstrap net-
work construction strategy, as described previously [31,55]. First, unnormalized abundance
data were uploaded to CoNet, a Java Cytoscape plug-in. Microbial networks and links or
edges were obtained from OTU occurrence data. CoNet’s multiple ensemble correlation
method was used to identify significant co-presence across the samples, while OTUs occur-
ring in less than three samples were discarded (“row_minocc” = 3). To create the ensemble
network, we used CoNet to calculate five similarity measures, including Spearman and
Pearson correlation coefficients, the Mutual Information Score, and the Bray–Curtis and
Kullback–Leibler Dissimilarity; the p-value was merged using Brown’s method. The p-value
was corrected using the Benjamini–Hochberg correction method (adjusted p-value < 0.05).
If at least two of the five metrics suggested a significant co-existence between two OTUs,
that relationship was maintained in the final network and is represented as an edge. The
final co-occurrence network model was displayed using the igraph package in R by imple-
menting the Louvain algorithm to identify communities within each network so that the
modularity score of each OTU was maximized within a given network.

4.10. Differential Abundance

To estimate fold-changes of taxa in the gut microbiome according to the muscle
strength change group, we used DESeq2 (version 1.24.0) [56]. Taxa that were not observed
in more than 0.5% of the samples were excluded from the DESeq2 analysis.
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4.11. Quantification and Statistical Analysis

All statistical analyses are reported as the mean ± SEM, and the differences in the
relative abundance of bacterial populations in feces were analyzed using the Mann–Whitney
sum rank tests in R software (R 4.2.0, RStudio, PBC, Boston, MA, USA). Significance was
declared at p < 0.05, with Benjamini and Hochberg’s adjustment. All graphs were created
using R software.

4.12. Ethics Approval

All the experimental procedures complied with the ARRIVE guidelines, and the
Institutional Animal Care and Use Committee of the Korea Basic Science Institute approved
the animal protocols (KBSI-IACUC-23-12).
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