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Abstract: Due to the proliferation of genetic testing, pathogenic germline variants predisposing
to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing
number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and
scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and
are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using
blood from a related donor should be carefully considered because of the risk that the patient may
inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances
into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia
(AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with
the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO
classification added a new section on myeloid malignant neoplasms, including MDS and AML with
germline predisposition. The main syndromes can be classified into three groups. Those without
pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet
disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L,
GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the
genes involved in HHMS in order to clarify our understanding of HHMS.

Keywords: HHMS; AML; MDS; DDX41; TP53; SAMD9; SAMD9L; germline; variant

1. Introduction

Most hematologic malignancies are thought to spontaneously arise due to acquired
genetic lesions in hematopoietic stem and precursor cells (HSPCs) [1]. However, in some
cases of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), a hereditary
(mainly autosomal dominant) predisposition has been observed [2,3]. Typically, a family
in which two or more first- or second-degree relatives have developed acute leukemia
(AL), myeloid malignancies, characteristic cytopenias, or either MDS or AML, is defined
as “familial MDS/AML”, or, more broadly, hereditary hematologic malignancy syndrome
(HHMS) [4–6]. The field of HHMS has gained increasing recognition among clinicians
and scientists worldwide. Both myeloid and lymphoid malignancies may be present in
individuals or families with these syndromes. Genetic predisposition should be considered
in patients who present with bone marrow failure, MDS, or AML at a young age or who
present with unexpected hematologic toxicity during treatment for malignancy at a young
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age [7,8]. Identifying characteristics of such patients include physical abnormalities, en-
docrine abnormalities, short stature, stunted growth, and immunodeficiency in patients
with hematologic abnormalities such as cytopenia, unexplained macro-erythroblastosis,
or overt malignancy. A genetic MDS/AML predisposition may also be indicated by a
family history of first- or second-degree relatives with malignancy, cytopenia, congenital
abnormalities, or excessive toxicity from chemotherapy or radiation therapy [9]. However,
the absence of characteristic clinical features or a negative family history does not exclude
the presence of a germline MDS/AML syndrome. Germline variants may occur de novo or
result from parental gonadal mosaicism [10]. HHMS often shows marked inter- and intra-
familial differences in latency, phenotype, expression, and penetrance. For example, some
germline MDS syndromes lack obvious syndromic features or have variable penetrance or
delayed expression. Cytogenetic clonal abnormalities common to certain inherited MDS
disorders may warrant further investigation [11]. MDS with monosomy 7 frequently occurs
in patients with germline variants in GATA-binding factor 2 (GATA2), sterile alpha motif
domain containing 9 (SAMD9), sterile alpha motif domain containing 9 like (SAMD9L), or
hereditary bone marrow failure syndrome [12]. Moreover, the involvement of hematopoi-
etic transcription factor genes, such as CCAAT enhancer binding protein alpha (CEBPA),
GATA2, runt-related transcription factor 1 (RUNX1), ankyrin repeat domain containing
26 (ANKRD26), and ETS variant transcription factor 6 (ETV6), is traditionally associated
with solid tumors such as MutS homolog 6 (MSH6) and breast cancer gene 1 (BRCA1).
Moreover, the recently identified genes DEAD-box helicase 41 (DDX41), SAMD9, SAMD9L
are involved in leukemogenesis [13–15]. Many are found to be non-symptomatic and occur
in various age groups. Studies suggest that about 10% of children and adults with MDS or
AML may have heritable variants [5]. Importantly, these germline genetic abnormalities
are not exclusive to the patient and may be shared by blood relatives, necessitating the
screening of blood relatives. As our diagnostic capabilities in HHMS improve, we now
face the challenge of incorporating these advances into clinical practice with MDS/AML
patients and learning how to optimize the management and surveillance of patients and
asymptomatic carriers [16].

The discovery of novel syndromes combined with the clinical, genetic, and epigenetic
profiling of tumor samples has highlighted unique patterns of disease progression in
HHMS. Despite these advances, causative lesions are identified in fewer than half of
familial cases, and evidence-based guidelines are often inadequate. In the 2016 revision of
the WHO classification, a new section was added for myeloid neoplasms with a germline
predisposition, including cases of MDS, myeloproliferative neoplasms (MPN), and ALs that
develop on a background of predisposing germline variants [17]. As part of the diagnosis,
specific underlying genetic abnormalities or predisposing syndromes should be considered.
The major syndromes can be categorized into the following three groups: those without
preexisting disease or organ dysfunction [e.g., DDX41, tumor protein p53 (TP53), and
CEBPA], those with pre-existing platelet disorders [e.g., ANKRD26, ETV6, and RUNX1],
and those with organ dysfunction [e.g., SAMD9/SAMD9L, GATA2, and inherited bone
marrow failure syndromes (IBMFSs)]. This review will outline the genes involved in the
above HHMS (Table 1).
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Table 1. Clinical characteristics, genetics, and prevalence of HHMS. Only the major genes discussed in this review are included in this table.

Gene Chromosome
Location Disorder Name

Penetrance and
Lifetime Risk of

HM
Prevalence Age of MN Onset, Years Malignancy Types Other Manifestations Citations

DDX41 5q35.3
Familial MDS/AML
with mutated
DDX41

incomplete
penetrance

Up to 13% of myeloid
neoplasms have a
genetic background,
of which DDX41
variants account for
about 80% of cases.

Median age is 65 years,
ranging from 44 to 88
years, which notably
overlaps with the average
age of sporadic myeloid
malignancies.

MDS, AML, t-MN,
solid tumors,
especially colon and
prostate cancer and
melanoma, but not
yet definitively linked

cytopenia,
macrocytosis,
autoimmune diseases

[13,14,18–23]

TP53 17p13.1 Li-Fraumeni
syndrome (LFS)

lifetime risk of HM
is about 6%

LFS affects all
ethnicities and
has an estimated
incidence of
1:5000.

Nearly 100% of individuals
develop cancer by the age
of 70, with the median age
of first cancer at 20 to 30
years.

MDS, AML, ALL,
t-MN, lymphoma, MM,
osteosarcoma, breast
cancer, brain tumors,
soft tissue sarcoma,
adrenocortical
carcinoma and
other solid tumors

none [7,24–29]

CEBPA 19q13.1 Familial AML with
mutated CEBPA

>80% lifetime risk
of AML

<20 families
reported

Median age is 24.5 years,
ranging from 2 to 50 years. AML none [13,30–34]

RUNX1 21q22.12

Familial platelet
disorder with
propensity to
myeloid malignancy

unknown >250 families
reported

Median age is 33 years,
ranging from 6 to 76 years.

MDS, AML, ALL,
other lymphoid
malignancies

thrombocytopenia,
platelet dysfunction,
atopic and autoimmune
disorders

[13,35–41]

ANKRD26 10p12.1 Thrombocytopenia 2

penetrance for
thrombocytopenia is
near complete,
lifetime risk of HM is
about 8%

Unknown
Median age is over 30 years,
ranging from 20s to 70s
years.

MDS, AML, CML,
MPN, ALL, CLL, MM

thrombocytopenia,
leukocytosis,
erythrocytosis,
mild bleeding tendency

[14,42–44]

ETV6 12p13.2 Thrombocytopenia 5
penetrance for
thrombocytopenia is
near complete

ALL is more
frequent, especially
in B-ALL (0.8% of
unselected childhood
B-cell ALL).
The ratio of lymphoid
versus myeloid
malignancies is
roughly 2:1.

Age ranges from 8 to 82 years
and seem to occur at
a younger age than usual
but is not yet defined.

ALL, MDS, AML,
CMML, MM,
GI cancers

thrombocytopenia,
macrocytosis,
platelet dysfunction

[13,15,45–50]
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Table 1. Cont.

Gene Chromosome
Location Disorder Name

Penetrance and
Lifetime Risk of

HM
Prevalence Age of MN Onset, Years Malignancy Types Other Manifestations Citations

SAMD9 7q21.2 MIRAGE Syndrome

unknown

8–17% of childhood
onset MDS
>110 individuals
reported

Pediatric age,
not yet defined. MDS, AML, CMML

bone marrow failure,
cytopenia, infections,
growth restriction,
adrenal hypoplasia,
enteropathy, genital
abnormalities [13,51–55]

SAMD9L 7q21.2 Ataxia, Pancytopenia
Syndrome

systemic
autoinflammatory
disease, bone marrow
failure, ataxia

GATA2 3q21.3 GATA2 deficiency
syndrome

incomplete
penetrance

>480 individuals
reported, with 240 of
these confirmed to be
familial and 24 de
novo

Median age is 17 years,
ranging from 0 to 78 years.

MDS, AML, CMML,
ALL

immunodeficiency,
bone marrow failure,
monocytopenia,
lymphopenia,
neutropenia, other
cytopenia, infections,
lymphedema,
congenital deafness,
pulmonary alveolar
proteinosis, venous and
arterial thrombosis

[13,37,56–58]

ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; CLL, chronic lymphocytic leukemia; t-MN, therapy-related myeloid
neoplasms; MM, multiple myeloma; MPN, myeloproliferative neoplasm; HM, hematological malignancies.
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2. Myeloid Neoplasms without a Preexisting Disorder or Organ Dysfunction
2.1. Myeloid Neoplasms with a Germline DDX41 Variant

RNA helicases are a series of enzymes that remodel RNA–RNA or RNA–protein
interactions in an NTP-dependent manner. Humans have more than 70 helicases that
are classified into superfamily (SF) 1 and SF2 based on differences in sequence motifs
within the helicase core domain [59,60]. SF1 includes Upf1-like RNA helicases, while
SF2 includes the DEAD-box, DEAH-box/RNA helicase A-like, Ski2-like, and RIG-I-like
families, with the DEAD-box family RNA helicases being the most numerous. While
the DEAH-box RNA helicases are thought to translocate along the substrate RNA for
remodeling, DEAD-box RNA helicases unwind substrate RNA locally; the mechanism of
action of each is thus different, but they both play roles in virtually all processes that require
RNA conformational changes, such as RNA transport, translation, RNA degradation, RNA
splicing, and ribosome synthesis. As a single RNA helicase often exerts enzymatic activity
in multiple cellular processes, it remains difficult to fully elucidate the pathogenesis of
diseases due to abnormalities in RNA helicases.

In myeloid neoplasms, pathogenic variants in the gene encoding DDX41, a DEAD-box
RNA helicase, are found in about 5% of cases [61]. It was recently shown that up to 13%
of myeloid neoplasms have a genetic background [62], of which DDX41 variants account
for about 80% of cases. MDS and AML occur in individuals with a heterozygous germline
frameshift variant or a missense variant within the DEAD-box domain of DDX41 by later
acquiring a somatic variant in the other allele, typically p.R525H (or p.G530D, etc., in a few
cases) within the helicase domain [61,63,64] (Figure 1A). While many myeloid neoplasms
with a genetic background develop at younger ages than those without a known genetic
background, myeloid neoplasms with DDX41 variants are characterized by a late disease
onset (mean age, 65 years) [22,23], which may hinder the identification of this gene as one
of the genes responsible for genetic predisposition for myeloid leukemogenesis. In addition,
the disease with a DDX41 variant is characterized by male dominancy, fewer proliferating
tumor cells, hypoplastic bone marrow, and unique co-existing gene mutational patterns
as compared to those in other myeloid neoplasms [65,66], with only DDX41 variants
being identified in many cases [61], suggesting a unique disease pathogenesis of myeloid
neoplasms with DDX41 variants. In contrast, the disease phenotype may differ between
cases with a single DDX41 variant and biallelic variants [67], and a report suggest that there
is no clear difference in disease phenotype between cases with known pathogenic DDX41
variants and variants of unknown significance (VUS) [68]. Consequently, it is necessary to
establish a validation system and database that can accurately interpret the significance of
individual variants.

A. A combination of germline and somatic DDX41 variants confers myeloid disease
development.

Hematopoietic cells with a germline DDX41 variant acquire a somatic DDX41 variant
at an advanced age. Myeloid neoplasms are thought to develop shortly after biallelic
DDX41 variant acquisition, with or without the addition of a limited number of somatic
variants in DNA repair-related genes, including CUX1 and TP53. It is also suggested that
minor clones with biallelic DDX41 variants affect hematopoiesis by interfering with other
cells [37].

B. R-loop formation and its consequence.

R-loop accumulation due to impaired RNA splicing or other causes increases DNA
replication stress and innate immune response, resulting in deficient hematopoiesis and
leukemogenesis.

The prognosis of myeloid neoplasms with DDX41 variants is not necessarily worse
than for those without a known genetic background, regardless of the tendency to be
categorized as high-risk. However, the development of disease at advanced ages often
makes intensive treatment difficult. Several cases of donor-derived secondary leukemia in
patients who received allogeneic hematopoietic stem cell transplantation (HSCT) have been
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reported [18,69–71]; thus, treatment decisions require the careful consideration of genetic
background. Recent reports describe the development of acute lymphocytic leukemia and
solid cancers in individuals with DDX41 variants [72,73], but the extent to which DDX41
variants are involved in such diseases remains controversial [64].

Figure 1. Involvement of DDX41 variants in myeloid leukemogenesis. (A) Myeloid neoplasms
arising from DDX41 variants: Hematopoietic cells carrying a heterozygous germline DDX41 variant
(depicted as cells with blue nuclei) undergo the development of myeloid neoplasms following the
acquisition of a somatic variant in the initially wild-type DDX41 after a prolonged latent period
(illustrated as cells with light purple nuclei). The proportion of tumor cells tends to be low, and these
cells may disrupt normal hematopoiesis, which is sustained by cells with only a germline variant.
(B) Effects of R-loop accumulation on cellular function: R-loops form when transcribed RNA hy-
bridizes with template DNA. The inappropriate accumulation of R-loops leads to DNA replication
stress, impacting cellular function.

DDX41 has been shown to be essential for hematopoiesis, with homozygous Ddx41
knockout mice being embryonic lethal, although heterozygous mice show no remarkable
abnormalities [74,75]. Several mechanisms have been proposed for the actions of DDX41
variants in the development of myeloid neoplasms. It has been reported that R-loop, a
nucleic acid structure on the genome consisting of a DNA/RNA hybrid and single-strand
DNA, aberrantly accumulates in MDS with RNA splicing abnormalities, regardless of the
type of responsible gene [76–79], and that R-loop accumulation causes DNA replication
stress, DNA damage, and abnormal mitosis. Recently, DDX41 has also been shown to be
involved in R-loop regulation [80–82], and it is suggested that R-loop accumulation due to
dysfunction or decreased expression of DDX41 is involved in impaired hematopoiesis and
aberrant innate immune responses (Figure 1B). One of the major functions of DDX41 is RNA
splicing [19]. However, considering that DDX41 variants develop de novo AML in addition
to MDS, DDX41 is thought to play different roles from those of typical RNA splicing
factors associated with MDS development. Indeed, while SRSF2, SF3B1, and U2AF1 are
all involved in the recognition of pre-mRNA 3′ splice sites with U2 snRNP [83], DDX41
has been shown to be incorporated into the spliceosome at the C complex stage, a late
complex of the activated spliceosome [82,84]. Regarding the relationship between DDX41
and R-loops, there are reports showing that DDX41 can unwind R-loops on its own [81,85],
while it has also been suggested that impaired DDX41 function leads to reduced efficiency
of RNA splicing, thus resulting in conditions that facilitate R-loop formation [82]. The
accumulation of R-loop has been shown to give rise to an excessive innate immune reaction
mediated through the cGAS-STING signaling pathway, consequently inducing increased
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hematopoietic stem/progenitor cells [80]. However, the mechanisms by which R-loops
activate the cGAS-STING pathway remain inconclusive. Recently, it was reported that
DNA/RNA hybrids derived from R-loops are transported to the cytoplasm and thus
trigger an innate immune response [86]. The relevance of this observation to impaired
hematopoiesis caused by DDX41 variants is of interest.

DDX41 is also reported to promote the processing of small nucleolar RNA (snoRNA)
from introns [75]. Some snoRNA are coded within introns of ribosomal protein genes
and mature after being processed from the introns [87,88]. snoRNAs are classified into
boxC/D type and boxH/ACA types depending on their sequences; the former catalyzes 2′-
O-methylation and the latter is responsible for catalyzing the pseudouridylation of uridine
residues in ribosomal RNA, thereby promoting ribosomal biogenesis. Thus, loss of function
(LOF) or expression of DDX41 impairs ribosomal biogenesis [66,89]. Although the involve-
ment of DDX41 in ribosomal biogenesis has been reported by other research groups, the
process involving DDX41 may be different from processes involving snoRNA processing.

Recently, myeloid neoplasms with germline DDX41 variants were shown to have
a higher proportion of somatic CUX1 variants compared with those without a known
germline background [61]. CUX1 is a transcription factor [90] that has also been shown to
be directly involved in DNA damage repair by recruiting histone-modifying enzymes to
damaged DNA regions [91]. Given that cells lacking sufficient CUX1 function can enter
mitosis without completing DNA damage repair, the likelihood that the loss of DDX41
function or expression causes DNA replication stress is further increased. However, further
studies are clearly needed to fully elucidate the mechanisms by which DDX41 variants lead
to myeloid neoplasms.

2.2. Li-Fraumeni Syndrome (LFS)

TP53 is one of the most frequently mutated genes, especially in adult-onset can-
cers. Genome sequencing of various human cancer cells has revealed that 42% of cases
carry TP53 variants [92]. The p53 protein is a transcription factor that can activate the
expression of multiple target genes, plays an important role in the regulation of the cell
cycle, apoptosis, and genomic stability, and is widely known as “the guardian of the
genome”(Figure 2) [93,94]. The evidence accumulated to date suggests that p53 also regu-
lates cell metabolism, ferroptosis, tumor microenvironment, and autophagy, which each
contribute to tumor suppression [94]. Genomic instability caused by deletions and variants
in TP53 may lead to accumulated gene mutations, causing gain of function (GOF) in the
oncogene and LOF in the tumor suppressor gene [95]. p53 variants confer metabolic plastic-
ity to cancer cells, promoting adaptation to metabolic stress and increasing the possibility
of proliferation and metastasis [96].

The major type of TP53 variant is a missense variant producing a single amino acid
substitution, with the DNA-binding domain (DBD) being the most mutated region [97].
Structural variants can reduce the thermostability of the protein, resulting in protein
misfolding at physiological temperatures and a loss of its ability to bind DNA [98]. These
variants not only bind wild-type p53 and cause dominant-negative (DN) effects, but may
also be converted to oncogenic proteins via GOF, promoting various cellular responses such
as carcinogenesis, cancer cell proliferation, invasion, metastasis, tumor microenvironment
establishment, genomic instability, and metabolic reprogramming [99,100]. p53 is mutated
and inactivated in most malignancies, making it a very attractive target for the development
of new anti-cancer drugs [101]. Until recently, however, p53 was considered an undruggable
target, and the progress made in p53-targeted therapeutics has been limited.

LFS is caused by a germline variant in the TP53 gene and is characterized by an
increased risk of developing various solid tumors and hematologic malignancies at a young
age [102,103]. LFS affects all ethnicities and has an estimated incidence of 1:5000 [27]. LFS is
inherited in an autosomal dominant manner, although de novo inheritances occur in 7–20%
of cases. Nearly 100% of individuals develop cancer by the age of 70, with the median age
of first cancer at 20 to 30 years [26]. The tumor spectrum includes soft-tissue sarcomas,
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premenopausal breast cancer, central nervous system tumors, adrenocortical carcinomas,
and pancreatic tumors, as well as MDS and lymphoid and myeloid malignancies. Germline
TP53 variants are found in approximately 50% of pediatric patients with hypoploid acute
lymphoblastic leukemia (ALL) and are associated with poor outcomes [104,105]. In the
Le-Fraumeni lineage, leukemia is relatively uncommon, with only approximately 4% of
children and adolescents presenting with hypodiploid ALL, treatment-related, or de novo
MDS/AML [29].

Figure 2. Role of p53 variants in cancer. p53 variants produce drug resistance, dominant negative
effects on wild-type p53, proteasome repression, and LOF of wild-type p53. In cases of GOF, it pro-
motes various cellular responses such as carcinogenesis, cancer cell proliferation, invasion, metastasis,
tumor microenvironment establishment, genomic instability, and metabolic reprogramming.

As causal therapy is not available, the primary focus for improving the prognosis is
early cancer detection. To this end, current cancer surveillance recommendations include
a series of examinations including regular imaging beginning at birth [102]. As radiation
exposure may lead to an increased (secondary) tumor risk, computed tomography and
X-ray examinations should be avoided for as long as possible. Because annual whole-body
magnetic resonance imaging has no radiation exposure and yet a high sensitivity for many
tumors, it forms the basis of the recommended imaging [102].

2.3. AML with a Germline CEBPA Variant

The CEBPA gene is located on chromosome 19q13.1 and gene variants are a common
genetic alteration in AML. Patients present with de novo AML [French American-British
(FAB) classification; AML M1, M2, and M4 subtypes] and a group of differentiation abnor-
malities [106].

The single-exon gene CEBPA encodes CEBPa, which is the founder of the 6-CEBP
family of transcription factors (TFs) [107]. All CEBP TFs contain a basic leucine zipper (bZIP)
domain at the C terminus and form a subgroup within the leucine zipper family of TFs [108].
The CEBPa zipper domain is required for dimerization, and the adjacent basic region is
responsible for DNA binding, thereby promoting the transcription of target genes [109].
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The N terminus is unique to CEBPa, containing two transactivation domains that regulate
transcription control and protein interaction [109]. CEBPa generates two isoforms from
alternative initiation codons: the long isoform (p42) is 358 aa, and the short isoform (p30) is
239 aa and lacks a transactivation domain [110]. The p30 isoform maintains dimerization
and DNA binding capacities, and, hence, can inhibit p42 activity. Both isoforms are
coexpressed in a range of tissues, with p42 generally being more abundant [110]. Germline
and somatic variants in CEBPA are clustered at the N terminus or within the C-terminal
bZIP domain. These germline variants are generally frameshift or nonsense variants near
the amino terminus of the encoded protein. Somatic variants in CEBPA often occur in
the other allele, leading to a biallelic variant in CEBPA. This triggers the development of
AML [31]. Commonly, the germline variant affects the N terminus, whereas the acquired
variant arises in the C-terminal bZIP region [108]. The CEBPA variants that predispose
to AML are generally considered to have a dominant-negative effect. The N-terminal
truncating variants destroy p42, and the C-terminal variants abolish DNA binding or
dimerization [108].

CEBPA-associated familial AML is defined as the presence of heterozygous germline
CEBPA pathogenic variants in AML patients and/or in families with one or more AML
patients. In contrast, sporadic CEBPA-associated AML is defined as AML in which the
CEBPA pathogenic variant is identified in leukemic cells and not in non-leukemic cells [111].
AML with germline CEBPA variants generally occurs in autosomal-dominant inheritance
without preceding abnormal blood cell counts or myelodysplasia [112]. Approximately
10% of CEBPA-associated AMLs have been shown to carry germline CEBPA variants [2]. In
contrast to the incomplete penetrance observed in other HHMSs, germline CEBPA variants
cause AML with almost complete penetrance (lifetime risk estimated to be >80%) [113].
Less than 20 families have been reported to have germline CEBPA variants [32]. In the
majority of CEBPA-associated familial AML, the age of onset appears to be earlier than in
sporadic CEBPA-associated AML [111]. Onset usually occurs in the 20th or 30th year of life,
and many patients develop AML before 50 years of age; the median age of onset for AML
is 24.5 years [34]. The prognosis of CEBPA-associated familial AML appears to be better
than that of sporadic CEBPA-associated AML [114,115]. Patients with CEBPA-associated
familial AML with a cured initial presentation are at high risk of developing additional
independent leukemic episodes in addition to the risk of relapse from a pre-existing clone;
the clinical observation that AML patients with CEBPA variants are more likely to develop
a secondary leukemia despite their favorable prognosis is likely due to this pattern of
progression [37]. Lifelong surveillance is recommended in patients with familial AML
because of the high risk of late leukemia relapse [16]. It is important to avoid the use of
allogeneic or consanguineous donors for HSCT without prior evaluation of the donor’s
germline CEBPA pathogenic variant [116].

2.4. Myeloid Neoplasms with Other Germline Variants (ATM and CHEK2)

Deficiencies in the homologous recombination (HR) pathway can lead to defective
DNA damage responses, and this can occur through inherited germline variants in HR
pathway genes, such as checkpoint kinase 2 gene (CHEK2) and the ataxia telangiectasia
mutated gene (ATM). The proper repair of DNA double-strand breaks (DSBs) is a core
element of the maintenance of genomic stability, directed through three pathways active in
most human cells: (1) homologous recombination (HR); (2) canonical non-homologous end
joining (NHEJ); and (3) alternative NHEJ [117]. Canonical NHEJ is the simplest DNA repair
mechanism. It involves directly adjoining DSBs through the binding of the Ku-80-Ku7p
proteins to the fragmented DNA ends, followed by the recruitment of DNA-dependent
protein kinases, which then activate ligase IV and co-factors which seal the DNA break. The
alternative NHEJ mechanism involves the recruitment of PARP to the DNA ends, ending
in the DNA DSB being sealed by Ligase I and III [118]. Although NHEJ effectively repairs
DNA DSBs, it does not involve the usage of a complementary DNA template, and, as such,
is error-prone, inducing chromosomal abnormalities and chromothripsis [118]. In contrast,
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HR is the most error-free of the DNA repair pathways, since it uses a complementary
DNA template available during S-phase to correct the detected DNA lesion [119]. The
HR pathway is engaged when the MRE11-RAD50-NBS1 protein complex is recruited to
the fragmented DNA ends, which subsequently recruits ATM serine/threonine kinase.
Activated ATM then phosphorylates the checkpoint kinase 2 (CHK2) protein, resulting
in the downstream activation of a series of proteins, including CDC25C, p53, BRCA1/2,
and cyclin-D kinases, which coordinate template-based DSB repair, cell-cycle arrest, and
potentially apoptosis [117,118]. Another important feature of the DSB response is the
induction of cell cycle checkpoint arrest, mediated during the S or G2 phase by ATR
serine/threonine kinase and ATM, and it is essential for allowing the cell to re-enter mitosis
after successful DSB repair [118].

Germline pathogenic and likely pathogenic gene variants that result in loss of function
(LOF), such as ATM and CHEK2 variants, have been identified and characterized at several
levels of the HR pathway. The broad consequence of a variant in one of these genes
is a defective HR pathway, with consequent reliance on error-prone NHEJ mechanisms
for DNA repair. The downstream result of using error-prone DNA repair pathways is
an accumulation of somatic chromosomal abnormalities and DNA changes, particularly
within rapidly dividing cells (e.g., epithelial, mammary, and hematopoietic), with an
increased risk for the development of overt malignancy. Germline mutations in these
genes have been well characterized as risk factors for breast [120], prostate [121,122], and
pancreatic [123] cancers.

CHK2 protein is essential to the transmission of the DSB signal from ATM to down-
stream effectors CDC25C, p53, BRCA1/2, cyclin-D kinases, and others via phosphorylation.
A variety of mutation types in CHEK2 have been identified, including splice site, missense,
and frameshift, without a predisposition towards mutational hotspots [124]. Although
the majority of patients carrying CHEK2 variants are in the heterozygous state, individ-
uals with homozygous LOF CHEK2 do occur and have a Li-Fraumeni like phenotype.
Heterozygous LOF CHEK2 variants are moderate penetrance risk factors for solid organ
malignancies, including breast [125], prostate [126], renal cell carcinoma [127], papillary
thyroid cancer [128], colorectal cancer [129], and pancreatic cancer [130]. LOF CHEK2
variants are increasingly recognized as risk factors for myeloid malignancies, including
MPNs [131–133], MDS [134,135], and AML [136–138]. Germline CHEK2 variants have also
been identified as risk factors for lymphoid malignancies [139].

Germline LOF mutations in the ATM gene have long been associated with early-
onset myeloid malignancies, in addition to solid tumors such as breast and pancreatic
cancers [140]. Loss of ATM function generates a greater risk of chromosomal translocations
and other deleterious mutations associated with myeloid leukemia development [141].
Patients carrying LOF ATM variants in the homozygous or compound heterozygous states
present with Ataxia Telangiectasia (A-T), an autosomal recessive disorder characterized
by a 50- to 150-fold increased risk of cancer development, and also cerebellar degener-
ation, telangiectasia, immunodeficiency, and radiation sensitivity [142]. However, most
individuals with germline deleterious ATM variants are heterozygous carriers with a 2- to
13-fold increased risk for early-onset cancer development but do not have other features of
A-T [143]. The role for ATM mutations in myeloid malignancies remains in evolution and
is less well characterized than for CHEK2. However, pathogenic ATM variants have been
identified at diagnosis in several patients with de novo AML [62]. Intact ATM function has
been well established as being critical for hematopoietic stem cell function [144], and ATM
function and the associated signaling axis have been shown in vitro to modulate pathogen-
esis in AML [145,146]. In contrast to myeloid malignancies, germline ATM variants, either
in the heterozygous state or in the context of true A-T with biallelic ATM variants, have
been strongly associated with the development of lymphoid malignancies [147–149].
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3. Myeloid Neoplasms with Preexisting Platelet Disorders

Most predisposition syndromes are associated with specific hematopoietic cell lineage
abnormalities, and each exhibits a different tumor profile. For example, germline variants
in RUNX1, ANKRD26, and ETV6 all predispose to thrombocytopenia and hematologic
malignancies [150]. However, there are marked differences in cancer predisposition: the
ANKRD26 variant predisposes to myeloid malignancies, ETV6 predominantly predisposes
to B-cell ALL, and RUNX1 is associated with myeloid malignancies, and, to a lesser extent,
predisposes to T-cell ALL [151]. Three different types of germ cell lineage predisposition
are associated with highly variable penetrance in both myeloid and lymphoid systems. In
both myeloid and lymphoid leukemias, the disease phenotype is likely influenced by both
intrinsic and extrinsic cellular factors [150].

3.1. Myeloid and Lymphoid Neoplasms with a Germline RUNX1 Variant

RUNX1 encodes a heterodimeric transcription factor essential for hematopoiesis,
megakaryopoiesis, and platelet function [152]. It functions as a transcriptional activator
for some genes and a transcriptional repressor for others. Somatic variants in RUNX1
are among the most common variants in adults and children with ALL, AML, or MDS,
including recurrent fusions in B-ALL (ETV6-RUNX1) and AML (RUNX1-RUNX1T1) [41].
RUNX1 was identified as a gene located at a truncation site on chromosome 21 in t (8;21),
which is found in AML [153]. Somatic variants in the RUNX1 gene are one of the most
frequently identified variants and have been identified in patients with various myeloid
malignancies, including MDS, MPN, and AML [40]. In most cases, these RUNX1 variants
are considered “subclonal variants” [154]. A high frequency of RUNX1 variants (30–50%)
has been reported in treatment-related and radiation-related MDS and AML [155,156].
It is generally believed that RUNX1 variants lead to a loss of RUNX1 function [157]. In
contrast, germline variants in the RUNX1 gene cause familial myeloid malignant platelet
disorders (FPD/AML) with autosomal dominant inheritance, typically presenting with
quantitative/qualitative platelet defects and a predisposition to myeloid malignancies
like MDS and AML [158]. In this case, heterozygous inherited RUNX1 variants play a
fundamental role in the etiology of FPD/AML [159]. However, these inherited RUNX1
variants are not sufficient to cause leukemia. It is thought that the accumulation of various
variants, such as the CDC25C biallelic RUNX1 variant, and the TET2 variant, causes
progression to preleukemic clones and eventually leads to the development of hematologic
malignancies [38,160].

Germline variants in RUNX1 are among the most frequently detected variants in
the pathogenesis of HHMS [38]; the RUNX1 gene encodes a DNA-binding subunit that
contains a highly conserved runt-homology domain (RHD) for sequence-specific DNA
binding [161]. Truncation lesions occur throughout the gene, but missense variants within
the RHD are the most common. Others include nonsense, frameshifts, duplications, partial
or total gene deletions, and gene rearrangements. Many RUNX1 variants cause haploin-
sufficiency [157]. RUNX1 variants cause defects in hematopoietic differentiation, resulting
in decreased hematopoietic progenitor cell numbers and abnormal megakaryocyte differ-
entiation. Tumorigenesis is most commonly caused by the somatic second hit of RUNX1.
Typical clinical features of FPD/AML are gradual thrombocytopenia, aspirin-like qualita-
tive platelet abnormalities, and a tendency to develop hematologic tumors [162].

Approximately 20–60% of FPD/AML families develop hematologic neoplasms during
their lifetime [162]. More than 250 families have been reported to have germline RUNX1
variants. The latency period to transformation is relatively long, with the average age at
diagnosis reported to be 33 years (maximum 76 years) [41]. Similar to what is observed
in sporadic hematologic malignancies, additional acquired genetic events cooperate with
the hereditary RUNX1 variant to progress the manifestation of the malignant phase. A
comparative international cohort of germline RUNX1 variant carriers without and with
hematological malignancies (HM) identified striking heterogeneity in rates of early-onset
clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 carriers who did not
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have malignancies (carriers without HM). In RUNX1 carriers without HM with CH, TET2,
PHF6, and BCOR were reported to be recurrently mutated in RUNX1-driven malignancies,
suggesting that CH is a direct precursor to malignancy in RUNX1-driven HHMS [163].

Although most cases develop MDS or AML, other phenotypes have also been re-
ported, including secondary leukemia, T-cell acute lymphoblastic leukemia (T-ALL), and
non-Hodgkin lymphoma (NHL) [162]. Interestingly, the location of variants within the
RUNX1 gene does not seem to affect disease phenotype among individuals, and pheno-
typic heterogeneity is often observed even within families with lesions of the same germ
lineage [93].

3.2. Myeloid Neoplasms with a Germline ANKRD26 Variant

ANKRD26 is a gene located at 10p12.1 that regulates megakaryocyte development
and thrombocytopenia [164]. RUNX1 and FLi1 co-regulate ANKRD26 by binding to the
ANKRD26 promoter and repressing gene activity [165]. ANKRD26-related thrombocy-
topenia (ANKRD26 RT) is an autosomal dominant thrombocytopenia caused by a single
nucleotide substitution in the ANKRD26 gene, characterized by quantitative and qualita-
tive platelet disorders and an increased risk of MDS and AML [166]. ANKRD26 encodes
a protein with an ankyrin repeat domain at its N-terminus and is thought to function
in protein–protein interactions; while the function of the ANKRD26 protein is unknown,
expression profiling has demonstrated its presence in megakaryocytes [166]. Germline
variants in ANRK26 are usually point mutations located in the 5′ untranslated region (UTR)
of the gene, although deletions and point mutations within the coding region have also been
reported [167]. Variants in the 5′UTR affect the binding of repressive transcription factors
such as RUNX1 and FLi1 to this regulatory region, abnormally increasing the expression of
ANKRD26 and impairing platelet production [150]. The age of diagnosis generally ranges
from early 20s to 70s. The incidence of myeloid malignancies is high in these patients, with
an estimated 5% for AML, 2.2% for MDS, and 1.3% for chronic myeloid leukemia, with an
estimated risk of these malignancies of 23, 12, and 21 times that of the general population,
respectively [14].

3.3. Myeloid and Lymphoid Neoplasms with a Germline ETV6 Variant

Patients with thrombocytopenia 5, an autosomal dominant disorder of thrombocy-
topenia with bleeding tendency, usually present in childhood and have been found to have
germline variants in ETV6 [168]. Clinical features include thrombocytopenia, abnormal
platelet function, and increased bleeding tendency [49]. Leukemia is estimated to occur in
about 30% of carriers, most commonly in ALL, but more than 30 translocation partners of
ETV6 have been reported in AML, MDS, MPN, and T-cell lymphomas. ETV6 is one of the
most commonly translocated genes in human AL and MDS [169]. ALL is more frequent,
especially in B-ALL (0.8% of unselected childhood B-cell ALL). The ratio of lymphoid
versus myeloid malignancies is roughly 2:1. Age ranges from 8 to 82 years and it seems to
occur at a younger age than usual but is not yet defined [45,49,50].

ETV6 is located on chromosome 12p13.2 and encodes a transcriptional repressor
important for hematopoiesis, megakaryopoiesis, and embryogenesis, and it is involved
in angiogenesis, cell growth, and differentiation [170]. The gene encodes an N-terminal
or C-terminal zinc finger, but the majority of variants are clustered within the DNA-
binding ETS domain. Somatic rearrangements (most commonly with RUNX1), deletions,
and sequence variants are observed in ALL. Second-hit variants (especially deletions) in
ETV6 are common in ETV6-RUNX1 rearranged leukemias [171]. In addition, somatic
rearrangements with RUNX1 are observed in a quarter of ALL patients [172]. Studies using
umbilical cord blood from healthy newborns have shown that ETV6-RUNX1 translocations
can occur in more than 1% of the healthy population [173].
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4. Myeloid Neoplasms with Other Organ Dysfunction
4.1. Myeloid Neoplasms with a Germline SAMD9/SAMD9L Variant

SAMD9 and SAMD9L are a homologous gene pair at the head and tail of 7q21 and
are interferon-inducible genes that are widely expressed in human tissues [55,174]. Both
negatively regulate cell proliferation and function as tumor suppressors. Genetic variants
in SAMD9/SAMD9L were initially shown to cause multisystem syndromes characterized
by various neurological and/or endocrine abnormalities, as well as MDS with monosomy
7 and del7q [55,175]. Little is known about the biochemical activity of the SAMD9 and
SAMD9L proteins and their domain structures, but they cluster in the latter half of the
protein, in or near the putative P-loop [176]. The SAMD9 and SAMD9L proteins appear
to be involved in endocytosis and cytokine signaling [177,178]; moreover, they have been
reported to play a role in antiviral responses, similar to DDX41. Specifically, SAMD9 and
SAMD9L are known to be host-restricted factors in poxvirus infection [179,180].

Germline variants in these genes are strongly associated with monogenic and familial
pediatric MDS and potential full or partial deletions of adult chromosome 7(Figure 3) [53].
Germline variants in SAMD9 or SAMD9L are heterozygous gain-of-function missense
variants, leading to proliferative arrest when expressed exogenously in the cell [174].
Carriers are at high risk for MDS and AML with cytopenia and monosomy 7/del7q. Many
other patients who do not develop monosomy 7 acquire somatic variants in SAMD9 or
SAMD9L resulting in the loss of function of the mutant protein [181]. The overexpression of
SAMD9 or SAMD9L results in decreased proliferation and increased apoptosis, ultimately
leading to the hypocellular phenotype being observed in patients. The effects on ribosome
biology, DNA damage, and the resulting genomic instability are thought to promote the
observed apoptotic phenotype [182,183] and ultimately lead to reduced bone marrow
cellularity. Unrepaired DNA defects in hematopoietic cells cause significant long-term
functional disruption and are a major driving force for the accumulation of further variants,
thus promoting clonal expansion and malignant transformation [184–186].

Figure 3. Role of SAMD9 and SAMD9L in HSPC function. The SAMD9 and SAMD9L genes regulate
proteins involved in the cell cycle, DNA damage repair, and ribosome regulation. Mutant SAMD9
and SAMD9L proteins significantly enhance these functions, which cause decreased hematopoietic
potential and apoptosis in the bone marrow, promoting monosomy 7/del 7 HSPC production.
Hematopoietic stem and progenitor cell (HSPC), myelodysplastic syndrome (MDS), and mutant
type (MT).
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Germline variants in SAMD9 cause a syndrome represented by the acronym MIRAGE;
MIRAGE syndrome is an autosomal-dominant multisystem disorder characterized by six
core features [187–191]. The features include bone marrow failure, progression to MDS
and AML, infection, intrauterine dysplasia, adrenal hypoplasia, genital abnormalities, and
enteropathy (chronic diarrhea with colonic dilatation). Germline variants in SAMD9L
cause ataxia-pancytopenia syndrome, an autosomal dominant disorder with early onset
gait and balance disturbances, nystagmus, mild pyramidal signs, and marked cerebellar
atrophy [192–195]. Hematologic abnormalities include pancytopenia, bone marrow failure,
and progression to MDS and AML. Germline variants in these two genes are found in
8–17% of pediatric MDS cases and more than 110 individuals have been reported to carry
these germline variants [55]. It occurs mainly in childhood, but the average age of onset is
not yet defined.

4.2. Myeloid Neoplasms with a Germline GATA2 Variant

Hematological malignancies affecting either the lymphoid or the myeloid lineages
involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic
abnormalities can affect regulatory elements in the genome, and, particularly, enhancers.
Recently, large regulatory elements known as super-enhancers (SE), initially identified for
their critical roles in the cell-type specific expression regulation of genes controlling cell
identity, have been shown to also be involved in tumorigenesis in many cancer types and
hematological malignancies via the regulation of numerous oncogenes. Enhancer and SE
hijacking refers to a mechanism by which an abnormally overexpressed TF binds to an
inactive or poised enhancer already located near a given oncogene, recruiting other factors
and chromatin remodelers. This binding allows the aberrant activation of the considered
enhancer/SE, and, thereby, upregulates its associated oncogene. An example of such
enhancer hijacking is provided by AML with the GATA2 SE translocated near the EVI1
promoter. A single enhancer contained within this GATA2 SE is composed of MYB binding
sites, strongly required for EVI1 overexpression in AML cells. In addition, the mutation of
this MYB binding site within this specific SE leads to myeloid differentiation, as well as cell
death [196,197].

GATA2 is a zinc finger transcription factor that plays important roles in hematopoiesis,
the homeostasis of hematopoietic stem cells (HSC), and lymphocyte development, specifi-
cally interacting with RUNX1 to control HSC survival [198]. GATA2 haploinsufficiency is
caused by a missense variant or deletion in the GATA2 located on chromosome 3q21.3 [199].
Other causative variants have been detected throughout the gene, including nonsense,
frameshift, splice site, and synonymous variants that cause splice abnormalities, as well
as variants that target enhancers deep within introns [200]. GATA2 haploinsufficiency is
an autosomal dominant inherited bone marrow failure and immunodeficiency syndrome
predisposing to MDS and AML. The syndrome results from loss-of-function variants or
deletions in the GATA2 gene [201]. Notably, GATA2 deficiency syndromes (G2DSs) show
marked heterogeneity in inter- and intra-familial phenotypes, all within the spectrum of
the single condition G2DS [13,202].

Phenotypes range from isolated chronic neutropenia to MDS/AML, bone marrow
failure, severe immunodeficiency, and alveolar proteinosis. Patients may present with
isolated neutropenia and bone marrow failure without syndromic features or family his-
tory [203]. Atypical mycobacterial infections, viral, and fungal infections are common,
often overlapping with prolonged neutropenia, monocytopenia, B-cell deficiency, NK-cell
deficiency, monocytopenia with Mycobacterium avium complex (MonoMAC) syndrome, or
dendritic cell-monocyte-B-NK lymphocyte (DCML) deficiency [204,205]. Other symptoms
include sensorineural hearing loss and lymphoedema (Emberger syndrome) [206,207].

Of particular note is that MDS/AML may present with one or more of these features,
either years before the onset of MDS/AML or in isolation with MDS/AML. MDS with
germline GATA2 variants is often associated with monosomy 7/del7q(-7) or trisomy 8,
especially in children and young adults [205,208]. A study of 426 pediatric MDS cases
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identified germline GATA2 variants in 37% of patients with primary MDS with 7 and
16% of MDS cases with trisomy 8 [209]. In contrast, no germline GATA2 variants were
found in treatment-related MDS. There have been over 480 individuals identified carrying
a pathogenic or likely pathogenic germline GATA2 variant with symptoms of G2DS, with
240 of these confirmed to be familial and 24 de novo [57]. For those that develop myeloid
malignancy (75% of all carriers with G2DS disease symptoms), the median age of onset is
17 years (range 0–78 years) and myelodysplastic syndrome is the first diagnosis in 75% of
these cases with acute myeloid leukemia in a further 9% [57].

5. IBMFS

Inherited bone marrow failure syndrome (IBMFS) is an inherited disease associated
with decreased bone marrow cell production [210–212]. It is associated with a specific
clinical phenotype and variable risk of developing MDS or AML. Traditionally, the dis-
tinction has been made based on the presence or absence of classical physical manifes-
tations [213] such as abnormal nails, reticulate pigmentation of the skin, and oral leuko-
plakia in congenital dyskeratosis. Fanconi anemia (FA) [214–216], Diamond-Blackfan ane-
mia (DBA) [217–219], dyskeratosis congenita (DC) [220–222], telomere biology disorders
(TBDs) [223], and Schwachman-Diamond syndrome (SDS) [224] are well-known predispos-
ing factors for MDS/AML and exhibit characteristic physical symptoms and signs.

FA is an X-linked or autosomal recessive disorder characterized by genomic instability,
hypersensitivity to DNA cross-linking agents, bone marrow failure, and predisposition to
hematologic malignancies and solid tumors [210–212]. Hematologic abnormalities vary
and include cytopenia, erythrocytosis, hypocellular bone marrow with mild dysplasia, and
bone marrow failure with an increased risk of MDS or AML. The incidence of leukemia is
even higher in the FANCD1/BRCA2 subtype of FA, with most cases occurring at less than 5
years of age [225]. This clinically and genetically diverse syndrome is caused by germline
mutations in any of at least 23 FA genes (FANCA-FANCW) that function cooperatively in
DNA repair. The risk of progression to MDS or AML is very high (cumulative incidence of
AML at age 50 years is 10% and MDS at age 50 years is 40%) [226]. Unlike other MDSs that
are cured by HSCT, these patients have higher post-transplant morbidity and a higher risk
of solid tumors compared to non-transplant patients.

DBA usually presents in infancy with macrocytic anemia and reticulocytopenia. Bone
marrow histology usually shows aplasia of erythrocytes in normocytic bone marrow. Major
causes of morbidity and mortality are associated with side effects of treatment and a
long-term risk of malignancy [217–219]. X-linked variants in GATA1, which encodes a
transcription factor important for erythropoiesis, are also a cause of DBA [227]. Disease
mechanisms include p53-mediated apoptosis induced by ribosomal stress, increased cell
death due to excess free heme with delayed globin production, increased autophagy, and
translational changes in selective erythroid-specific transcripts such as GATA1 [228].

DC/TBDs encompass genetically heterogeneous disorders associated with impaired
telomere maintenance [220–223]. They are often associated with hematologic complica-
tions such as bone marrow failure, MDS, and AML. The cumulative incidence of MDS in
DC/TBDs is estimated to be 2% by age 50 [229]. DC/TBD is associated with many non-
hematologic complications, particularly pulmonary fibrosis, liver function abnormalities,
and vascular abnormalities. Screening for TBD involves assessing the telomere length of
lymphocytes, and further genetic testing for specific gene mutations is diagnostically useful
because telomere shortening can also be seen in other diseases [230]. Telomeres shorten
as the DNA replication cycle progresses. A critical shortening of telomere length leads to
senescence and cell death [231].

SDS is characterized by pancreatic exocrine dysfunction and other physical findings.
The most common nonhematologic abnormality is neurologic decompensation, which
may be mild or severe, transient or persistent [224]. Other hematologic complications
include bone marrow failure, MDS, and AML. In a French cohort of 102 SDS patients, the
cumulative incidence of MDS/AML was 18.8% at age 20 and 36.1% at age 30 [232]. SDS
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is most often caused by an autosomal recessive mutation in the eponymous SBDS gene,
resulting in low levels of SDS protein. SDS is involved in the binding of the large and small
ribosomal subunits and functions as an elongation factor-like cofactor that removes the
anti-binding factor eukaryotic initiation factor 6 (eIF6) from the large subunit [233]. SDS
is also involved in the stabilization of mitotic spindles. The spectrum of SBDS variants,
including missense, splice site, nonsense, frameshift, and partial or total gene deletions,
has been confirmed. AML has been reported in patients with variants in the autosomal
recessive gene in DnaJ Heat Shock Protein Family Member C21 genes (DNAJC21) and in
those with various clinical features of SDS [234].

6. Infant Leukemia with a Germline Predisposition

Some infant leukemias with a germline predisposition have been reported and elu-
cidated, although the section on them is not added in the 2016 revision of the WHO
classification. Pediatric cancers typically harbor relatively few somatic mutations and fre-
quently demonstrate developmentally immature phenotypes, suggesting a contribution of
germline variation that might result in aberrant tissue development [235]. MLL rearrange-
ments are observed in approximately 50–80% of infant ALL cases and 34–50% of infant
AML cases [236]. There is evidence from multiple in vitro systems that the presence of a
MLL rearrangement is insufficient by itself to drive leukemogenesis [237–239], suggesting
that additional factors are required in the presence (and absence) of MLL rearrangements
to drive leukemogenesis.

KMT2 protein is an epigenetic modifier, and each histone modification is associ-
ated with regulatory elements and mediates specific functions, enabling complex control
over gene transcription [240]. KMT2C and KMT2D play an essential role in mediating
monomethylation at histone 3 and lysine 4, primarily at enhancers [241]. Germline or
somatic variations in a family of KMT2 lysine methyltransferases have been associated
with a variety of congenital disorders and cancers. In mammals, somatic mutations of
KMT2C and KMT2D are associated with various malignancies [242], with clear evidence for
tumor suppressor roles [243,244]. Notably, KMT2A-fusions are prevalent in 70% of infant
leukemias but fail to phenocopy short latency leukemogenesis in mammalian models, sug-
gesting additional factors are necessary for transformation [245]. Heterozygous germline
missense variants in KMT2C are more common in infant leukemia compared to healthy
controls [246]. The loss of KMT2C in mice leads to aberrant myelopoiesis, causing myeloid
infiltration into lymphoid organs; however, the loss of KMT2C alone is insufficient to drive
leukemia [247]. Somatic cell drivers such as KMT2A fusions added to germline KMT2C
mutations may more readily transform hematopoietic progenitor cells.

7. Conclusions and Perspectives

As discussed above, the genetic and phenotypic background of HHMS has been
rapidly elucidated over the past decade, and the disease is now diverse. Most HHMS-
related genes have clearly defined functions that contribute to hematopoietic regulation.
However, the precise nature of this association requires further investigation. Advances in
HHMS practice have been made possible by the introduction of next-generation sequencing
(NGS) technology in germline and somatic gene testing. These tests now often have overlap-
ping gene lists and have gained international recognition, especially for the diagnosis and
management of myeloid malignancy. The association between germline genes predisposing
to solid tumors and hematologic tumors is also becoming clearer. For example, variants
in breast cancer gene type 1/2 (BRCA1/2), partner and localizer of BRCA2 (PALB2), and
TP53 occur in primary or treatment-related hematological malignancies, including AML,
ALL, and MDS, narrowing the apparent distinction between solid tumors and hematologic
tumor predisposition [248–250]. Future development of a hematologic tumor testing panel
that is also useful in detecting refractory cytopenia and the risk of relapse refractoriness
after leukemia-directed therapy is warranted. Extensive sequencing technologies, such
as whole exome sequencing (WES), allow for the investigation of new candidate genetic
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abnormalities, including germline gene variants, at once, and are expected to be utilized
more than targeted NGS panels in the future [4,251]. There is a growing need for the
expert consultation and clinical surveillance of patients with a germline predisposition to
hematologic malignancies [252]. Troublingly, prognosis and disease progression are slow.
Therefore, consultation and treatment strategies must be tailored to the individual patient.
Low-penetrance variants along with the late onset of the disease in some cases may be
responsible for the delay in hereditary susceptibility recognition and have led some experts
to propose universal germline testing strategies [248,253]. Bone marrow stromal cells show
the advantage of being a readily available material from routine bone marrow aspirations,
which can be isolated by culture [254]. However, confirmation in nonhematopoietic tissue
or in other family members is necessary to avoid the misinterpretation of variants involved
in CH, somatic copy number variants, or somatic loss heterozygosity [255]. For this pur-
pose, skin fibroblasts are considered the gold standard, despite the requirement of a skin
biopsy and long-lasting cultures. Patients and family members with suspected HHMS
should be advised of the indications for genetic testing, the limitations of genetic testing,
and genetic counseling. This is because curative therapy influences the outcome of allo-
geneic HSCT, regardless of the phenotypic spectrum or clinical presentation of HHMS [256].
The outcome in these patients is often poor, making them candidates for allogeneic HSCT.
Compatible blood stem cell donors should be carefully considered, and donors with known
germline variants or unknown retention status should be avoided. There are reports of
cases of leukemia after allogeneic transplantation from blood donors [69]. DDX41, CEBPA,
GATA2, and others have been reported to be present in 1~2% of allogeneic post-transplant
relapses [257] with a median time of recurrence of 5.2 years [258]. There are also reports of
onset 10 years after transplantation [70]. Various guidelines for genetic testing for HHMS
are currently being proposed by organizations such as the National Comprehensive Cancer
Network [259] and the American Society of Clinical Oncology [260]. However, rapid ad-
vances in the elucidation of the biology of hematologic tumors and in the clinical care of
patients with these diseases necessitate the development of more detailed clinical guide-
lines. Providing clear eligibility criteria for HHMS testing, including the full spectrum of
HHMS-related mutations, would improve the diagnosis and care of patients with these syn-
dromes. Currently, no specific treatment for HHMS exists, and patients are not adequately
treated. The lifelong surveillance of patients and their families is recommended to monitor
for treatment-related toxicity, disease recurrence, and the development of new symptoms or
signs in unaffected individuals. There is an international need to develop a comprehensive
foundation for determining evidence-based management, family counseling, the treatment
of symptomatic individuals, and preemptive interventions.
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