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Abstract: One of the ways to regulate the sensitivity of human cells to the influenza virus is to
knock out genes of the innate immune response. Promising targets for the knockout are genes of the
interferon-inducible transmembrane protein (IFITM) family, in particular the IFITM3 gene, whose
product limits the entry of a virus into the cell by blocking the fusion of the viral and endosomal
membranes. In this study, by means of genome-editing system CRISPR/Cas9, monoclonal cell
lines with an IFITM3 knockout were obtained based on WI-38 VA13 cells (human origin). It was
found that such cell lines are more sensitive to infection by influenza A viruses of various subtypes.
Nevertheless, this feature is not accompanied by an increased titer of newly formed viral particles in
a culture medium.
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1. Introduction

Influenza viruses are the principal human respiratory pathogens that cause seasonal
epidemics as well as unpredictable outbreaks and pandemics [1]. Seasonal influenza
occurs globally and is estimated to affect one in five unvaccinated children and one in
ten unvaccinated adults [2]. At present, vaccination remains the most effective method
for counteracting seasonal infections and is essential to ensure preparedness for annual
influenza epidemics [3–5]. In the manufacturing process of the vast majority of flu vaccines,
a traditional technology is used—cultivation of the virus in chicken embryos—which was
developed more than half a century ago [6,7]. Although the technology involving chicken
embryos is very reliable and safe, there are still some unsolvable problems associated
with this production system. In particular, an occasional antigenic mismatch between
egg-adapted viruses and circulating viruses as well as allergic reactions to egg whites
when a ready-made vaccine is administered to a patient can occur [8–10]. The speed of
technological process is also crucial. The full production cycle of a vaccine involving chicken
embryos is 6 months; this state of affairs substantially reduces manufacture flexibility and
makes the task of a rapid response to an epidemiological threat impossible [11].

In the last two decades, research into vaccine manufacturing approaches based on
cell cultures has been gaining popularity among scientific laboratories and biotech compa-
nies [12,13]. Such production systems partially eliminate the above disadvantages and offer
several potential advantages, including the ability to efficiently produce sufficient amounts
of a wider range of strains, rapid scalability and high antigenic specificity of a vaccine virus
to seasonal strains [14,15]. In addition, the more isolated process for the production of
cell-based vaccines and the possibility of detailed testing of cell banks for contamination by
random agents considerably reduces the risk of contamination in finished vaccines [16,17].
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The main criterion for choosing a cell line for the production of inactivated influenza
vaccines is the sensitivity and ability of the cells to support propagation of a wide variety
of influenza viruses at high titers. To date, the mammalian Madin–Darby canine kidney
(MDCK) cell line and the African green monkey kidney (Vero) cell line have found the
largest number of applications in this field [18–20]. Nonetheless, a virus produced in
cell lines of animal origin can accumulate adaptive mutations and may have an altered
glycosylation profile. These factors negatively affect immunological properties of the
resulting vaccines [21,22].

The technology for producing vaccine strains of an influenza virus in cell lines of
human origin makes sense and is promising [23]. On the other hand, practical use of such
cell lines is limited because they generate only low titers of vaccine strains. The limiting
factor is the system of innate immune responses functioning within human cells [24,25].
One possible way to eliminate this phenomenon is a targeted knockout of genes encoding
components of the innate immune response [26]. Therefore, in the present work, by means
of genome-editing system CRISPR/Cas9, monoclonal cell lines with an IFITM3 knockout
were created from cells of human origin.

2. Results
2.1. The Choice of a Target Gene and Cell Line for the CRISPR/Cas9 Editing

The IFITM3 gene, which is a member of the family of interferon-induced transmem-
brane proteins (IFITMs) [27], was chosen as the target gene for the knockout. IFITM3,
along with proteins IFITM1 and IFITM2, has an antiviral activity [28]. IFITM3 inhibits
the fusion of viral and cellular membranes, thereby limiting the penetration of the virus
into the cytoplasm and virus replication [29,30]. It has been shown that IFITM3 depletion
profoundly decreases the antiviral processes in virus-infected cells and overexpression of
IFITM3 increases resistance to infection with influenza A viruses [31].

To knock out IFITM3, immortalized human embryonic lung fibroblast line WI-38 VA13
was chosen (subline 2RA from the Collection of Cultures of Vertebrate Cells at the Institute
of Cytology, the Russian Academy of Sciences). This cell line was derived from WI-38
cells, which have been employed to design vaccines against several viral diseases [32]. Cell
subline WI-38 VA13 is characterized by a known transformation history, which allows for
its use as a substrate for vaccine production. According to results of our transcriptomic
analysis, at 24 and 48 h after infection of WI-38 VA13 cells with influenza virus A/PR/8/34
(H1N1), the expression level of the IFITM1, 2 and 3 genes increases relative to uninfected
cells (Figure 1).
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Figure 1. Relative expression of IFITM genes in influenza A infected WI-38 VA-13 cells after 24 h
(24 hpi) and 48 h (48 hpi) according to results of our transcriptomic analysis. Log2 fold change
(LogFC) values were generated for transcriptome sequencing samples by comparing the average
RPKM values of genes at each timepoint of infection vs. uninfected cells.
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2.2. Construction of Cell Lines with Knocked Out IFITM3

The procedure for obtaining monoclonal cell lines by means of the CRISPR/Cas9
system included standard stages: transfection of WI-38 VA13 cells with vectors constructed
based on plasmid pX458 (Addgene, cat. # 48138), sorting of GFP-positive cells, subcloning
of a cell population, selection of monoclonal cell lines with mutations in a target region of
IFITM3, determination of the mutations in each allele by TA-cloning of PCR products and
Sanger sequencing and a comparison of proliferation rates and selection of monoclonal
cell lines using xCELLigence (ACEA Biosciences) technology [33]. Thus, three monoclonal
lines of viable actively dividing cells were obtained with mutations in the target region of
the IFITM3 gene (Figure 2).
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Figure 2. (A) Scheme of the location of protospacers and identified CRISPR/Cas9-mediated mutations
in target region of the IFITM3 gene. (B) IDAA analysis of modified (F3, F5) and control WI-38 VA13
cells. Amplicon and indel sizes determined (in bp) are shown above the most prominent peaks.
(C) PCR products obtained from the gDNA extracted from modified (E12) and control WI-38 VA13
cells, with the primers flanking the extended deletion in clone E12 (F1_R1/allele 1) and with the
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reverse primer that was partly complementary to the IFITM3 gene and partly to the plasmid PX458
region integrated into the genome (F1_R2/allele 2). M, DNA molecular weight marker. The scheme
shows the location of the primers (red arrows) and the expected length of the products for modified
(E12) and control WI-38 VA13 cells.

Clone F5 was found to carry two mutant alleles with 35-nucleotide (nt) deletions
which may indicate a frame shift in both copies of the target gene (Figure 2A). Clone F3
carries only one allele with the mutation (namely, a 67-nt deletion) and the second allele
corresponds to the wild type. Clone E12 proved to be a carrier of a 543-nt deletion and of
an insertion of a >10 kbp part of the PX458 plasmid. Mutations in clones F3 and F5 were
confirmed via indel detection by amplicon analysis (IDAA) (Figure 2B) [34]. The presence
of an extended deletion in clone E12 was corroborated by PCR analysis of genomic DNA
with flanking primers (Figure 2C). To confirm the insertion, a reverse primer was utilized
that was partly complementary to the IFITM3 gene and partly to the plasmid PX458 region
integrated into the genome (Figure 2C).

Using xCELLigence technology, the selected monoclonal cell lines were proven to be
viable, but their proliferation rate was lower than that of the control cell line (Figure 3).
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Figure 3. Growth characteristics of modified and control WI-38 VA13 cells. (A) Growth curves of
cells defective in IFITM3 gene (F3, F5, E12) and control WI-38 VA13 cells according to xCELLigence
data. (B) Values of initial growth rate of cell lines during first 48 h.

2.3. Evaluation of IFITM3 mRNA Expression

To assess the level of mRNA expression, real-time reverse transcription (RT) PCR was
carried out (Figure 4A). It was demonstrated that the mRNA level of the IFITM3 gene is
significantly reduced in clone E12 compared to the original cell line, likely because of the
presence of the extensive mutations in both alleles. The high mRNA level of IFITM3 in
clones F3 and F5 may be explained by the fact that the presence of mutations detected in
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the clones did not interfere with the synthesis of full-size but incorrect IFITM3 gene mRNA
or its short forms.
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Figure 4. (A) Relative basic level of IFITM3 mRNA in original WI-38 VA13 cells and in the clones
with depressed IFITM3 gene activity (F3, F5, E12). Average value of a change in the expression level
relative to reference GAPDH and 18S rRNA is presented and standard deviation was calculated from
three independent experiments by data on three independent experiments. * Difference between
modified lines and WI-38 VA13 cells is statistically significant at p < 0.05 (unpaired student’s t-test)
(B) Western blot analysis of IFITM3 protein level in original WI-38 VA13 cells and monoclonal lines
with detected mutations in the IFITM3 gene.

Western blot analysis was performed to determine the presence or absence of the
target protein in the selected clones (Figure 4B). In the original cell line WI-38 VA13, a high
level of IFITM3 expression was confirmed. Mutations in clones F5 and E12 caused the
absence of the protein product in the cells. In clone F3, synthesis of the IFITM3 protein was
observed, apparently due to the presence of a the nonmutant allele, but the protein level
was lower than that in the control cell line.

Mutations in the clones were corroborated by an analysis of transcriptome sequencing
data (Figure 5). A decrease in the IFITM3 mRNA level in clones with mutations was success-
fully verified. Additionally, mutual regulation of transcriptional activity was demonstrated
among genes within the IFITM family. For instance, in clone E12, along with the knockout
of IFITM3, almost complete suppression of the transcriptional activity of the IFITM1 gene
was observed (Figure 5B).

The magnitude of the observed changes in gene expression at 24 h after influenza A
virus infection of the cells is summarized in Table 1. The most significant alterations as
compared to parental cells were noted in the E12 cell line.
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Figure 5. (A) The coverage tracks of the genome fragment encoding IFITM2, IFITM1 and IFITM3
genes for the original WI-38 VA13 cells and clones with mutations (F3, F5, E12) before infection (0 hpi)
and at 24 h (24 hpi) after influenza A virus infection. (B) Expression of IFITM2, IFITM1, IFITM3 genes
in original WI-38 VA13 cells and clones with mutations (F3, F5, E12) before infection (0 hpi) and at
24 h (24 hpi) after influenza A virus infection. The normalized counts of mapped reads averaged for
two biological repeats are shown.

Table 1. The number of genes differentially expressed in original WI-38 VA13 cells and clones
with mutations (F3, F5, E12) at 24 h after influenza A virus infection (relative to uninfected cells)
(FDR-adjusted p-value < 0.05, absolute value of a LogFC > 0.58).

Sample Regulation Number

WI-38 VA13 (24 hpi vs. 0 hpi) Upregulated 177
Downregulated 3

F3 (24 hpi vs. 0 hpi) Upregulated 364
Downregulated 54

F5 (24 hpi vs. 0 hpi) Upregulated 397
Downregulated 43

E12 (24 hpi vs. 0 hpi) Upregulated 965
Downregulated 334

In the cell clones with mutations in IFITM3, functional analysis of the genes that are
most differentially expressed (relative to uninfected cells) revealed that in cell lines F3 and
F5, the enrichment with functional terms was similar to that in the original cell line WI-38
VA13. These functional terms are characteristic of a viral infection. On the other hand, in
the set of differentially expressed genes of monoclonal cell line E12 there was enrichment
with terms not directly related to the antiviral response: biosynthesis of macromolecules
and transcription processes (Figure 6). This result was suggestive of a disturbance in the
activation of the innate-immune-response cascade specifically in the clone with impaired
expression of the two genes of the IFITM family.
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Examination of the “response to virus” functional group (GO:0009615) allowed us to
confirm this supposition: results of the examination, presented in the form of a heat map,
indicated significant differences of cell clones F5 and E12 from the control cell line (Figure 7).
At the same time, in monoclonal cell line F5 (a knockout of only IFITM3), a tendency toward
overexpression of some antiviral-response genes was documented, whereas in cell line E12
(combined suppression of both IFITM3 and IFITM1) we noted reduced activity of the genes
of this category.
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A detailed analysis of the most differentially expressed genes within obtained cell
lines identified a gene set directly related to the Jak–STAT signaling pathway: SOCS3,
STAT1, STAT2 and IRF9 (Figure 8). In monoclonal cell line E12, the results of transcriptomic
analysis revealed disturbances in the activation of a group of genes of the Jak–STAT cascade
as compared with control WI-38 VA13 cells (Figure 8B). For several other key genes in
the pathways of response to influenza A virus infection, aberrations (from the control) in
regulation were also observed in both uninfected monoclonal cell lines and in virus-infected
cells (Figure 8C). From these results, we can assume that a knockout of stand-alone genes of
the innate immune response leads to dysregulation of the antiviral response. The combined
downregulation (of the activity of genes from the IFITM family) seen in the E12 monoclonal
cells induces substantial disturbances of the innate-immune-response cascade.
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in the Jak-STAT signaling pathway in influenza A infected WI-38 VA-13 cells at 24 h after influenza
A virus infection, according to results of our transcriptomic analysis. Log2 fold change (LogFC)
values were generated for transcriptome sequencing samples by comparing the average RPKM values
of genes at 24 of infection vs. uninfected cells. (C) Expression of genes involved in the Jak-STAT
signaling pathway in original WI-38 VA13 cells and clones with mutations (F3, F5, E12) before
infection (0 hpi) and at 24 h (24 hpi) after influenza A virus infection. The normalized counts of
mapped reads averaged for two biological repeats are shown.

2.4. Sensitivity of WI-38 VA13 IFITM3−/− Cell Lines to Influenza Infection

To assess the permissiveness of the original and obtained cell lines, cells were infected
with a model influenza virus—A/PR/8/34 (H1N1)—and the dynamics of its replication
were assessed. Every 24 h, the number of infected cells was evaluated by staining with
fluorescently labeled antibodies against virus protein NP, followed by cytometry. The
number of newly formed viral particles in the culture medium was determined by titration
in highly permissive cells (MDCK). The percentage of infected cells (Figure 9A) was found
to be elevated in cell clones F3 and E12. Nonetheless, the titer of newly formed viral
particles in the culture medium of the monoclonal cell lines did not differ significantly from
the control exceptional for F3, which showed slightly advantage over original WI-38 VA13
cells (Figure 9B).
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Figure 9. Growth curves of A/PR/8/34 (H1N1) influenza virus in original WI-38 VA13 cells (WI-38
VA13) and clones with mutations (F3, F5, E12). (A) Number of productively infected cells expressing
influenza virus nucleoprotein, measured by flow cytometry after staining with FITC-labeled anti NP
antibodies. (B) Virus infectious activity in the supernatant of infected cells, measured by TCID50
assay. * p < 0.05, *** p < 0.001, **** p < 0.0001—difference between clone (colored asterisk) and original
cells is statistically significant, as determined by two-way ANOVA with posterior Sidak test).

Cell lines F3 and E12 were also tested for sensitivity to epidemiologically relevant wild-
type influenza viruses A/California/07/2009 (H1N1pdm09) and A/Hong Kong/4801/2014
(H3N2). The results indicated an increased percentage of infected cells in the modified cell
lines and the percentage was higher as compared to infection with strain A/PR/8/34(H1N1)
(Figure 10). Differences in the prevalence of infection between the modified cell lines can
be explained by a concomitant impairment of the activation of not only IFITM3 but also
IFITM1—this difference was also observed when the cells were infected with influenza virus
strain A/PR/8/34(H1N1). In clones with mutations F3 and E12, virus infectious activity in
the supernatant of infected cells did not deviate from the original WI-38 VA13 cells.
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Figure 10. Accumulation of influenza virus nucleoprotein in the original WI-38 VA13 cells (WI-38
VA13) and clones with mutations (F3, F5, E12) after influenza A/California/07/2009 (H1N1pdm09)
and influenza A/Hong Kong/4801/2014 (H3N2) virus infection. The amount of NP-positive (infected)
cells was measured at specified time points using a flow cytometry method and staining with
antibodies against influenza A virus NP. * Difference between clone and original cells is statistically
significant at p < 0.05 (two-way ANOVA analysis with a posterior Bonferroni criterion).

To estimate the permissiveness of the cell lines, we also employed a technique for
assessing the accumulation of viral protein NP by means of the number of focus-forming
units. Infection with influenza virus A/WSN/33 (H1N1) was carried out at 0.01 TCID50
(median tissue culture infectious dose) per cell. It was shown that the knockout of the
IFITM3 gene increases the sensitivity of WI-38 VA13 cells to the influenza A virus; the
percentage of infected cells in clones E12 and F5 was higher six- and eight-fold, respectively,
relative to wild-type cells (Figure 11).
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Figure 11. (A) Accumulation of influenza virus nucleoprotein in the original WI-38 VA13 cells (WI-38
VA13) and clones with mutations (F3, F5, E12) after influenza A/WSN/33 (H1N1) virus infection. The
amount of NP-positive (infected) cells was measured at specified time points using a flow cytometry
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method and staining with 6D11 monoclonal antibodies against influenza A virus NP. * Difference
between clone and original cells is statistically significant at p < 0.05 (two-way ANOVA analysis with
a posterior Bonferroni criterion). (B) Immunostaining of original WI-38 VA13 cells (WI-38 VA13)
and clones with mutations (F3, F5, E12) after influenza A/WSN/33 (H1N1) virus infection. The
influenza virus NP protein was stained with MAB8258 monoclonal antibody and visualized with
HRP-conjugate.

3. Discussion

The study shows that mutations in the IFITM3 gene lead to elevated sensitivity of
human embryonic lung fibroblast subline WI-38 VA13 to infection with an influenza virus.
At the same time, differences were observed depending on the virus strain—the cells had
the highest sensitivity to infection with strains A/California/07/2009 (H1N1pdm09) and
A/WSN/33 (H1N1). Meanwhile, the knockout of IFITM3 did not significantly affect the
number of newly formed viral particles in the culture medium after infection of the cell lines
(Figure 9B). It is likely that a knockout of one gene is not enough to effectively suppress the
antiviral response system. As a way to overcome this problem, a simultaneous knockout
can be performed on several target genes that act at different stages of cell infection with
an influenza virus, and this approach will implement comprehensive suppression of innate
immune response.

It is also interesting that cell lines F5 and E12, in which the IFITM3 protein is unde-
tectable, differ in the level of sensitivity to the influenza virus. This phenomenon is likely
due to the nature of the mutations obtained with the help of the CRISPR/Cas9 system.
Transcriptomic analysis of alterations of gene expression revealed that in clone E12, to-
gether with downregulation of the mRNA of target gene IFITM3, there is downregulation
of IFITM1 mRNA. On the other hand, in clone F5, upregulation of IFITM2 mRNA was
observed but the mRNA levels of genes IFITM1 and IFITM3 did not differ significantly
from control cells (Figure 5). The combined changes in expression may be caused by
dysregulation of transcription of genes in the IFITM family, however, the mechanisms of
this transcriptional regulation are currently poorly understood. It is known that there is
cis-regulatory enhancer E2-3 located in a region 35 kbp away from the IFITM3 gene and
this enhancer is capable of regulating the expression of the IFITM1–3 gene group [35]. A
mutation at the locus containing IFITM genes, such as extended insertions or deletions
(as in clone E12), may affect the interaction of the regulatory region with promoters and
diminish the mRNA level. As it is known that partial deletion of enhancer E2-3 does not
completely repress the genes of the IFITM family, the existence of other enhancers that
regulate the transcription of these genes is possible [35]. Nonetheless, their location with
respect to genomic locus IFITM is currently unknown.

It is also worth noting that in clone E12, significant under-expression of genes of the
Jak–STAT pathway was observed, thereby confirming the suppression of innate immune
responses in these cells (Figure 8). In clone F5, this effect was not well-pronounced. Differ-
ences in the antiviral response between cell lines E12 and F5 are also well illustrated by the
heat map based on normalized expression levels of genes in the “response to virus” group
(GO:0009615) (Figure 7). The alterations seen in the F5 cell line correlate more with changes
in the F3 cell line, in which downregulation of the target protein was demonstrated after
mutations in one allele. These findings suggest that reducing the activity of one member of
the IFITM family is insufficient for altering the expression of antiviral-response genes. For
this alteration to occur, comprehensive repression of several genes is necessary, as observed
in the E12 cell line.

In this study, a total of 92 monoclonal cell lines were analyzed into which the genome-
editing system was introduced. Among them, only three cell lines with mutations in the
IFITM3 gene were detected and only two cell lines were homozygous for mutant alleles.
Furthermore, the proliferation rate of the mutant cell lines was significantly lower than that
of the control, and many cell lines even died after several passages. This may mean that
this protein affects cell viability and probably participates not only in the regulation of the
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antiviral response but also (according to the results of our transcriptomic analysis) in the
modulation of the processes of cell adhesion, proliferation and cell to cell contacts.

4. Materials and Methods
4.1. Construction of Plasmids Expressing Components of CRISPR/Cas9 Systems Directed to
IFITM3 Gene Knockout

Analysis of gene sequences for the presence of protospacer-associated motifs (PAMs) and
the selection of protospacers depending on the parameters of specific and nonspecific activity
were performed using the Benchling online tool (available at https://benchling.com/, accessed
on 3 February 2021). Protospacers were chosen according to the specificity criterion:
the 20-nt sequence was completely complementary only to a region of the IFITM3 gene;
by contrast, during modeling of the interaction of single guide RNA with sequences
of other homologous members of the IFITM family (primarily IFITM2), only imperfect
duplexes formed, with 2–3 mismatches in the seed sequence area. In total, 8 protospacers
were selected to construct sgRNAs (Table S1). After that, genetic constructs based on the
pSpCas9(BB)-2A-GFP (PX458) vector (Addgene, Watertown, MA, USA, cat. # 48138) were
obtained. They encoded single guide RNA with required protospacers (as described in the
original article [33]).

4.2. Cell Transfection and Cloning

WI-38 VA13 subline 2RA (ATCC #CCL-75.1, derived from the Collection of Vertebrate
Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Novosibirsk, Russia)
cells were maintained in DMEM/F12 (Thermo Fisher Scientific, Waltham, MA, USA) and
supplemented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA,
USA) at 37 ◦C with CO2. The cells were seeded into the wells of 6-well plates in 1.5 mL of
complete culture medium a day before the transfection. The cell density was 50–80% on
the day of transfection. Transfection of cells was carried out using the Lipofectamine® 3000
(Thermo Fisher Scientific, Waltham, MA, USA) reagent in a serum-free growth medium
DMEM/F12 (Thermo Fisher Scientific, Waltham, MA, USA). For the transfection, 4 µL of
the Lipofectamine reagent was mixed with 1 µg of plasmid constructs based on vector
pSpCas9(BB)-2A-GFP (PX458) and the total volume of the mixture was brought to 20 µL
with sodium phosphate buffer (pH 7.4). The transfection mixture was incubated for 20
min at room temperature, after which it was added to the cells in the serum-free growth
medium. The cells were incubated for 6 h in a CO2 incubator at 37 ◦C. Then, the medium
was changed to 1.5 mL of fresh DMEM/F12 supplemented with 10% of FBS. The cells were
left in the CO2 incubator at 37 ◦C overnight. The transfection outcome was assessed with
the help of the ZOE™ fluorescent cell imaging system (Bio-Rad Laboratories, Hercules,
CA, USA). GFP-positive cells were collected 48 h after the transfection on a cell sorter S3e
Cell Sorter (Bio-Rad Laboratories, Hercules, CA, USA). The cell suspension was diluted
to approximately 100 cells/mL and seeded on 96-well plates (1 cell/well). The clones of
individual cells were trypsinized and replicated in 96-well plates for the analysis.

4.3. Analysis of the Monoclonal Cell Lines for IFITM3 Gene Mutations

For some monoclonal lines the effectiveness of the genetic modifications introduced
by the CRISPR/Cas9 genome-editing system in the IFITM3 gene was examined by means
of endonuclease I of bacteriophage T7. Protospacers three and four were selected so that
the site of the expected break introduced by the CRISPR/Cas9 system coincided with the
site cleaved by restriction endonucleases ZraI (SibEnzyme, Novosibirsk, Russia) and AatII
(SibEnzyme, Novosibirsk, Russia), respectively. The presence of a mutation meant disrup-
tion of a restriction site; in this case, DNA is not cut by the restriction endonuclease. This
approach enabled us to determine the presence/absence of mutations in the monoclonal
cell lines obtained via the transfection with plasmid vectors carrying protospacer three or
four. For the restriction analysis, a 20 µL reaction mixture was prepared consisting of 1 µL
of an amplicon, 2 µL of restriction endonuclease ZraI for clones with putative mutations in
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the region of protospacer three (or restriction endonuclease AatII for clones with putative
mutations in the region of protospacer four), 2 µL of 10× restriction enzyme buffer and
nuclease-free water up to the final volume. The samples were incubated for 1 h at 37 ◦C.
The reaction products were analyzed by electrophoresis in a 1.5% agarose gel.

4.4. Detection of Deletions and Insertions in Monoclonal Cell Lines

To determine the presence/absence of deletions and insertions in DNA samples from
monoclonal cell lines, the indel detection by amplicon analysis (IDAA) was applied [34].
PCR was conducted with 6-FAM-5′-labeled primers, which implemented one-step fluo-
rophore labeling of amplicons. Next, the amplicons were purified on ExtraGen magnetic
particles (GenTerra, Moscow, Russia). PCR products were visualized by electrophoresis
in a 1.5% agarose gel. After that, DNA (1–5 ng) was dried on a vacuum evaporator and
dissolved in formamide for assessment on genome analyzer ABI Genetic Analyser 3500
(ABI/Life Technologies, Waltham, MA, USA). The data were examined in the GeneMarker
(v3.0.1) software (SoftGenetics, State College, PA, USA).

4.5. Real-Time Cell Growth Analysis

To evaluate the proliferation rate of the cells carrying mutations in the IFITM3 gene,
a proliferation assay was performed as compared to the original WI-38 VA13 cells with
the help of xCELLigence technology on the cell analyzer RTCA xCELLigence DP (ACEA
Biosciences, Santa Clara, CA, USA) equipped with E-plate 16 chips (ACEA Biosciences,
Santa Clara, CA, USA). The results were analyzed using a RTCA Software (v31.2) software
(ACEA Bioscience, Santa Clara, CA, USA). The number of live cells was determined
beforehand on a LUNA-II automatic cell counter (Logos Biosystems, Anyang, Republic
of Korea) by staining with trypan blue (Bio-Rad Laboratories, Hercules, CA, USA). The
cells with viability of at least 90% in three biological replicates obtained by independent
defrosting of the cell bank were used for the experiments. Cells were seeded at a density of
20,000/well in the DMEM/F12 medium supplemented with 10% of fetal bovine serum and
monitored in real time for 60 h.

4.6. Quantification of mRNA and Viral RNA Expression by RT-PCR

Total RNA from WI-38 VA13 cells and modified monoclonal lines were isolated using
the Kit for Isolation of Total RNA and MicroRNA from Cells and Tissues (Biolabmix, Novosi-
birsk, Russia) according to the manufacturer’s protocol. RT-PCR was carried out with the
BioMaster RT-PCR SYBR Blue (2×) kit (Biolabmix, Novosibirsk, Russia). The analysis of the
results was conducted using a Light Cycler 96 Software (v1.1) software package (Roche, Basel,
Switzerland) and qBase+ (v3.4) (Biogazelle, Gent, Belgium). To assess the expression of the
IFITM3 gene, primers IFITM3-F1 5′-CCGTGAAGTCTAGGGACAGG-3′ and IFITM3-R1 5′-
CCTGGAAGATCAGCACTGG-3′ were used. As reference signals, GAPDH mRNA (GAPDH-F:
5′-GAAGATGGTGATGGGATTTC-3′, GAPDH-R: 5′-GAAGGTGAAGGTCGGAGT-3′) and of
18S rRNA (18S-F: 5′-GATGGTAGTCGCCGTGCC-3′, 18S-R: 5′-GCCTGCTGCCTTCCTTGG-3′)
were quantitated. To estimate the level of viral mRNA, the primers allowing to detect frag-
ment of the M gene of the influenza A were used: FluA-F 5′-CCCTCAAAGCCGAGATCGC-
3′ and FluA-R 5′-AGGTGACARRATTGGTCTTGTCTTTA-3′. The primers for IFITM3
mRNA and Influenza A RNA detection contained phosphoryl guanidine groups.

4.7. Detection of the IFITM3 Protein in the Monoclonal Cell Lines by Western Blotting

Proteins were isolated from a pool of cells (2.5 × 105) via the addition of 50 µL of
RIPA lysis buffer to a cell pellet, incubated for 30 min on ice, then centrifugation for 20 min
at 4 ◦C and 13,000 relative centrifugal field units and then the pellet was discarded. The
cell lysates were stored at −20 ◦C. Proteins were separated by protein electrophoresis in
a 10% polyacrylamide gel; 10 µL of Spectra™ Multicolor Broad Range Protein Ladder
(Thermo Scientific, Waltham, MA, USA) served as molecular-weight markers. After that,
the proteins were electrotransferred onto a nitrocellulose membrane and Western blotting



Int. J. Mol. Sci. 2024, 25, 625 14 of 17

was performed in an IBind system (Thermo Scientific, Waltham, MA, USA). Primary anti-
bodies were rabbit anti human IFITM3 antibody (1:200) (VPA00312, Bio-Rad Laboratories,
Hercules, CA, USA) and rabbit anti GAPDH antibody (1:1000) (ab181602, Abcam, Cam-
bridge, UK). The secondary antibody was rabbit IgG horseradish peroxidase-conjugated
antibody (1:200) (HAF008, R&D Systems, Minneapolis, MN, USA). To visualize the results,
the membrane was incubated in a luminol solution. Next, the membrane was washed
with deionized water. Imaging was implemented on an Amersham Imager 600 device (GE
Healthcare Life Sciences, Chicago, IL, USA).

4.8. Infection of Cells with the Influenza A Virus

Several influenza viruses were used in the study. Well known influenza virus strain
A/PR/8/34 (H1N1) was obtained from the Collection of Influenza and Acute-Respiratory-
Disease Viruses at the Smorodintsev Research Institute of Influenza (St. Petersburg, Russia).
Another laboratory influenza strain A/WSN/30 (H1N1) was kindly provided by Professor
N.V. Kaverin (Ivanovsky Institute of Virology, Moscow, Russia). Wild-type influenza
viruses A/California/07/2009 (H1N1pdm09) and A/Hong Kong/4801/2014 (H3N2), were
obtained from CDC (Atlanta, GA, USA). All viruses were cultured in 10–12-day-old chicken
embryos. Infectious activity of viruses was determined by titration in MDCK cells (obtained
from the International Reagent resource, #FR-58), as follows: Monolayer of MDCK cells
in a 96-well plate were infected with serial 10-fold dilutions of a virus (in rows, 4 wells
per dilution) in the serum-free medium supplemented with 2.5 µg/mL TPCK trypsin
(Sigma-Aldrich, Burlington, MA, USA) and incubated at 37 ◦C and 5% of CO2 for three
days. Virus replication in particular wells was assessed by hemagglutination reaction of
culture medium with a 0.5% suspension of chicken erythrocytes. The infectious activity
was calculated by the Reed–Muench method and expressed as TCID50/mL.

Influenza virus experiments were performed using original WI-38 VA-13 cells (ob-
tained from the Collection of Vertebrate Cell Cultures, Institute of Cytology, Russian
Academy of Sciences, Novosibirsk, Russia) as well as with the CRISPR-Cas9 modified cell
clones obtained within this study. Virus growth rate at different time points was evaluated
by three parameters: newly produced virus particles after cell infection (infectious activ-
ity), number (proportion) of infected cells measured by FACS and number (proportion)
of infected cells measured by focus assay. Comparisons were made of virus growth in
modified cells versus original strain at each time point. ANOVA with posterior pairwise
comparisons was used to determine statistical significance of the observed differences.
The level of significance was set at 0.05. Virus growth curve experiments were performed
using dense monolayer cells grown in 12-well plates. Prior to infection, the cells were
washed with the serum-free medium supplemented with 1 µg/mL TPCK trypsin. A virus
dilution was prepared in the aforementioned medium so that multiplicity of infection
was 0.01 TCID50/cell, considering a monolayer density of 1.3 × 105 cells/cm2 and an
inoculum volume of 250 µL/well. The inoculum was added to cells, incubated for 1 h at
37 ◦C, 5% of CO2, and then removed. After that, 2 mL/well of serum-free media with
trypsin was added and plates were incubated at 37 ◦C and 5% of CO2. The experiment
was setup with three wells as three biological repeats. At 24, 48 and 72 h after the infection,
culture supernatant was collected and titrated in MDCK cells to analyze the infectious
activity of newly generated viruses. Infected cells were also collected by trypsin-EDTA
(Sigma-Aldrich, Burlington, MA, USA), fixed, permeabilized (BD Cytofix/Cytoperm) and
stained with fluorescently labeled antibodies to the NP protein of influenza A virus (clone
6D11-FITC, PPDP Ltd., St Petersburg, Russia; dilution 1:1000) to analyze the amount of
productively infected cells. Uninfected cells served as a control in the staining procedure.
The percentage of infected cells was determined on a Cytoflex flow cytometer (Beckman
Coulter, Brea, CA, USA).

To assess the permissiveness of cells to infection by focus assay, based on accumulation
of viral NP protein (nucleoprotein), cells were grown in a 96-well plate in quadruplicate to
a density of 50 × 103 cells/well. Before infection, the cells were placed in the serum-free
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growth medium supplemented with 1 µg/mL trypsin. The virus dilution was prepared
so that the infection dose was 0.01 TCID50/cell. After addition of the virus, the cells were
incubated for 24 h at 37 ◦C, 5% of CO2. Next, the cells were fixed with acetone, after which
50 µL (1:2500 dilution) of a primary antibody against the NP protein of the influenza A
virus [mouse anti-influenza A monoclonal antibody, MAB8258 (Millipore, Burlington, MA,
USA)] was added to the cells and incubated at 37 ◦C for 1 h. After that, cells were washed
twice with PBS, and 50 µL (1/4000 dilution) of a biotinylated secondary antibody was
added into the wells [Anti-Mouse IgG (Fab specific)–Biotin antibody, B7151 (Sigma-Aldrich,
Burlington, MA, USA)] and incubated at 37 ◦C for 30 min. The cells were washed twice with
PBS, and 50 µL (1:4000 dilution) of streptavidin conjugated with horseradish peroxidase
(Sigma-Aldrich, Burlington, MA, USA) was added and incubated at 37 ◦C for 30 min. The
cells were washed twice with PBS, and 50 µL of AEC buffer was introduced. The multi-well
plates were left in a dark place at room temperature for 10–15 min until coloring appeared.
The number of focus-forming units (number of stained cells) was estimated in the ImageJ
(v1.53) software.

4.9. Analysis of Transcriptome-Sequencing Data

Construction of cDNA libraries was conducted according to a standard protocol based
on the NEBNext Ultra II Directional library preparation kit (New England Biolabs, Ipswich,
MA, USA) and a module for enrichment of the poly(A) fraction of RNA (New England
Biolabs, Ipswich, MA, USA), followed by mass parallel sequencing on the NextSeq Illumina
platform at the Institute of Fundamental Medicine and Biology at Kazan Federal University
(Kazan, Russia). Paired-end reads of 75 nucleotides each were obtained by means of the
NextSeq 500/550 High Output v2.0 Kit (150 cycles) (Illumina, San Diego, CA, USA).

The raw data were saved as FASTQ format files. The quality control of the raw and
trimmed reads was performed using FastQC (v0.11.9) and MultiQC (v1.9) [36,37]. Trimming
of the adapter content and quality trimming was performed using fastp (v0.21.0) [38]. The
reads complementary to ribosomal RNA were filtered out from the trimmed reads using
SortMeRNA (v2.1b) [39]. The filtered reads were aligned via STAR (v2.7.7a) to a combined
genomic reference of the human genome (GRCh38) and the genome of influenza A/Puerto
Rico/8/1934 (H1N1) [40]. Mapped reads were visualized using the Integrative Genomics
Viewer (IGV) (v2.8.0) [41]. The counting reads were performed with the featureCounts
function from the R package Rsubread (v2.4.3) [42]. Differentially expressed RNAs were
identified using R package DESeq2 (v1.30.1) with a FDR-adjusted p-value < 0.05 and
the absolute value of a log2(FC) > 0.58 [43]. RNA-seq data have been deposited in the
ArrayExpress database at EMBL-EBI (https://www.ebi.ac.uk/biostudies/arrayexpress,
accessed on 10 July 2023) under accession number E-MTAB-9511 (virus infected original
WI-38 VA-13) and E-MTAB-13582 (virus infected original WI-38 VA-13 and clones with
mutations in the IFITM3 gene (F3, F5, E12)) [44].
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