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Abstract: Arthrinium phaeospermum is the major pathogen responsible for the significant stem disease
“blight” in B. pervariabilis × D. grandis. The interacting proteins of the key pathogenic factor ApCtf1β,
BDUbc and BDSKL1, have previously been obtained by two-hybrid, BiFC, GST pull-down yeast
assays. However, the functions of these interacting proteins remain unknown. This study successfully
obtained transgenic plants overexpressing BDUbc, BDSKL1, and BDUbc + BDSKL1 via Agrobacterium-
mediated gene overexpression. qRT-PCR analysis revealed significantly increased expression levels
of BDUbc and BDSKL1 in the transgenic plants. After infection with the pathogenic spore suspension,
the disease incidence and severity index significantly decreased across all three transgenic plants,
accompanied by a marked increase in defense enzyme levels. Notably, the co-transformed plant,
OE-BDUbc + BDSKL1, demonstrated the lowest disease incidence and severity index among the
transgenic variants. These results not only indicate that BDUbc and BDSKL1 are disease-resistant
genes, but also that these two genes may exhibit a synergistic enhancement effect, which further
improves the resistance to blight in Bambusa pervariabilis × Dendrocalamopsis grandis.

Keywords: Bambusa pervariabilis × Dendrocalamopsis grandis; blight; BDUbc; BDSKL1; overexpression;
synergistic enhancement

1. Introduction

Bamboo plants are essential economic resources, and their economic and ecological
value has been gradually gaining increased attention, with bamboo forests being referred
to as the “second forest”. Bambusa pervariabilis × Dendrocalamopsis grandis is a superior
B. pervariabilis × D. grandis variety developed through a 12-year breeding program. It
is derived from the mother plant Bambusa pervariabilis, characterized by its small size,
branching abundance, and ease of propagation, and the larger Bambusa grandis, serving
as the father plant [1]. In addition to exhibiting the advantages of both parent plants,
this bamboo variety also shows clear characteristics of growth superiority and ease of
asexual reproduction. B. pervariabilis × D. grandis offers significant economic and societal
benefits. It serves as an excellent source of timber and fiber materials, particularly suitable
for paper production and related industries. As society continues to grow economically,
the applications of bamboo fibers are expanding, making bamboo a stable and promising
source of renewable materials with minimal risk in the face of rising costs. Furthermore, B.
pervariabilis × D. grandis is also a high-quality source of bamboo shoots and ornamental
bamboo. Bamboo shoots, a completely natural and nutritious green food, are delicious and
possess substantial medicinal value. Bamboo wood is extensively used in various fields,
such as bamboo weaving, root carving, and the production of bamboo wood composite
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boards. Additionally, it plays a vital role in promoting the construction of ecological
barriers in the Yangtze River basin region [2,3]. While B. pervariabilis × D. grandis possesses
numerous advantages such as strong reproductive capability, easy cultivation, high yield,
and versatile applications, its widespread cultivation has faced challenges due to various
fungal diseases. These include bamboo wilt disease, blight disease, and scab disease. These
fungal diseases have dealt a devastating blow to the B. pervariabilis × D. grandis industry.

B. pervariabilis × D. grandis has experienced widespread dieback in recent years, re-
sulting in significant economic losses. It has been confirmed that A. phaeospermum is the
primary pathogenic fungus responsible for causing blight in B. pervariabilis × D. grandis [4].
A. phaeospermum has a broad host range and strong pathogenicity, capable of infecting
56 different plant species [5–7], leading to the wilting and decay of host plants. Research
on blight in B. pervariabilis × D. grandis is still in its early stages, primarily focusing on
physiological aspects. This includes studying the disease occurrence patterns, the biological
characteristics of the pathogen, toxicity assessment of pathogenic toxin proteins, and the
isolation and screening of antagonistic bacteria against the disease [8–10]. These studies
provide an important molecular biology foundation for further exploring the mechanisms
underlying blight occurrence in B. pervariabilis × D. grandis and for breeding disease-
resistant varieties. In our previous research, we conducted a combined transcriptome
analysis of A. phaeospermum under different culture conditions and the interaction transcrip-
tome between A. phaeospermum and B. pervariabilis × D. grandis. This analysis led to the
identification of the key pathogenic gene ApCtf1β, which was confirmed to be the critical
pathogenic gene responsible for infecting B. pervariabilis × D. grandis [11]. An analysis
of the secondary and tertiary structures of ApCtf1β reveals the presence of 18 α helices,
12 β folds, and a zinc ligand in its tertiary structure. The deletion mutant ∆ApCtf1β was
obtained using PEG-mediated protoplast gene knockout, revealing that Ctf1β can suppress
the host’s reactive oxygen immune response and interfere with its cell wall formation. Ad-
ditionally, gene knockout complementation experiments were used to eliminate phenotypic
genetic changes induced by protoplast transformation. The pathogenicity index results
demonstrate that the virulence of the ∆ApCtf1β mutant is lower than that of the wild-type
strain. In contrast, the complemented strain’s virulence is restored to wild-type levels,
indicating a potential close association between the ApCtf1β gene and the virulence of A.
phaeospermum. The origin of cutinase research lies in exploring the pathogenic mechanisms
plant pathogens employ. Pathogens secrete cutinases to break down the cuticle layer on
the plant’s surface [12,13], enabling them to invade the plant and impact its growth. The
transcriptional activation of cutinase genes in Fusarium solani and Aspergillus nidulans is
mediated by the cutinase transcription factor CTF1 [14]. Currently, there is limited research
on the screening and functional analysis of cutinase transcription-factor-interacting target
proteins in host plants, particularly in bamboo species. This knowledge gap significantly
hinders a deeper understanding of the pathogenic mechanisms of A. phaeospermum and
the molecular mechanisms underlying the response of B. pervariabilis × D. grandis to in-
vasion by it. Therefore, utilizing molecular biology techniques to elucidate the functions
of cutinase transcription-factor-interacting target proteins in B. pervariabilis × D. grandis
is essential to establishing a foundation for understanding the molecular mechanisms of
disease resistance in B. pervariabilis × D. grandis.

B. pervariabilis × D. grandis possesses a well-developed epidermal layer. In addition
to its roles in water retention and barrier functions, this layer also plays a complex defen-
sive role in promoting overall plant development and regulating interactions between the
plant and pathogens [15–17]. Cutinase is considered an important enzyme for fungi to
penetrate the epidermal layer and infect plants. It plays a crucial role in adhesion to the
plant epidermis, penetration of the epidermal layer, and signal generation [18,19]. In the
earlier stages of our research, we screened and verified proteins that interact with ApCtf1β,
namely BDUbc and BDSKL1. Subsequently, we cloned and analyzed the full-length cod-
ing sequences (CDS) of BDUbc (ubiquitin-conjugating enzyme) and BDSKL1 (shikimate
kinase-like protein 1) in B. pervariabilis × D. grandis. Multiple sequence alignments and a
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phylogenetic tree analysis indicated that the obtained BDUbc and BDSKL1 proteins exhibit
significant functional similarity to Ubcs and SKL1s identified in the alignment [2].

The ubiquitin–proteasome pathway (UPP) is widely present in eukaryotic organisms.
It plays a crucial role in various cellular processes, including maintaining cellular function,
regulating the cell cycle, responding to environmental stress, embryonic development,
hormone responses, and aging [20–25]. The primary role of ubiquitin-conjugating enzymes
(E2) is to form a multi-ubiquitin chain in conjunction with ubiquitin-activating enzymes
(E1), ubiquitin ligases (E3), and target proteins. This ubiquitination process results in the
substrate protein being tagged with ubiquitin and recognized and degraded by the 26S
proteasome [20,26], ultimately completing a three-step enzymatic cascade reaction. This
process plays a crucial role in maintaining the balance between protein synthesis and
degradation within the cell, thereby contributing to maintaining cellular homeostasis and
normal functioning [26,27]. Existing research findings indicate that ubiquitin-conjugating
enzymes play a role in regulating various aspects of plant growth and development, as well
as responses to environmental stress. These include root growth and development [28],
photomorphogenesis in plants [29], flowering in plants [30], resistance to salt stress [31],
and the balance of plant nutrient metabolism [32]. Furthermore, the expression of plant
ubiquitin-conjugating enzyme genes is tissue-specific and subject to regulation by exter-
nal environmental stressors [31,33,34]. The shikimate pathway is closely associated with
various processes in plants, including growth and development, stress resistance, and
secondary metabolism [35,36]. This pathway directs carbon from the central metabolic
pool to various secondary metabolites involved in plant development, growth, and stress
responses. SKL1 is a functionally distinct paralog that has evolved from plant shikimate ki-
nase (SK) genes through repeated evolution. However, SKL1 possesses structural domains
that differ from ancestral shikimate kinase, lacking the conserved shikimate binding and
catalytic residues [37]. Research has shown that AtSKL1 plays a significant role in chloro-
plast development in Arabidopsis [38], while in maize, ZmSKL1 positively regulates drought
tolerance against drought stress [39]. However, despite the absence, to date, of research
regarding the roles of Ubcs and SKL1s in the biotic stress responses of bamboo plants,
inference from studies in plants such as Arabidopsis, rice, and barley, among others, suggests
that Ubcs and SKL1s play pivotal roles in plant defense against biotic stress [37,38,40–42].
Hence, exploring the functions of BDUbc and BDSKL1 is crucial to supporting the resistance
of B. pervariabilis × D. grandis against A. phaeospermum.

This study involved a bioinformatics analysis of the amino acid sequences of the
key pathogenic factor ApCtf1β and its interacting proteins, BDUbc and BDSKL1, in the
host B. pervariabilis × D. grandis. Through Agrobacterium-mediated gene overexpression,
transgenic lines with overexpressed interacting genes were obtained. Ultimately, the
physiological and biochemical parameters and pathogenicity differences between pathogen-
infected mutant plants and wild-type plants were compared to validate the functions of
BDUbc and BDSKL1 proteins. This research aims to elucidate the disease-resistant functions
of BDUbc and BDSKL1, leading to the development of highly disease-resistant transgenic
plants. This, in turn, provides a reliable theoretical foundation for studying the pathogenic
pathway of A. phaeospermum and the molecular resistance mechanisms of B. pervariabilis × D.
grandis to pathogen invasion. It also offers a basis for developing new strategies for the
continuous and effective control of blight in forest trees.

2. Results
2.1. Bioinformatics Analysis of BDUbc and BDSKL1

The phylogenetic tree analysis revealed that BDUbc exhibits a closer phylogenetic rela-
tionship with Dendrocalamus latiflorus, with a homology of 97.45% to DlUbc (AGY80454.1).
In contrast, BDSKL1 shows a closer phylogenetic relationship with Phyllostachys edulis,
with a homology of 91.58% to PeSKL1 (AIA26163.1) (Figure 1a,b). The structural domain
prediction results, as depicted in Figure 1a,b, indicate that BDUbc and BDSKL1 genes
are highly conserved, with each gene identified with 14 conservative motifs (motif1-14).
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Motif1 exhibits the highest confidence score (Figure 1a,b). The NetPhos 3.1 Server predic-
tion results reveal the presence of 17 phosphorylation sites in BDUbc, including 9 serine
(Ser) phosphorylation sites and 8 threonine (Thr) phosphorylation sites. In BDSKL1, there
are 14 phosphorylation sites, comprising 9 serine (Ser) phosphorylation sites, 2 threonine
(Thr) phosphorylation sites, and 3 tyrosine (Tyr) phosphorylation sites (Figure 1c,e). The
PredictNLS online software (https://rostlab.org/owiki/index.php/PredictNLS, 15 August
2023) predicts cellular localization, indicating that BDUbc is localized in the nucleus, while
BDSKL1 is localized in the chloroplast (Figure 1d,f).
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2.2. Construction of Overexpression Vectors

Primer sequences were designed with homologous arms of 15 bp before and after
the KpnI restriction endonuclease sites on pCAMBIA1301-35SN and pSuper1300-GFP
(Table S1). Using cDNA from the B. pervariabilis × D. grandis as a template, gene sequences
of BDUbc and BDSKL1 were amplified, resulting in fragments of 591 bp and 573 bp, respec-
tively. Recombinant plasmids, namely pCAMBIA1301-35SN-BDUbc, pCAMBIA1301-35SN-
BDSKL1, pSuper1300-GFP-BDUbc, and pSuper1300-GFP-BDSKL1, were obtained through
homologous recombination. Bacterial liquid PCR analysis confirmed their alignment with
the theoretical values, and sequencing validation revealed their positivity without any base
mutations (Figure S1a,c). The above recombinant plasmids were transferred into Agrobac-
terium tumefaciens using the freeze–thaw method. After culturing at 28 ◦C for 2 d, single
colonies were selected for colony PCR validation using BDUbc-F/R and BDSKL1-F/R
primers. The fragment sizes matched the theoretical values, and sequencing validation
confirmed their positivity without any base mutations (Figure S1b,d).

2.3. A. tumefaciens Tumefaciens-Mediated Overexpression in the Genetic Transformation of B.
pervariabilis × D. grandis
2.3.1. The Genetic Transformation of B. pervariabilis × D. grandis

Following the induction, co-culture, differentiation, seedling growth, rooting, hard-
ening, and transplantation stages, transgenic B. pervariabilis × D. grandis seedlings were
obtained, as shown in Figure 2. Embryogenic callus tissues were differentiated into green
shoots in a pre-differentiation medium. Later, embryogenic callus tissues were used to
separate shoot buds on differentiation medium. After more passages, green shoots were
obtained. After rooting culture, the differentiated shoots were transplanted as embryogenic
callus-derived seedlings.
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2.3.2. Identification of Positive Transgenic Seedlings

As shown in Figure 3a, the results indicate that the PCR analysis of the hygromycin
fragment lengths matched the expected results, and sequencing validation confirmed their
correctness. This suggests that positive plants were detected in OE-BDUbc, OE-BDSKL1,
and OE-BDUbc + BDSKL1, indicating the successful transformation of B. pervariabilis × D.
grandis by Agrobacterium. The transgenic differentiated seedlings can be used for further
functional validation experiments. The transgenic lines overexpressing BDUbc, BDSKL1,
and BDUbc + BDSKL1 were named OE-BDUbc, OE-BDSKL1, and OE-BDUbc + BDSKL1,
respectively. As shown in Figure 3b,c, the relative expression levels of the BDUbc gene
in OE-BDUbc transgenic plants were significantly upregulated after transplantation, with
values of 22.2 (GAPDH) and 21.5 (Actin), indicating the overexpression of the BDUbc gene
in OE-BDUbc transgenic plants. Similarly, the relative expression levels of the BDSKL1
gene in OE-BDSKL1 transgenic plants were significantly upregulated after transplantation,
with values of 15.6 (GAPDH) and 16.3 (Actin). In OE-BDUbc + BDSKL1 transgenic plants,
the relative expression levels of the BDUbc gene after transplantation were 28.5 (GAPDH)
and 26.9 (Actin), while BDSKL1 showed values of 18.5 (GAPDH) and 18.3 (Actin). This
indicates that the expression levels of the BDUbc and BDSKL1 genes in OE-BDUbc + BDSKL1
transgenic plants were significantly higher compared to single overexpression of BDUbc or
BDSKL1 in B. pervariabilis × D. grandis transgenic plants.
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Figure 3. Validation of transgenic B. pervariabilis × D. grandis seedlings. (a) PCR validation of
transgenic B. pervariabilis × D. grandis seedlings; M: 1000 DNA marker; N: negative control; P:
positive control; 1, 2, 3: detection of the hyg501 fragment in OE-BDUbc-overexpressing plants; 4, 5,
6: detection of the hyg501 fragment in OE-BDSKL1-overexpressing plants; 7, 8, 9: detection of the
hyg501 fragment in OE-BDUbc + BDSKL1-overexpressing plants; (b) relative expression levels of the
BDUbc gene in transgenic B. pervariabilis × D. grandis seedlings; and (c) relative expression levels of
the BDSKL1 gene in transgenic B. pervariabilis × D. grandis seedlings. Different lowercase letters after
the data in the same column indicate significant differences (p < 0.05) between treatments of different
varieties after inoculation.

2.4. Functional Validation of BDUbc and BDSKL1 in Transgenic Plants
2.4.1. The Disease Resistance Level of Transgenic Plants

Using wild-type B. pervariabilis × D. grandis as a control, the statistical analysis revealed
that the disease incidence rates of OE-BDUbc, OE-BDSKL1, and OE-BDUbc + BDSKL1 were
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all significantly lower than those of wild-type B. pervariabilis × D. grandis (as shown in
Figure 4a). Among them, the co-transformed plants, OE-BDUbc + BDSKL1, exhibited
the lowest disease incidence rate and disease severity index (9.3 ± 2.1% and 9.8 ± 3.5,
respectively) among the transgenic plants. OE-BDUbc transgenic plants had a disease
incidence rate and disease severity index of 12.5 ± 4.4% and 12.1 ± 5.8, respectively, which
ranked second after the co-transformed plants. OE-BDSKL1 transgenic plants had a disease
incidence rate and disease severity index of 17.9 ± 6.7% and 13.9 ± 2.9, respectively, making
them the highest among the transgenic plants but still significantly lower than the values
for wild-type B. pervariabilis × D. grandis plants.
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index of transgenic plants; different lowercase letters indicate significant differences (p < 0.05) among
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One-year-old B. pervariabilis × D. grandis (40–50 cm plant height).

As shown in Figure 4b, approximately 50% of wild-type B. pervariabilis × D. grandis
leaves exhibited lesions 28 d after inoculation. Some lesions covered the entire leaf, resulting
in the yellowing, wilting, and eventual shedding of the leaves, accompanied by branch
dieback. In contrast, OE-BDUbc, OE-BDSKL1, and OE-BDUbc + BDSKL1 transgenic plants
showed only a few leaves with lesions, and the lesion areas were generally small. The
entire plant did not exhibit branch dieback and remained healthy.

2.4.2. Changes in BDUbc and BDSKL1 Expression in Transformed Plants during Different
Periods of Infestation Detected by qRT-PCR

As depicted in Figure 5, the results show that the expression levels of the BDUbc
gene in transgenic plants, OE-BDUbc and OE-BDUbc + BDSKL1, significantly increased at
3 d post-inoculation, followed by a gradual decline, reaching their highest levels at 21 d
post-inoculation before slowly decreasing again. In contrast, the expression levels of the
BDSKL1 gene in transgenic plants, OE-BDSKL1 and OE-BDUbc + BDSKL1, significantly
increased post-inoculation and reached their highest levels as early as 7 d post-inoculation.
Subsequently, there was a gradual decline at 14 d, followed by another significant increase,
a second peak at 21 d post-inoculation, and then a gradual decrease.
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2.4.3. Physiological and Biochemical Assays

The physiological and biochemical assays were conducted using young shoots of B.
pervariabilis × D. grandis inoculated with A. phaeospermum at 0 d, 3 d, 7 d, 14 d, 21 d, and 28 d.
As shown in Figure 6, the results indicate that following the infection of A. phaeospermum,
the levels of defense enzymes (CAT, PPO, POD, SOD, GPX, PAL), chlorophyll, total phenols,
and plant hormones in the three transgenic lines (OE-BDUbc, OE-BDSKL1, and OE-BDUbc
+ BDSKL1) were higher compared to the wild-type plants. Among the defense enzymes
(CAT, POD, and SOD), their trends were quite similar. Their levels rapidly increased at
3 d, followed by a gradual decline until reaching their peak levels at 21 d, after which
they gradually decreased again. On the other hand, PPO, GPX, and PAL showed similar
trends, initially increasing, reaching their peak values, and then decreasing. PPO and PAL
reached their highest levels at 14 d, while GPX levels increased rapidly and peaked at 7 d.
In OE-BDUbc transgenic plants, chlorophyll content was highest at 8 h post-infection and
gradually decreased. All three transgenic lines (OE-BDUbc, OE-BDSKL1, and OE-BDUbc
+ BDSKL1) exhibited significantly higher levels of chlorophyll, total phenols, and plant
hormones JA and SA compared to the wild-type. Chlorophyll content in transgenic plants
increased slowly at 3 d, decreased at 7 d, and continued to rise thereafter. Total phenol
content in all three transgenic lines showed a similar trend, rapidly increasing and reaching
a peak at 7 d, followed by a gradual decline, with a subsequent increase beginning at 21 d
and continuing to rise slowly. The levels of JA and SA increased rapidly after infection, and
in all three transgenic lines, the highest levels of JA and SA were observed at 14 d, followed
by a gradual decrease.
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2.5. Subcellular Localization of BDUbc and BDSKL1

The results indicate that the positive control, transformed with the pSuper1300-GFP
empty vector, displayed irregular and random fluorescence signals throughout the entire
plant cell, confirming the success of the positive control setup. As shown in Figure 7,
when the fusion plasmid pSuper1300-GFP-BDUbc and the nuclear marker were simulta-
neously introduced into tobacco, the BDUbc gene’s fluorescence signals overlapped with
the nuclear marker signals and exhibited filamentous fluorescence signals at the cell pe-
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riphery, indicating the subcellular localization of BDUbc in both the cell nucleus and the
cytoplasm. In contrast, BDSKL1’s fluorescence signals coincided with the chloroplast’s
intrinsic fluorescence, indicating the subcellular localization of BDSKL1 in the chloroplast.
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3. Discussion

In this study, the cloning sequences of the two target genes were found to exhibit a high
degree of similarity with genes annotated as Ubc and SKL1 in the database. Furthermore,
many of these genes were sourced from bamboo species, particularly those with the highest
similarity to the sequences originating from bamboo. The analysis of conserved regions in
the sequences revealed that both genes were highly conserved, with conserved motifs being
identified across almost the entire sequence. Moreover, in the BDUbc gene, a ubiquitin-
conjugating active-site signature and a ubiquitin-binding enzyme catalytic domain were
identified. Subcellular localization revealed that BDUbc is located in the cell nucleus and
cytoplasm, which was inconsistent with the initial prediction. However, this localization
pattern aligns with previous findings in Arabidopsis [43], rice [44], and soybean [33]
Ubc genes, which are known to be present in both the cell nucleus and cytoplasm. This
consistency with previous research provides support for the experimental results. On the
other hand, BDSKL1 was found to localize in the chloroplast, which was consistent with the
initial prediction. This localization pattern also agrees with the subcellular localization of
SKL1 genes in Arabidopsis [45] and maize [39], as well as the experimental results obtained
in this study.

The ubiquitin/proteasome system in plants plays a crucial role in growth, develop-
ment, morphogenesis, and defense responses [25,46]. As early as 2006, it was discovered
that the ubiquitin/proteasome system might play a significant role in the interaction be-
tween plants and microorganisms [47]. Ubiquitin-conjugating enzymes (E2) function as
signal transduction factors in plant defense [48], and their roles have garnered increasing
attention from researchers. Based on the results of qRT-PCR and physiological and bio-
chemical analyses, we can speculate that the expression of different ubiquitin-conjugating
enzyme genes may play a role in different defense response signaling pathways during B.
pervariabilis × D. grandis’s interaction with A. phaeospermum. Ubiquitin-conjugating enzyme
E2 (UBC) is a key enzyme in the ubiquitination process, playing a vital role in determining
the length and topology of ubiquitin chains. Proteins labeled with K63-linked ubiquitin
chains are primarily involved in signaling transduction [49]. Therefore, the early induced
expression of ubiquitin-conjugating enzyme genes may be involved in the signal trans-
duction of Phyllostachys edulis’ defense response. On the other hand, proteins marked
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with K48-linked ubiquitin chains are usually targeted for degradation by the 26S protea-
some [49]. Hence, ubiquitin-conjugating enzyme genes induced later in the process may
initiate defense responses in Phyllostachys edulis. For example, these genes can facilitate
the degradation of some inhibitory proteins through the ubiquitination pathway, thereby
initiating the defense response in B. pervariabilis × D. grandis.

The shikimate pathway plays a crucial role at the critical interface between primary
and secondary metabolism, channeling carbon from glycolysis and pentose phosphate path-
ways towards synthesizing various physiologically important aromatic compounds [50].
It has been shown that the main role of SKL1 is to increase carbon fluxes from specific
metabolite pools in response to environmental stresses or tissue-specific developmental
requirements. qRT-PCR and physiological and biochemical results indicate that the shiki-
mate kinase BDSKL1 in response to Alternaria brassicae infection in B. pervariabilis × D.
grandis gradually increases expression. Previous studies have shown that tomato SK, under
induction by fungal elicitors, produces a direct response, potentially leading to the redi-
rection of carbon flow toward the biosynthesis of plant toxins [51]. Therefore, during the
early stages of pathogen invasion, B. pervariabilis × D. grandis increases photosynthesis
and, through the SK pathway, directly induces the biosynthesis of toxins as a response. the
downregulation of photosynthesis-related genes under stress conditions has previously
been researched [52]. Similarly, the loss of SKL1-3 and SKL1-8 can lead to the loss of
signals necessary for nuclear-encoded chloroplast development programs [50]. Hence, the
gradual decrease in BDSKL1 expression may be involved in suppressing the photosyn-
thetic capacity of B. pervariabilis × D. grandis to cope with oxidative damage caused by
reactive oxygen species produced during the infection process. Simultaneously, photosyn-
thetic pigments may be degraded, possibly due to the increased activity of photosynthetic
pigment-degrading enzymes or as a result of A. phaeospermum toxin production.

This study demonstrates that after infection with A. phaeospermum, the defense en-
zyme activity in the transgenic lines, OE-BDUbc, OE-BDSKL1, and OE-BDUbc + BDSKL1,
is higher than in the wild-type lines, with OE-BDUbc + BDSKL1 exhibiting the highest
activity. Overall, defense enzyme activity shows an initial increase followed by a decreasing
trend with prolonged infection time. Defense enzymes play a crucial role in plant disease
resistance [53–55], indicating that pathogen infection activates the disease resistance mecha-
nism in B. pervariabilis × D. grandis, increasing in defense enzyme activity. However, when
the accumulation of toxic substances exceeds the clearing capacity of defense enzymes,
defense enzyme activity decreases [56]. Upon infection, plants tend to increase their total
phenolic content to inhibit the growth and reproduction of pathogens, and phenolic content
is closely related to disease resistance [57], as is chlorophyll content [58,59]. Numerous stud-
ies have shown that higher chlorophyll content is associated with stronger plant disease
resistance [60]. The transgenic lines significantly increased their total phenolic and chloro-
phyll content compared to the wild-type lines to resist pathogen infection [57–60]. Salicylic
acid (SA) and jasmonic acid (JA) play crucial roles in plant–pathogen interactions, [61–63].
SA is pivotal in plant defense response signaling pathways and acquires resistance to
such pathways [61]. After pathogen invasion, plants respond to the pathogen’s stress
through the JA signaling pathway [64,65]. Following pathogen inoculation, the transgenic
lines exhibited significantly higher JA and SA levels than the wild type, and OE-BDUbc +
BDSKL1 had the highest levels.

4. Materials and Methods
4.1. Materials

A. phaeospermum (stored in the Laboratory of Forest Protection Pathology, College of
Forestry, Sichuan Agricultural University, Genbank accession number OK626768) and a A.
phaeospermum spore suspension were used (conidia from PDA plates of A. phaeospermum
spore Arthrospore cultured at 25 ◦C for 10 d were washed with sterile water and filtered,
and the spore concentration was adjusted to 106 cfu/mL). Escherichia coli DH5α, Agrobac-
terium tumefaciens GV3101 were purchased from Shanghai Ang Yu Biotechnology Co., Ltd.
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(Shanghai, China). One-year-old B. pervariabilis × D. grandis (40–50 cm plant height, ground
diameter 1–1.5 cm); B. pervariabilis ×D. grandis seeds; 30 plants each from the transgenic
lines, OE-BDUbc, OE-BDSKL1, OE-BDUbc + BDSKL1, and wild-type B. pervariabilis × D.
grandis (wild-type B. pervariabilis × D. grandis; and seeds were purchased from Sichuan
Biotechnology Innovation Science and Research Co. (Chengdu, China)). The expression
vectors were pCAMBIA1301-35SN and pSuper1300-GFP (purchased from Wuhan Miao
Ling Biotechnology Co., Ltd. (Wuhan, China)).

4.2. Methods
4.2.1. Bioinformatics Analysis of BDUbc and BDSKL1

The parameters for constructing the phylogenetic tree were set as follows: The
neighbor joining (NJ) method was employed using genetic distance [66] to construct
the phylogenetic tree. A Bootstrap (value = 1000) correction was performed on the gen-
erated tree to generate the final phylogenetic tree. The conserved structural domains of
the proteins were predicted using MEME (https://meme-suite.org/meme/tools/meme,
20 August 2023), and the important structural domains were predicted based on an E-
value < 0.05. Phosphorylation sites were predicted using the NetPhos 3.1 Server (http:
//www.cbs.dtu.dk/services/NetPhos/, 20 August 2023). Subcellular localization predic-
tions for the BDUbc and BDSKL1 proteins were performed using the PSORT Prediction tool
(https://www.predictprotein.org, 20 August 2023).

4.2.2. Extraction of Total RNA and cDNA Synthesis in B. pervariabilis × D. grandis

Total RNA extraction from B. pervariabilis × D. grandis was performed using the
TransZol RNA Extraction Kit (Beijing ComWin Biotech Co., Ltd., Beijing, China). The
extracted products were assessed for purity and integrity using agarose gel electrophoresis
(DYY-6D, Liuyi, Beijing, China) and a microvolume spectrophotometer (NANODROP,
ThermoFisher Scientific CN, Shanghai, China). RNA samples meeting the desired criteria
were reverse transcribed into cDNA using the All-in-One First-Strand cDNA Synthesis
Super Mix for PCR (Beijing ComWin Biotech Co., Ltd., Beijing, China) following the
manufacturer’s instructions, and the resulting cDNA was stored at −20 ◦C for further use.

4.2.3. Cloning and Vector Construction of BDUbc and BDSKL1

Specific primer sequences were designed based on BDUbc and BDSKL1 sequences
from the NCBI database (Table S1). PCR amplification was performed using the cDNA
of B. pervariabilis × D. grandis as a template. Homologous recombination primers for
overexpression vectors, pCAMBIA1301-35SN-BDUbc, and pCAMBIA1301-35SN-BDSKL1,
as well as subcellular localization vectors, pSuper1300-GFP-BDUbc and pSuper1300-GFP-
BDSKL1, were also designed (Table S1). PCR reactions were conducted using cDNA as
a template, and the PCR products were subsequently recovered. The pCAMBIA1301-
35SN and pSuper1300-GFP vectors were digested using the restriction enzyme KpnI and
incubated at 37 ◦C overnight. The digested fragments were purified and then ligated with
the BDUbc and BDSKL1 fragments, respectively, using the Trelief™ SoSoo Cloning Kit
(Beijing TsingKe Biotech Co., Ltd., Beijing, China) at 50 ◦C for 15 min. The BDUbc was
linked to the Nos terminator sequence, purified, and then combined with the linearized
pCAMBIA1301-35SN vector using a homologous recombination to obtain the recombinant
plasmid. Subsequently, the recombinant plasmid was digested, followed by the connection
of the Nos terminator, BDSKL1, and the MAS promoter, resulting in the co-expression vector
through homologous recombination. The ligated constructs were transformed into E. coli
DH5α competent cells, and positive clones were identified using colony PCR. Plasmids
from positive clones were extracted and sent for sequencing at Beijing TsingKe Biotech Co.,
Ltd. (Beijing, China) The sequences were compared to the correct sequences to confirm
that the target genes had not undergone mutations, and the plasmids were prepared for
further use.

https://meme-suite.org/meme/tools/meme
http://www.cbs.dtu.dk/services/NetPhos/
http://www.cbs.dtu.dk/services/NetPhos/
https://www.predictprotein.org
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4.2.4. A. tumefaciens Mediated Cultivation of B. pervariabilis × D. grandis Transformants

The plant binary expression vectors pCAMBIA1301-35SN-BDUbc and pCAMBIA1301-
35SN-BDSKL1 were separately introduced into A. tumefaciens GV3101 (pSoup-19) competent
cells using the freeze–thaw method [67], and positive clones were confirmed using colony
PCR. Embryos of B. pervariabilis × D. grandis seeds were cross-sectioned [68], disinfected,
and air-dried. The seeds were then inoculated onto MS medium supplemented with
500 mg/L proline, 500 mg/L glutamine, 300 mg/L casein hydrolysate, 30 g/L sucrose,
8 g/L agar, and 4 mg/L 2,4-D for callus induction under continuous light at 26 ◦C for ap-
proximately 20 days [1]. A. tumefaciens single colonies containing the desired vectors were
cultured in media containing the corresponding antibiotics until the OD600 = 0.2. Subse-
quently, the bacterial cultures were co-cultured with the callus tissues [68]. Overexpression
transformants were obtained after healing, screening, differentiation, and rooting.

4.2.5. Verification of Transgenic Plants

The DNA of B. pervariabilis × D. grandis was extracted using EasyPure® Plant Genomic
DNA Kit (Beijing All Style Gold Biotechnology Co., Ltd., Beijing, China), and the obtained
DNA was detected using the primer hyg501-F/R (Table S1), with A. tumefaciens as a positive
control and ddH2O as a negative control, using a conventional PCR reaction system and
sending the product to the company for sequencing. Using the transformed strain of
bamboo tiliaceus, RNA was extracted and reverse transcribed into cDNA. qPCR was
performed with GAPDH and Actin genes as internal references [2,69], the sequences of
BDUbc and BDSKL1 were referred to, and the primers for real-time fluorescence quantitative
PCR were designed using Primier 5.0 with qBDUbc-F/R and qBDSKL1-F/R (Table S1).
TransScript® Green One-Step qRT-PCR SuperMix (TransGen, Beijing, China) was used for
qRT-PCR. Three qPCRs were performed for each treatment group, the mean values were
calculated, and the data were analyzed using the 2−∆∆Ct method [70].

4.2.6. Pathogen Infection and Pathogenicity Testing

After 8 weeks of transplantation, 30 uniform and vigorous young shoots of each
variety of B. pervariabilis × D. grandis were selected. The spore suspension was inoculated
into the nodes of the bamboo shoots using a needle puncture method [71], with four nodes
per plant inoculated, and the inoculation was performed three times. Moist gauze was
used for humidity control, and sterile water was used as a control. Disease assessment was
conducted 28 d after infection, and disease incidence and severity index were calculated
using the following methods: Disease Severity Index = [∑(Number of Plants at Each
Disease Grade × Disease Grade)/(Total Number × Highest Disease Grade)] × 100 Disease
Incidence (%) = Number of Diseased Plants/Total Number of Plants × 100. Disease
assessment was conducted 28 d after infection, and disease incidence and severity index
were calculated using Fang’s method [72].

4.2.7. Changes in BDUbc and BDSKL1 Expression in Transformed Plants during Different
Periods of Infestation, as Detected by qRT-PCR

The transformants were inoculated with A. phaeospermum at 0 d, 3 d, 7 d, 14 d, 21 d,
and 28 d, and RNA was extracted and reverse transcribed into cDNA. qBDUbc-F/R and
qBDSKL1-F/R were used as the primers for fluorescence quantitative PCR, and GAPDH and
Actin genes were used as the internal references (Table S1). Three qPCRs were performed
for each treatment group, the mean values were calculated, and the data were analyzed
using the 2−∆∆Ct method.

4.2.8. Physiological and Biochemical Measurements

CAT activity was determined using the UV absorption method [73]. POD activity was
measured using the guaiacol method [74]. PPO activity was determined using the pyro-
catechol method [74]. SOD activity was assessed using the NBT assay [73]. GPX activity
was measured according to the DTNB method [75]. PAL activity was determined using
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the UV spectrophotometric method [76]: weigh approximately 0.1 g of tissue and add it to
1 mL of extraction solution for cold homogenization. Subsequently, centrifuge the sample
at 8000× g, 4 ◦C for 10 min, collect the supernatant, and keet it on ice for further analysis.
Follow the instructions in the Solarbio kit manual (Beijing Solarbio Science & Technology
Co., Ltd., Beijing, China). The calculation formulas are: CAT (U/mg prot) = [∆A × V/(ε ×
d) × 106]/(Vsample × Cpr)/T = 678 × ∆A/Cpr; POD (U/mg prot) = ∆A × V/(Vsample
× Cpr)/0.01/T = 7133 × ∆A/Cpr; PPO (U/mg prot) = ∆A/0.01 × V/(Cpr × Vsample)/T
= 60 × ∆A/Cpr; OD activity (U/mg prot) = [Percentage inhibition/(1 − Percentage in-
hibition) × V]/(Vsample × Cpr) × F = 11.11 × Percentage inhibition/(1 − Percentage
inhibition)/Cpr × F; GPX (U/mg prot) = ∆Ameasurement/(∆Astandard/Cstandard) ×
1000 × Venzyme/(Cpr × Vsample)/T = 200 × ∆Ameasurement/∆Astandard/Cpr; PAL
(U/mg prot) = ∆A × V/0.1/(Cpr × Vsample)/T = 17.3 × ∆A/Cpr. Where V is the total re-
action volume, ε is the molar absorption coefficient for H2O2, d is the cuvette’s path length,
Vsample is the volume of the added sample, T is the reaction time, W is the sample mass,
Cpr is the concentration of protein in the supernatant, and F is the sample dilution factor.

Chlorophyll content was measured using the ethanol extraction method [77]: Weigh
approximately 0.1 g of tissue, homogenize it in 1 mL of distilled water, and then transfer
it to a 10 mL test tube. Rinse the container with anhydrous ethanol and transfer all the
washings to the test tube, adding enough anhydrous ethanol to reach 10 mL. Allow the
mixture to soak in darkness or wrap in aluminum foil for 3 h until the residue turns
white. The calculation formula is: Total Chlorophyll Content (mg/g) = (20.21 × A645 +
8.02 × A663) × Vextract × F ÷ W ÷ 1000 = 0.01 × (20.21 × A645 + 8.02 × A663) × F ÷ W.
Where Vextract is the volume of the extraction solution, F is the dilution factor, and W is
the sample mass.

Total phenolic content was determined using the Folin–Ciocalteu method [78]: Dry the
sample until constant weight, grind, and sieve through a 30−50 mesh. Weigh about 0.1 g,
add 2.5 mL of extraction solution, and perform ultrasonic extraction at 300 W and 60 ◦C for
30 min. Centrifuge at 12,000 rpm, 25 ◦C, for 10 min, collect the supernatant and adjust to
2.5 mL with extraction solution for testing. Follow the instructions provided by the Solarbio
kit. The calculation formula is: Total Phenolic Content (mg/mg prot) = x × Vextract ÷
(Vextract × Cpr) = x ÷ Cpr. Where Vextract is the volume of the extraction solution, Cpr is
the sample protein concentration, and x represents the measurement.

The activity of JA and SA was assessed using the ELISA method [79]: Take 0.1 g of
fresh plant sample, grind it liquid nitrogen, and add nine times the volume of PBS buffer
with a pH of 7.4. Centrifuge it at 4 ◦C for 30 min, and collect the supernatant for testing.
Perform the determination according to the instructions provided by the Solarbio Jasmine
Acid (JA) ELISA Kit and the Salicylic Acid (SA) ELISA Kit (Beijing, China). Calculate the
quadratic regression equation of the standard curve using the concentration of the standard
substance as the ordinate and the OD value as the abscissa. Substitute the sample’s OD
value into this equation to calculate the sample concentration. The calculation method is:
y = 37.878x2 + 738.88x − 24.694 (R2 = 0.9998).

4.2.9. Subcellular Localization of BDUbc and BDSKL1

Tobacco grown at a temperature of 24 ◦C for approximately 30 d was selected for A.
tumefaciens infiltration experiments. The pSuper1300-GFP-BDUbc and pSuper1300-GFP-
BDSKL1 constructs were separately introduced into A. tumefaciens GV3101 (pSoup-19)
competent cells using the freeze–thaw method. Colonies were confirmed using PCR and
grown in culture. A small incision was made on the underside of tobacco leaves using a
needle, and the bacterial solution was injected into the leaf. The marked areas on the leaf
were noted, and the tobacco leaves were incubated at around 21 ◦C for 2 d. Subsequently,
the marked regions of the tobacco leaves were dissected and observed using a laser confocal
microscope (FV3000, Olympus, Tokyo, Japan). GFP fluorescence was detected using a
495 nm excitation light and 507 nm emission filter, while RFP fluorescence was detected
using a 532 nm excitation light and 588 nm emission filter for fluorescence imaging.
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4.2.10. Data Analysis

The data in this paper were plotted using GraphPad Prism 7 (GraphPad software Inc.,
La Jolla, CA, USA, 1989) and analyzed for significance using SPSS 27.0 (p < 0.05).

5. Conclusions

In summary, based on the analysis of disease incidence, the disease severity index,
and physiological and biochemical parameters in transgenic lines, the results suggest that
BDUbc and BDSKL1 may act as disease-resistance genes in B. pervariabilis × D. grandis
against blight. Studies have shown that the chloroplast-associated protein degradation path-
way can regulate the transport of chloroplast proteins through the ubiquitin–proteasome
system to alter chloroplast protein stability and mediate plant stress resistance [80]. There-
fore, the BDUbc gene in B. pervariabilis × D. grandis may participate in resistance to blight
by influencing changes in chlorophyll content mediated by BDSKL1 through ubiquitination.
This study provides evidence that BDUbc and BDSKL1 may have a synergistic enhancing
effect. Our existing research lacks an investigation of the upstream and downstream regu-
latory mechanisms of the BDUbc and BDSKL1 genes. In our next research endeavors, we
aim to explore the upstream and downstream regulatory genes associated with BDUbc
and BDSKL1, along with their interacting proteins, validating the functions of these genes
and proteins. We aim to construct a comprehensive disease-resistant regulatory network
involving BDUbc and BDSKL1, delving deeper into novel transcriptional regulatory mecha-
nisms in the resistance of B. pervariabilis × D. grandis to diseases. This endeavor aims to
provide theoretical support for the future development of new strategies for preventing
and controlling bamboo shoot blight.
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