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Abstract: Male gametophyte development in plants relies on the functions of numerous genes,
whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and
diverse environmental stresses. Several excellent reviews are available that address the genes and
enzymes associated with male gametophyte development, especially pollen wall formation. Growing
evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs
coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the
sequential male gametophyte development. However, very little summarization has been performed
to comprehensively review their intricate regulatory roles and discuss their downstream targets
and upstream regulators in this unique process. In the present review, we highlight the research
progress on the regulatory roles of TF families in the male gametophyte development of flowering
plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in
male gametophyte development are also addressed.

Keywords: flowering plants; male gametophyte development; transcription factors; regulatory roles;
downstream targets; upstream regulators

1. Introduction

Successful male gametophyte development is critical for plant reproduction, the
creation of genetic diversity, and agricultural production [1]. Pollen development, pollen
germination, and pollen tube growth, which are predominantly hidden within the tissues of
the flower, are complex processes [2]. Angiosperm pollen ontogenesis is comprised of two
sequential phases, a developmental phase, leading to the formation of mature pollen grains,
and a functional phase, initiated right after the landing of pollen grains on the stigma
and ending with double fertilization [3]. By gene-by-gene characterization, a considerable
number of gametophytic/sporophytic tissue-expressed genes have been identified to be
implicated in this extremely precise process of pollen ontogenesis [4,5]. It is estimated
that about 14,000 genes and 25,000 transcripts are expressed in the male gametophytes of
the dicot plant model organism Arabidopsis thaliana (hereafter, Arabidopsis) and monocot
model rice (Oryza sativa), respectively [6,7]; however, the regulatory framework of the
majority is still hiding somewhere outside our realm of cognition.

Transcription factors (TFs) in higher plants are proteins that interact with a specific
DNA sequence and promote or repress the transcriptional activity of target genes [8]. They
are typically composed of a DNA-binding domain, a transcription regulation domain, an
oligomerization site, and a nuclear localization signal [7]. To date, the manipulation of
more than 58 TF families in plant growth and development, as well as response to various
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environment stresses, has been demonstrated, including basic helix–loop–helix (bHLH) TFs,
MYB TFs, and Lateral Organ Boundaries Domain/Asymmetric Leaves 2-like (LBD/ASL)
proteins [9–12]. It is notable that in the last decade, a large number of TFs related to
the male gametophyte development process, especially meiosis, microspore and tapetum
development, and pollen wall formation, have been identified, such as MMD1, LBD27/10,
DUO1, AMS, DYT1, and ARF17 [13–15]. A loss-of-function investigation of these TFs
revealed considerable variations in morphological phenotype of anther/pollen behaviors,
indicating the essential prerequisite of TF regulation for male gametophyte development.
Furthermore, several TFs form regulatory cascades in determining the differentiation and
development of anther and/or pollen [14,16–19].

Numerous studies have demonstrated the important biological functions of individual
TFs in male gametophyte development [20–23]. Several excellent reviews have summarized
genes and enzymes necessary for pollen development, especially the formation of the
outer pollen wall named exine [1,15,24–27]. Recently, a review focusing on the molecular
mechanism of TFs driving their functions in gametogenesis and sexual reproduction of
non-seed plants and algae was available [28]. However, no relevant review exists to
comprehensively sort out and summarize the research progress on the roles and their
intricate coordinated regulation of various TFs during the male gametophyte development
of flowering plants.

In this review, we summarize the current knowledge on the study of TFs associated
with male gametophyte development in flowering plants, with emphasis on the regulatory
roles of TFs in microspore development and tapetum function. In addition, we highlight
recent advances in understanding the coordinated transcriptional regulation, epigenetic
control, and other regulators of TFs involved in male gametophyte development.

2. Male Gametophyte Development of Flowering Plants

The acquisition of durable pollen grains, surrounded by an elaborately sculpted pollen
wall capable of withstanding the harsh terrestrial environment, provides a guarantee
for successful sexual reproduction and alternation of generation in flowering plants [29].
Pollen development is a highly conserved process stemming from anther cell division
and differentiation, leading to male meiosis and germ cell formation, as well as pollen
wall construction [30,31]. This complex process occurs inside the anther chamber, which
is surrounded by an epidermis, an endothecium, a middle layer, and a tapetum from
outside to inside [32]. In the plant model organism Arabidopsis, pollen mother cells (PMCs)
derived from the archesporial cells generate a tetrad (Td) of four haploid spores surrounded
by a callose wall following the first meiosis. Then, the callose is timely degraded by callase,
which is produced by sporophytic tapetum, to dissolve the haploid microspore, which
further undergoes an asymmetric mitosis, resulting in a generative cell and a vegetative
cell. Subsequently, the generative cell undergoes further mitosis to form a tricellular pollen
(TCP) with a vegetative cell and two sperm cells [33–38].

Along with the development of male gametophytes, the pollen wall is elaborately
constructed simultaneously when individual microspores are released after callose degra-
dation [15,25]. The fundamental structure of the pollen wall shows a significant similarity
among different species, with an outer exine mainly composed of sporopollenin and
an inner intine mainly consisting of pectin, cellulose, hemicellulose, and hydrolytic pro-
teins [25,33,39]. The synthesis of the pollen wall starts at the Td stage when the precursors of
sporopollenin secreted from the tapetum begin to deposit and assemble onto the primexine
around the young haploid microspores. The basic exine structure is evident in uninucleate
microspores (UNMs) and the mature exine structure is visually completed at the bicellular
pollen (BCP) stage, with the outer sexine comprising tectum and radially directed bacula
and the inner nexine. Simultaneously, the intine starts to develop at the UNM stage and
constantly thickens by the BCP stage. During pollen maturation, tapetum remnants deposit
as pollen coats (tryphine) and fill the cavities of sexine [13,25,40].
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In the functional phase of male gametophyte development, pollen grains are adhered
onto the stigma and activated by rehydration, triggering pollen germination [41]. Then,
the pollen tube penetrates the stigma and delivers two sperm cells into the embryo sac for
double fertilization [42].

3. Roles of TFs in Male Gametophyte Development

High-throughput technologies have enabled analysis of the pollen transcriptome
on a global scale [6,7,43–46]. Although the transcriptome is highly reduced compared
with sporophytic tissues, like roots and leaves, a large number of genes are active in
male gametophytes, with a progressive decrease in the transcript diversity from UNMs
to TCPs/germinated pollen grains (GPGs), indicating putative functions in male gameto-
phyte development [4]. Tremendous efforts involving genetic and transcriptomic approaches
demonstrated that hundreds of genes function in male gametophyte development [3,5,15,25,47].
In addition to nuclear genes, some mitochondrial genes were also involved in male ga-
metophyte development and determining pollen fertility, with considerable variations in
the morphological phenotype, particularly the microspore and tapetum behaviors arising
from gene mutation [48–50]. How the expression of these genes is coordinated for the
sequential male gametophyte development has not been well investigated. Analysis of
transcriptomic data identified a set of TFs that are specifically or preferentially expressed
during male gametophyte development [22,51–53]. In the last decades, a set of reverse
genetic screens and forward genetic strategies have identified a batch of TFs with specific
expressions and regulatory roles in male gametophyte development, demonstrating the
undoubted implementation of TFs in the pollen ontogenesis of flowering plants. In the
following, we highlight advances in the regulatory roles of TFs and their targets to obtain a
deeper understanding of male gametophyte development (Figure 1).

3.1. bHLH TFs
3.1.1. Structure and Classification of bHLH TFs

bHLH proteins are one of the largest TF families in plants [54]. They are character-
ized by a highly conserved bHLH domain, which comprises two functionally distinct
regions: the basic region at the N-terminus with the highly conserved HER motif (His5-
Glu9-Arg13) that determines the DNA binding activity and specificity, and the HLH region
(two amphiphathic α-helices connected by a loop of variable length) required for the for-
mation of homo- or heterodimers [54]. Based on evolutionary relationships, DNA-binding
specificity, and the conserved amino acids and domains, bHLHs could be classed into
six different groups, among which group B has the bulk of plant bHLHs, and twenty-
six sub-groups [10,55]. The bHLH gene family expanded dramatically in higher plants,
and there are approximately 162 and 111 bHLH genes in Arabidopsis and rice, respec-
tively [54]. Several excellent reviews are available that address the importance of these TFs
for the transcriptional regulation of genes that participate in many essential physiological
and development processes, as well as environmental stress adaptation and tolerance
in plants [56].

3.1.2. Roles of bHLH TFs in Male Gametophyte Development

The sporophytic tapetum has been proposed to provide a cascade contribution to
pollen development based on cytological and molecular investigation [57]. There are five
conserved TFs that proved to be critical for tapetum fate determination, among which AMS
and DYT1/AtbHLH022 are bHLH members. In Arabidopsis, the homozygous ams mu-
tant showed abnormally enlarged tapetal cells, delayed callose degradation, and aborted
microspores devoid of sporopollenin precursors [58,59]. In the tapetum, AMS as a master
regulator has a dual role in pollen wall construction. It directly regulates an MYB TF
MS188 for sexine formation and an AT-hook nuclear localized (ATL) family protein TEK,
which further directly targets arabinogalactan protein (AGP)-encoding genes, such as AGP6,
for nexine layer formation, respectively [13]. In addition, AMS directly targets 23 genes



Int. J. Mol. Sci. 2024, 25, 566 4 of 24

involved in tapetal development and pollen wall formation, including ABCG26/WBC27 es-
sential for sporopollenin precursor transport, A6 involved in callose dissociation, CYP703A2,
CYP704B1, and KCSs for very-long-chain fatty acid synthesis, PKSA and TKPR1 for phenolic
synthesis, and EXLs and GRPs for tryphine formation [58–60]. Rice TDR, an orthologue
of AMS, has also been implicated in pollen wall development by regulating aliphatic
metabolism, a mutation that exhibits degeneration retardation of the tapetum and mid-
dle layer and collapsed pollen without sporopollenin or pollen coat deposition [61,62].
DYT1/AtbHLH022 directly regulates the expression of an MYB gene TDF1 and acts up-
stream of AMS, MS188, TEK, and MS1 for early tapetal development and pollen wall
construction [63]. Although there is a high similarity between the downstream genes of
DYT1 and AMS, the identification of hundreds of DYT1- and AMS-specific genes indicated
the specific functions of these regulators [64]. Furthermore, the relatively conserved roles of
the homologies of AMS and/or DYT1 in tapetal development have been also characterized
in maize and tomato [65,66].
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Disruption of rice bHLH142/TIP2, whose expression is restricted to anthers, caused
pollen sterility by interfering with meiosis and tapetal programmed cell death (PCD) [23].
Moreover, the overexpression of bHLH142 upregulated the expression of EAT1/DTD1/bHLH141,
which positively regulated the expression of two aspartic protease genes, AP37 and AP25,
resulting in premature tapetal PCD [67,68]. All these findings emphasized the role of
bHLH142 as a central switch in early anther development. Three duplicated Arabidop-
sis bHLH genes, bHLH089, bHLH091, and bHLH010, together are important for anther
development; the double and triple mutants of bHLH089/091/010 progressively exhib-
ited increasingly aberrant anther phenotypes with abnormal tapetum, delayed callose
degeneration, and aborted pollen, whereas single mutants showed no discernible phe-
notypic alterations [22,69]. MYC2/bHLH6, MYC3/bHLH5, MYC4/bHLH4, and JAZ
repressor-targeted MYC5/bHLH28 have redundant functions, and the myc2 myc3 myc4
myc5 quadruple mutant exhibited severe defects in stamen development with delayed
anther dehiscence and pollen maturation [70,71]. The function of BONOBO1 (BNB1) and
BNB2, two members of the bHLH VIIIa subfamily, in the asymmetric division during pollen
development, has been also identified recently [72].

3.2. MYB TFs
3.2.1. Structure and Classification of MYB TFs

As one of the most prevalent TFs in plants, MYB TFs have a modular structure with a
highly conserved MYB domain at the N-terminus, which generally consists of up to four
amino acid sequence repeats, each building three α-helices, and a variable transcription-
activating/repressing domain usually located at the C-terminus [9]. According to the
number of adjacent MYB repeats, plant MYB TFs are divided into 1R-MYB/MYB-related,
R2R3-MYB, 3R-MYB, and 4R-MYB classes [9]. Advances in the functional investigation of
MYB TFs since the identification of the first MYB gene COLORED1 in maize emphasize their
significance in a multitude of vital plant activities related to plant growth and development,
including primary and secondary metabolism, plant tissue differentiation and development,
stress responses, and especially male gametophyte development [73–75].

3.2.2. Roles of MYB TFs in Male Gametophyte Development

To date, a total of 197 and 155 MYB TFs have been identified in the model plant Ara-
bidopsis and rice, respectively [76]. Several MYB TFs, especially the largest subfamily R2R3-
MYB TFs, have been implicated in tapetal function by genetic approaches. TDF1/AtMYB35
and MS188/AtMYB103/AtMYB80 encode two R2R3-MYB TFs. The male-sterile mutant tdf1
exhibited severely impaired tapetal development and callose dissolution [77]. The knockout
mutant in OsTDF1, the orthologue of Arabidopsis TDF1, exhibited a similar phenotype
with tdf1 with vacuolated and hypertrophic tapetal cells in rice [78]. Mutation in MS188
interfered with tapetal development, callose dissolution, and exine formation, which nega-
tively impacted microspore development and male fertility [79]. A recent loss-of-function
study of OsMS188 showed that mutant osms188 displayed impaired tapetal degradation,
an absence of sexine, and a defective anther cuticle [80]. Further study demonstrated that
TDF1 might be associated with redox and cell degradation, while MS188 is involved in
the biosynthesis of sporopollenin [64]. Two GAMYB-Like genes, MYB33 and MYB65, have
a redundant role in anther development in Arabidopsis, as neither of the single mutants
myb33 or myb65 exhibited an overt phenotypic alteration, while the myb33 myb65 double
mutant displayed aberrant tapetum hypertrophy and premeiotic pollen abortion [81].

Previous studies showed that MYB108 and MYB24 are critical components of a jas-
monate acid (JA)-mediated transcription cascade that acts downstream of MYB21 and
regulates anther dehiscence and pollen maturation [82]. More recently, MYB21 and MYB24
were shown to act in a regulatory triad with MYB99, which regulates the phenylpropanoid
biosynthesis for pollen coat patterning by controlling TRANSKETOLASE2 expression [83].
Recently, another tapetum-expressed MYB2 has been found to directly activate the expres-
sion of protease genes CEP1 and βVPE, which, in turn, regulate the tapetal PCD and pollen
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formation [84]. CSA encodes an R3R3-MYB TF that acts upstream of the monosaccharide
transporter-encoding gene MST8 and regulates sugar partitioning essential for pollen devel-
opment in rice [85]. The silencing of SIMYB33, a GAMYB-like gene preferentially expressed
in the pistils and stamens of tomatoes, caused delayed flowering, aberrant pollen viability,
and decreased fertility, probably through modulating the sugar metabolism [86]. Another
GAMYB homolog called LoMYB33 is strongly expressed in pollen and anther at the late
developmental stages of a lily. The overexpression of LoMYB33 has been reported to cause
adverse impacts on anther development and result in partial male sterility [87].

The study also shed light on the regulatory roles of MYB TFs in male germline develop-
ment. The first male germline-specific R2R3-MYB TF DUO1/AtMYB125 was characterized
and found to be essential for germ cell division and gamete specification during microspore
development by activating a germline-specific regulon, including MGH3, GEX2, GCS1, and
CYCB1;1 [88]. Further investigation revealed that DUO1 acts upstream of two EAR motif-
containing C2H2-type zinc finger proteins (ZFPs) DAZ1 and DAZ2, which interact with the
corepressor TOPLESS and lead to transcriptional repression [14]. A recent study showed
that another microspore-specific GAMYB AtMYB81 stimulates Arabidopsis pollen’s first
mitosis. Mutant myb81-1 pollen was arrested before pollen mitosis II and failed to establish
two cell lineages essential for pollen development [89].

In addition to the robust roles described above, some MYB TFs are indispensable
during the pollen functional phase. MYB109 was found to negatively modulate pollen tube
growth by suppressing the pollen development regulator RABA4D in Arabidopsis [90].
MYB97, MYB101, and MYB120 were pollen-expressed and redundant in the pollen tube
reception of Arabidopsis, as single and double mutants exhibited no discernable defective
phenotype, while the triple myb97 myb101 myb120 pollen tubes failed to stop growing in
synergids, which resulted in drastically reduced fertility [91,92].

3.3. BRI-EMS-Suppressor 1 (BES1) Family Members
3.3.1. Structure and Classification of BES1 Family Members

Brassinosteroids (BRs), plant-specific polyhydroxy steroidal hormones, regulate mul-
tiple processes during plant growth and development, including male fertility [93–95].
Brassinazole-Resistant 1 (BZR1) and BES1 are two key homologous TFs in BR signaling
transduction, which, in turn, regulate thousands of target genes by binding to the E-box
(CANNTG) or BR-response element (BRRE, CGTGT/CG) [96,97]. They belong to a fam-
ily consisting of six members, including BZR1, BES1, BEH1, BEH2, BEH3, and BEH4 in
Arabidopsis [96,98–101].

3.3.2. Roles of BES1 Family Members in Male Gametophyte Development

Previously, BZR1, together with BES1-Interacting MYC-like proteins (BIMs), was found
to bind cis-elements in the Flowering Locus D (FLD) promoter and the first intron of FLC to
regulate flowering in Arabidopsis [102,103]. More recently, a quintuple mutant for BES1,
BZR1, BEH1, BEH3, and BEH4 was generated, showing impaired tapetum differentiation
and microsporogenesis [101]. Further genetic and biochemical evidence demonstrated that
BES1, which regulates BR-mediated gene expression, is activated by EMS1-TPD1-SERK1/2-
mediated signaling to control tapetum and pollen development [101]. Among the diverse
target genes of BES1, mutants for SPL/NZZ, TDF1, AMS, MS1, and MS2 had reduced pollen
production and pollen viability [104]. In addition, OSBZR1 in rice was found to directly
promote the expression of CARBON STARVED ANTHER (CSA) which encodes an MYB
TF, and CSA directly triggers the expression of sugar partitioning and metabolic genes to
ultimately promote pollen development [105].

3.4. MCM1/Agamous/Deficiens/SRF (MADS) TFs
3.4.1. Structure and Classification of MADS TFs

MADS TFs are widely found in eukaryotes and constitute a large gene family in plants.
Currently, there are 107 genes encoding MADS TFs identified in Arabidopsis [106]. The
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defining feature of MADS TF family members is the presence of the MADS domain named
for MCM1/Agamous/Deficiens/Serum Response Factor [107]. MADS TFs can be divided
into two lineages, type I and type II, distinguished by exon–intron and domain structure,
rates of evolution, developmental function, and degree of functional redundancy [108].
Type I MADS TFs are further subdivided into three groups, Mα, Mβ, and Mγ, based on
their phylogeny and the presence of conserved motif at the C-terminus [108]; while type
II, which are characterized by the presence of a distinct domain structure consisting of
the MADS, intervening (I), keratin-like (K), and C-terminal (C) domains, are subdivided
into MIKCc and MIKC* sub-groups based on the number of the I domain-encoding exons
and the differences in the K domain structure [109]. It has become clear that plant MADS
TFs act throughout the whole lifecycle of the plants, including vegetative growth, pollen
and embryo sac formation, and seed development [108,110–112]. In addition, MICK-type
MADS TFs also play a role in plant responses to various biotic and abiotic stresses [113,114].

3.4.2. Roles of MADS TFs in Male Gametophyte Development

MADS TFs are required to control the complex transcriptional networks regulating
male gametophyte development. AGL65, AGL66, and AGL104 are MIKC-type MADS-box
genes in Arabidopsis. The loss of AGL65 protein significantly decreased pollen germination
rates, while the double mutant of AGL66/104 almost prevented pollen germination in vitro
and affected pollen tube growth [115]. A triple mutant for AGL65/66/104 had normal
pollen morphology but displayed markedly reduced pollen competitiveness compared to
WT [116]. In rice, OsMADS62, OsMADS63, and OsMADS68 are preferentially expressed
in mature pollen and have functional redundancy during late pollen development. Their
triple knockout mutant showed a complete sterile phenotype with pollen that could not
germinate [51]. The MIKC-type MADS-box gene ZmMADS2 is pollen-expressed and
essential for male gametophyte development in maize. The loss-of-function mutation
in ZmMADS2 generated through antisense technology resulted in arrested anther and
pollen development [117]. The RNAi-mediated suppression of SlGLO1, a MADS-box
gene highly expressed in tomato petals and stamens, caused severe male sterility and
aberrant pollen [118].

3.5. WRKY TFs
3.5.1. Structure and Classification of WRKY TFs

WRKY proteins make a large complex TF family in higher plants and comprise 74,
287, and 129 members in Arabidopsis, Brassica napus, and rice, respectively [119–122]. They
contain a DNA binding domain of approximately sixty amino acids in length, characterized
by one or two conserved WRKYGQK motifs at the N-terminus and a zinc finger-like motif
formed by the conserved cysteines and histidines (C2H2-type: CX4CX22-23HX1H, C2HC-
type: CX7CX23HX1C) [123,124]. WRKY proteins bind directly to the W box (TTGACC/T)
DNA-binding site to repress or trigger the expression of their downstream targets. Based
on phylogenetic analyses, the number of WRKY domains and the type of zinc finger-like
motif, the WRKY proteins in flowering plants can be classified into three categories: Group
I, Group II (which can be further classified into IIa, IIb, Iic, Iid, and Iie sub-groups), and
Group III [119,125]. An increasing number of studies have demonstrated that WRKY TFs
are involved in plant growth and development processes, as well as responses to biotic and
abiotic stresses [126–128].

3.5.2. Roles of WRKY TFs in Male Gametophyte Development

Some WRKY TFs are involved in male gametophyte development and abiotic stress
responses during this process in flowering plants. Previously, the overexpression of
pollen-specific WRKY34 was shown to negatively affect the fertility of mature pollen
in Arabidopsis [20]. More recently, WRKY34 was reported to function redundantly with
WRKY2, and together they interact with VQ20 proteins to form complexes to modulate
pollen function [129,130]. Triple mutants for these genes exhibited defects in pollen de-
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velopment, pollen germination, and pollen tube growth. Moreover, in Arabidopsis, the
deletion of WRKY2 and WRKY34 resulted in a decreased expression of a target gene GPT1
and a reduced accumulation of lipid bodies in pollen, ultimately leading to a decreased
pollen germination rate and reduced pollen viability [131]. In addition, WRKY34 expression
is upregulated under cold stress, and mutation in WRKY34 exhibited increased pollen
viability after cold treatment. Further functional analysis indicated that WRKY34 acts
downstream of MIKC*-type MADS TFs and might be involved in the CBF signal cascade in
mature pollen under cold stress [20]. GhWRKY22 is mainly expressed during the late stages
of cotton pollen and flower bud development, a mutation that caused defective pollen
development with the dysregulation of genes involved in JA synthesis [132]. The overex-
pression of WRKY27 in Arabidopsis caused abnormal anther dehiscence and decreased
pollen viability, resulting in male sterility [133].

3.6. ZFPs
3.6.1. Structure and Classification of ZFPs

ZFPs are among the most abundant proteins in plants. Numerous studies have re-
vealed that ZFPs participate in the regulation of many developmental processes, hormone
responses, and stress tolerance [18,134,135]. ZFPs are characterized by a zinc finger do-
main that forms a ββα configuration with a two-stranded antiparallel β-sheet and a short
α-helix [136]. The binding of zinc stabilizes the folded finger-like polypeptide dimensional
conformation so that it may facilitate interactions between the proteins and other macro-
molecules, such as DNA. Based on the number and position of cysteine and histidine
residues that bind zinc ions, ZFPs can be divided into nine types: C2H2, C8, C6, C3HC4,
C2HC, C2HC5, C4, C4HC3, and CCCH [136]. Of these, C2H2 ZFPs comprise the largest
class and are most clearly characterized in plants. Currently, a total of 176, 189, and 118
C2H2 ZFPs have been identified in Arabidopsis, rice, and tobacco, respectively [137–139].

3.6.2. Roles of ZFPs in Male Gametophyte Development

There is abundant evidence that ZFPs perform their functions in male gametophyte
development through transcriptional or chromatin regulation. In petunias, seven ZFPs
were found to be expressed sequentially during anther development, implying a regulatory
cascade of these TFs [140]. Further investigation showed that the silencing of one of these
ZFP genes, the anther-specific MAZ1, affected multiple aspects of meiosis, which included
an inability of chromosomes to condense, a loss of meiotic synchrony and uncontrolled
cytokinetic events, and pollen abortion [141]. Another ZFP gene, TAZ1, from petunias
is tapetum-specific, the silencing of which caused premature degeneration of tapetum,
defects in pollen wall formation, and extensive pollen abortion [142]. BcMF20 was isolated
from the flower buds of Chinese cabbage (B. campestris) and is highly similar to petunia
TAZ1. It is specifically expressed in tapetum and pollen during the late developmental
stages. The suppression of BcMF20 expression resulted in the malformation of the pollen
wall and finally caused pollen deformity and reduced germination rates [143]. AtZAT4
encodes a C2H2 ZFP in Arabidopsis, and its T-DNA insertion mutant exhibited decreased
silique length, seed setting, and pollen germination rates [144]. DAZ1 and DAZ2 are male
germine-specific nuclear C2H2-type ZFPs. The double mutant daz1 daz2 showed a class
of bicellular pollen grains with a single germ cell-like nucleus, indicating that DAZ1 and
DAZ2 are required for germ cell division and correct gamete differentiation [14].

Recently, the regulation of tandem CCCH ZFPs in anther/pollen development has also
been highlighted. Arabidopsis C3H14 and its homolog C3H15 were demonstrated to redun-
dantly regulate secondary wall formation and additionally function in anther development.
The c3h14 c3h15 double mutants produced few pollen grains. Subcellular localization
and biochemical analyses suggested that C3H14 and C3H15 might function at both the
transcriptional and post-transcriptional levels [145]. Another Arabidopsis CCCH ZFP
gene, AtC3H18, is predominantly expressed in the developing microspores, and its gain-
of-function mutant exhibited a male sterility phenotype. Further investigation suggested
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that AtC3H18 may modulate pollen mRNA by regulating the assembly/disassembly of
messenger ribonucleoprotein (mRNP) granules, thereby affecting pollen development [146].
CCCH ZFP genes BcMF30a and BcMF30c are substantially expressed during microgameto-
genesis and pollen germination in B. campestris. Both loss-of-function and gain-of-function
mutants in BcMF30a and BcMF30c displayed aberrant pollen development [147,148]. Rice
DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly(A) bind-
ing proteins in nuclear speckles. It is required for male meiotic cytokinesis by preserving
callose from premature dissolution [149]. In Arabidopsis, the mutation of CDM1, a gene
encoding a CCCH ZFP, also affected the expression of some callose-related genes [150].

3.7. LBD Proteins
3.7.1. Structure and Classification of LBD Proteins

The LBD gene family encodes a class of plant-specific TFs that significantly impact
plant growth and metabolism, particularly lateral branch and organ development [151,152].
Genome-wide analysis has identified a total of 42 and 31 LBD genes in Arabidopsis and rice,
respectively [151–153]. LBD proteins comprise a conserved LOB domain at the N-terminus
and a variable C-terminal region responsible for transcriptional activation/repression of
target gene expression [11]. The LOB domain primarily consists of three parts: the C-block
(CX2CX6CX3C) that binds to DNA, the leucine-zipper-like coiled-coil motif (LX6LX3LX6L)
that dimerizes the proteins, and the GAS block (Gly-Ala-Ser). Based on the phylogenetic
analysis and sequence similarities, LBD proteins can be divided into two categories: class
I and class II. All class I LBD members contain a C-block, a GAS block, and a leucine
zipper-like coiled-coil motif, and can be sub-grouped into four clades (IA, IB, IC, and ID),
while class II members lack an intact leucine zipper-like motif and are sub-grouped into
IIA and IIB [152,154].

3.7.2. Roles of LBD Proteins in Male Gametophyte Development

Genetic approaches have revealed several LBD proteins that play critical roles during
male gametophyte development. Sidecar Pidecar/LBD27/ASL29, which is dynamically
expressed in microspore nuclei, is required for the proper timing and orientation of the
asymmetric microspore mitosis [155]. Further investigation revealed that LBD10 co-acts
with LBD27 to regulate male gametophyte development [155,156]. In addition to LBD10 and
LBD27, the functions of LBD22, LBD25, and LBD36 in pollen development have been also
identified. These five LBD genes exhibit spatially and temporally distinct and overlapping
expression patterns and interact with each other to form heterodimers for their function in
pollen development in Arabidopsis [157].

3.8. NAM/ATAF1/2/CUC1/2 (NAC) TFs
3.8.1. Structure and Classification of NAC TFs

The NAC proteins, which constitute a large and widespread plant-specific TF family,
have numerous functions, including plant development, senescence, cell wall biosynthesis,
and abiotic and biotic stress responses [158–162]. Currently, a remarkable diversification
of NAC genes has been addressed across the plant kingdom. For instance, 105 and 151
NAC members have been found in Arabidopsis and rice, respectively [163–165]. NAC
proteins have a modular organization, consisting of a ~150 amino acid-conserved NAC
domain at the N-terminus, which forms a seven-stranded antiparallel twisted β-sheet
flanked by α-helices, and a variable C-terminal domain with transcriptional regulatory
activity [166–168].

3.8.2. Roles of NAC TFs in Male Gametophyte Development

The diverse roles of NAC TFs have been found in plants, especially their contribution
to male gametophyte development. ANAC092 is expressed in developing anthers in
Arabidopsis, the overexpression of which suppressed pollen production and upregulated
the expression of pollen development-associated genes, such as DYT1 and AMS [169]. NST1
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and NST2 are two NAC TFs that are redundant in regulating secondary wall thickening
in anther walls and are required for anther dehiscence [170]. Another Arabidopsis NAC
gene, TAPNAC, has a cis-regulatory element in its promoter to direct its specific expression
in the tapetum, suggesting a potential role in tapetum function [171]. AIF is a NAC-like
gene involved in anther dehiscence through regulating the expression of JA biosynthesis
genes [172]. In maize, ZmNAC84 has been demonstrated to directly bind and repress the
expression of ZmRbohH, thereby affecting pollen development [173]. RNAi transgenic
rice plants for Os07g37920, an NAC gene that is homologous to wheat GPC-B1/2, had
reduced pollen viability and failed anther dehiscence [174]. In addition, the heterologous
expression of a cotton NAC gene GhFSN5 in Arabidopsis negatively regulated secondary
cell wall biosynthesis and anther development, leading to collapsed and nonviable pollen
and severe sterility [175].

3.9. Other TFs

In addition to the above-mentioned TF family members, there are many other TFs
that play a role in male gametophyte development. MS1 is a plant homeodomain (PHD)-
finger TF directly targeted by MS188 and controls the expression of sporophytic pollen
coat proteins (sPCPs) in Arabidopsis [176]. Mutant ms1 pollen grains showed abnor-
mal exine development and were devoid of tryphine [177,178]. OsERF101 encodes an
APETALA2/ethylene-responsive element-binding protein (AP2/EREBP), which is pre-
dominantly expressed in flowers, particularly in the tapetum and microspores in rice. It
was discovered that during reproductive development, pollen fertility and drought tol-
erance were compromised in knockout mutant and RNAi lines, whereas they improved
in the OsERF101-overexpressing plants [179]. HsfA2a and HsfA1a are two heat stress TF
(Hsf)-encoding genes that are mutually activated during the heat stress response process in
tomatoes (Solanum lycopersicum L.). Previously, the suppression of HsfA2a expression was
shown to reduce pollen thermotolerance during meiosis and microsporogenesis and cause
pollen sterility [180]. Recently, HsfA1a was reported to maintain pollen thermotolerance
by enhancing antioxidant capacity and protein repair and degradation, ultimately improv-
ing pollen viability and fertility [181]. Other TFs and their target genes involved in male
gametophyte development are represented in Table 1.

Table 1. Other transcription factors and their target genes involved in male gametophyte development.

Transcription
Factors (TFs) TF Families Target Genes Species

Functions in Male
Gametophyte
Development

References

MS1
Plant

homeodomain
(PHD)-finger TF

/ Arabidopsis thaliana
Tapetal development

and pollen wall
formation

[176–178]

OsPTC1/OsMS1 PHD-finger TF / Rice (Oryza sativa) Tapetal cell death and
pollen development [61,62,182]

OsERF101

APETALA2/ethylene-
responsive element

binding protein
(AP2/EREBP)

/ Rice
Improving pollen

fertility and seed sets
under drought stress

[179]

HsfA1a Heat stress TF
(Hsf)

Cu/Zn-SOD, GST8,
MDAR1, HSP17.6A,
HSP70-2, HSP90-2,

HSP101, UBP5, UBP18,
RPN10a, and ATG10

Tomato (Solanum
lycopersicum L.)

Pollen
thermotolerance,

pollen viability, and
fertility

[181]
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Table 1. Cont.

Transcription
Factors (TFs) TF Families Target Genes Species

Functions in Male
Gametophyte
Development

References

HsfA2a Hsf / Tomato

Developmental
activity and

stress-regulated heat
stress protection

mechanisms in male
gametophytic tissues

[180]

GmHSFA2 Hsf GmHSP20a Soybean (Glycine
max (L.) Merr.)

Improving the heat
tolerance during

flowering
[183]

GIF1/GIF2/GIF3 GRF-Interacting
Factors (GIFs) / A. thaliana Anther development [184]

CsWOX1 Wuschel-Related
Homeobox (WOX) CsSPL Cucumis sativus

Early reproductive
organ development,
sporogenesis, and

auxin signal
transduction

[185]

Zmdof1
DNA-binding with

one finger (Dof)
protein

Zm401 Maize (Zea mays L.) Pollen development [186]

Atdof4;2 Dof protein / A. thaliana Pollen development [187]

TCP16
Teosinte Branched
1/Cycloidea/PCF

(TCP) TF
/ A. thaliana Early pollen

development [188]

TIP3 TDR Interacting
rotein (TIP) TDR Rice Formation of Ubisch

bodies and pollen wall [189]

ARF2 Auxin Response
Factor (AFR) / A. thaliana

Floral organ
abscission, leaf
senescence, and

flowering

[190–192]

ARF3/ARF4/
AtARF6/ARF8 ARFs / A. thaliana

ARF3 and ARF4: floral
organ development
and male fertility;

ARF6 and ARF8: floral
maturation and

hypocotyl
development

[193]

ARF17 ARF MYB108 A. thaliana
Pollen wall formation

and tapetum
development

[194]

AtbZIP34
Basic region/
leucine zipper

motif (bZIP) TF
AtABCB9 A. thaliana

Pollen development,
pollen wall patterning,

cell transport, and
liposome metabolism

[195]

SHI/STY TFs
(STY1, STY2,

LRP1, SRS6, and
SRS7)

Short
Internodes/Stylish

(SHI/STY) TFs

EOD3, PAO5, and
PGL1 A. thaliana

Anther development
and pollen

germination
[196]
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4. The Upstream Regulators of TFs Associated with Male Gametophyte Development
4.1. Transcriptional Regulatory Cascades

Considerable evidence suggests that TFs form regulatory networks to control male
gametophyte development. In Arabidopsis and rice, bHLH TFs have been reported to
directly regulate the precise expression pattern of MYB genes [197]. In lily, LoUDT1
interacts with LoAMS to play a role in tapetal development [198]. Arabidopsis MYB-CC
family members, γMYB1 and γMYB2, can be directly assembled to the cis-acting element
of the Phospholipase A2-γ promoter, and γMYB2 can interact with γMYB1 to enhance
its activity [199].

Molecular and biochemical evidence has further shown that different TFs form com-
plexes, together with feed-forward and feedback regulatory loops, to facilitate the expres-
sion of downstream targets and contribute to male gametophyte development. Arabidopsis
DYT1 activates the expression of its downstream bHLH010, bHLH089, and bHLH091, which
further feedback to enhance the nuclear localization of DYT1, and together they promote
MYB35 expression and anther development [200]. The germline-specific MYB protein
DUO1 sets up and later responds to the DAZ1/DAZ2 nodes, which are C2H2-type ZFPs,
to ensure germ cell division and correct gamete differentiation [14]. In addition, AMS
has been shown to interact with bHLH089, bHLH091, and ATA20, implying the complex
transcriptional regulatory networks of pollen development [60].

Moreover, several TFs form a genetic pathway that regulates male gametophyte devel-
opment. Recently, the core genetic pathway of DYT1-TDF1-AMS-MS188/MYB103/MYB80-
MS1, which consists of five key TFs, was highlighted in an excellent review that described
its critical role for tapetum development and pollen wall formation in Arabidopsis [57].
A relatively conserved genetic pathway composed of the homologies of the five key TFs
was also proposed in rice and maize, indicating its conservation between monocots and
dicots [78]. Mutations in any TF gene in this conserved genetic pathway caused pollen
abortion and ultimately male sterility. Coincidentally, a recent study on watermelon anther
under cold stress showed that failed tapetal degeneration might also be attributed to the
dysregulation of these sporophytic tissue-related TF gene expressions [201]. In addition,
an AtTTP-miR160-ARF17-CalS5 pathway was proposed with a regulatory role in callose
synthesis and pollen wall patterning, among which the CCCH ZFP AtTTP is involved in
miR160 maturation during pollen development [202]. In rice anther tapetum and pollen
development, the transactivation of bHLH142 is directly modulated by GAMYB at the
early stage of meiosis but repressed by TDR at the young microspore stage [203]. In ad-
dition, bHLH142 also acts downstream of UDT1/bHLH164 and upstream of EAT1 in a
GAMYB-independent pathway [203].

4.2. Epigenetic Machinery

Epigenetic machinery is defined as gene-regulating activities with heritable charac-
teristics that occur without alterations in the base sequences, including DNA methylation
and imprinting, histone modification, chromatin remodeling, and the regulation of non-
coding RNAs (ncRNAs) [204–206]. Increasing evidence shows that epigenetic machinery
is also involved in the regulation of TF activation. An extensive data survey through
transcriptomic approaches revealed the abundance of pollen/anther-preferential ncRNAs
in diverse species [207–213], suggesting their possible regulatory roles in male gametophyte
development. Notably, several long ncRNAs (lncRNAs) and microRNAs (miRNAs) have
been demonstrated to serve as upstream regulators of TFs to participate in this unique
process (Table 2). For instance, the overexpression of lncRNA osa-eTM160 in rice negatively
regulated osa-miR160 to enhance osa-ARF18 expression during early anther development,
leading to reduced seed setting and seed size [214]. The suppression of miR156/157 by
high-temperature stress altered the expression level of Squamosa Promoter Binding Protein-
Like (SPL) genes and excessively activated the auxin signal, leading to male sterility and
anther indehiscence [215].
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Table 2. Non-coding RNAs as regulators of transcription factors in male gametophyte development.

Non-Coding RNAs
(ncRNAs)

Target Transcription
Factors (TFs) Species

Functions of Target TFs in
Male Gametophyte

Development
References

Zm401 ZmMADS2 Maize (Zea mays L.) Microspore and tapetum
development [216]

TaHTMAR TaBBX25 and TaOBF1 Wheat (Triticum
aestivum L.) Male fertility [217]

lncRNA osa-eTM160 as
an endogenous

repressor of
osa-miR160

osa-ARF18 Rice (Oryza sativa) Proper growth and organ
development [214]

lncRNA bra-eTM160-1/2
as an endogenous

target mimics (eTMs)
miR160

BrARF17 Brassica rapa Primexine formation and
pollen development [207]

asHSFB2a HSFB2a Arabidopsis thaliana Both the female and male
gametophytic development [218]

COLDAIR,
COLDWRAP, and

COOLAIR
FLC A. thaliana Flowering [219,220]

MAS MAF4 A. thaliana Flowering [221]

RIFLA OsMADS56 Rice Flowering [222]

FLORE CDF5 A. thaliana Photoperiodic flowering [223]

miR156

SPLs A. thaliana Phase transition and flowering;
anther development [224]

SPLs Rice Flowering [225,226]

NtSPLs Nicotiana tabacum Flowering [227]

miR157 SPLs Cotton (Gossypium
hirsutum)

Pollen development and
anther dehiscence [215]

miR159 GAMYB-like TFs
(MYB33/65/81/101/104) A. thaliana Anther development [81,228]

miR159 OsGAMYB/OSGAMYBL1 Rice Flower development [229]

TamiR159 TaGAMYB1/2 Wheat (Triticum
aestivum)

Heading time and male
sterility [230]

Phe-MIR19 PheMYB42/98 Moso bamboo
(Phyllostachys edulis)

Anther dehisce, pollen
separation, and seed formation [231]

miR160 ARF17 A. thaliana Callose synthesis and pollen
wall patterning [13,14]

miR167 ARF6/8 A. thaliana Gynoecium and
stamen/pollen development [232–234]

TaemiR167a TaARF8 Wheat Male fertility [235]

miR169 AtNF-YA TF A. thaliana Flowering [236]

zma-miR169o ZmNF-YA13 Maize Seed development [237]

miR171 GRAS family members A. thaliana Flowering [238]

miR172
AP2 A. thaliana Floral organ development

and flowering [224]

GLOSSY15 Maize Flowering [239]
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Table 2. Cont.

Non-Coding RNAs
(ncRNAs)

Target Transcription
Factors (TFs) Species

Functions of Target TFs in
Male Gametophyte

Development
References

miR319a TCPs A. thaliana Stamen development and
anther dehiscence [240,241]

miR396 GRF A. thaliana Anther development [242]

miR824 AGL16 A. thaliana Flowering in a long-day
photoperiod [243]

TAS3 trans-acting
siRNAs ARFs A. thaliana Developmental timing

and patterning [244]

In addition, the importance of phosphorylation of TFs in the regulation of male game-
tophyte development has also been highlighted. The loss of MPK3/MPK6 phosphorylation
sites in WRKY34 was found to compromise the function of WRKY34 [130]. The phosphory-
lation of ZmNAC84 at Ser113 by ZmCCaMK is required for the repression of the ZmRbohH
promoter activity during pollen development [173].

Furthermore, other epigenetic modifications, such as chromatin remodeling, are
also involved in TF activation during male gametophyte development. As a floral re-
pressor, the vernalization-mediated epigenetic repression of the MADS-box TF mem-
ber FLC has been attributed to the accumulation of histone H3 lysine 27 trimethylation
(H3K27me3) and H3K4me3 and a reduction in H3K36me3, triggered by several regulatory
lncRNAs [219–221,245]. Dynamic DNA methylation has been also reported to trigger MYB
activation in response to abiotic stress [75,246], although the involvement of DNA methyla-
tion of TFs in the gametophyte development lacks sufficient experimental support. Further
exploring those epigenetic regulators and their corresponding target TFs will deepen the
understanding of the entire regulatory network of male gametophyte development.

4.3. Other Regulators

Encouraging evidence shows that many other regulators are also involved in male ga-
metophyte development. Phytohormones, such as JA, abscisic acid (ABA), gibberellin (GA),
BRs, ethylene, and auxin, play vital roles in male gametophyte development [247–250]. In
Arabidopsis, exogenous ethylene activates the EIN2-EIN3/EIL1 signaling pathway in the
tapetal layer, resulting in defects in tapetal development and ultimately male sterility [251].
Auxin plays important roles not only in the later phases of anther development but also
in the early anther morphogenesis [196]. ARF17 is essential for pollen wall patterning
in Arabidopsis by modulating primexine formation partially by directly regulating the
expression of CalS5 [194]. Five SHI/STY TFs acting as direct regulators of YUCCA auxin
biosynthesis genes affect anther organ identity, tapetal PCD, anther dehiscence, pollen
viability, and pollen dormancy [196]. In rice, GA modulates anther development via the
transcriptional regulation of GAMYB, which targets downstream genes, such as CYP703A3.
The knockout mutant for CYP703A3 and gamyb mutant generated aborted microspores
surrounded by a defective exine [210]. In the presence of JA, JAZ degradation is induced,
and heterodimers of MYB21 or MYB24 with MYC TFs regulate stamen development [56].
MYC2, MYC3, MYC4, and MYC5 interact with R2R3-MYB TFs MYB21 and MYB24 to
from the bHLH-MYB complex and cooperatively regulate the JA-mediated stamen devel-
opment and seed production [71]. Moreover, MYC2 regulates the transcription of JAV1
and JAM1/MYC2-LIKE1, together with JAM1 and JAM3, to negatively affect JA-mediated
male fertility [252,253]. MYB108 and MYB24 act downstream of MYB21 in a transcriptional
cascade and redundantly function in stamen and pollen maturation in response to JA [82].
A series of BR biosynthetic and signaling mutants showed reduced pollen production,
viability, and release efficiency, with suppressed expression of many key genes required for
anther and pollen development [104]. In addition, ABA-triggered ROS accumulation in
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rice developing anthers has been recently implicated in tapetal PCD induction and heat
stress-induced pollen abortion [249].

5. Conclusions and Future Perspectives

Revealing the functions of male gametophyte development-related genes and the
regulation relation among key genes in this process thus becomes the basis point for under-
standing plant sexual reproduction. This not only provides valuable insight regarding male
fertility but also helps with obtaining high crop yield and improving reproductive efficiency
with essential theoretical and applicable meaning. Male gametophyte development is a
well-coordinated process governed by a complex regulatory network involving genetic
and epigenetic machinery. In this review, we address the knowledge of the involvement
of TFs in this unique and important process, particularly in microspore development,
pollen wall formation, and tapetum function. Current efforts have seen a big leap in the
understanding of male gametophyte development. Nevertheless, concerns about this
field mainly focused on the dicot plant model organism Arabidopsis and monocot model
rice. Future challenges include the exploration of more genes, enzymes, and regulatory
factors in various plant species, further investigations on the coordinated transcriptional
and post-transcriptional regulation of these elements, and the establishment of a more
comprehensive gene regulatory network involved in male gametophyte development.
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