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Abstract: Tert-butylhydroquinone (TBHQ) is a synthetic food antioxidant with biological activities,
but little is known about its pharmacological benefits in liver disease. Therefore, this work aimed
to evaluate TBHQ during acute liver damage induced by CCl4 (24 h) or BDL (48 h) in Wistar rats.
It was found that pretreatment with TBHQ prevents 50% of mortality induced by a lethal dose of
CCl4 (4 g/kg, i.p.), and 80% of BDL+TBHQ rats survived, while only 50% of the BDL group survived.
Serum markers of liver damage and macroscopic and microscopic (H&E staining) observations
suggest that TBHQ protects from both hepatocellular necrosis caused by the sublethal dose of CCl4
(1.6 g/kg, i.p.), as well as necrosis/ductal proliferation caused by BDL. Additionally, online databases
identified 49 potential protein targets for TBHQ. Finally, a biological target candidate (Keap1) was
evaluated in a proof-of-concept in silico molecular docking assay, resulting in an interaction energy of
−5.5491 kcal/mol, which was higher than RA839 and lower than monoethyl fumarate (compounds
known to bind to Keap1). These findings suggest that TBHQ increases the survival of animals
subjected to CCl4 intoxication or BDL, presumably by reducing hepatocellular damage, probably due
to the interaction of TBHQ with Keap1.

Keywords: acute liver damage; cholestasis; necrosis; mortality; survival; in silico studies

1. Introduction

Worldwide, there are approximately two million deaths caused by liver disease, of
which half are from cirrhosis and the other half from viral hepatitis and hepatocarcinoma [1].
The liver is a multifunctional organ susceptible to damage due to several factors, such as the
consumption of alcohol or drugs, obstruction of bile flow, exposure to toxins, or parasitic
and viral infections [2–4]. Certainly, regardless of the causative agent of liver damage,
hepatocyte cell death favors the progression of the disease, starting with inflammation
that leads to fibrosis and finally to liver cancer [3,5]. However, despite medical advances,
there are no effective treatments that can prevent or even reverse liver disease, with organ
transplantation being the procedure of choice for irreversible liver damage. However, there
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is a growing number of patients waiting for a liver transplant that exceed the number
of donors [6].

Liver pathogenesis manifests itself as inflammation and necrosis, cholestasis, fibrosis,
cirrhosis, and hepatocarcinoma [1,7]. In the present investigation, the hepatoprotective
capacity of Tert-butylhydroquinone (TBHQ) was evaluated during acute liver damage
induced by extrahepatic cholestasis and carbon tetrachloride (CCl4) intoxication, and its
possible mechanism of protection was hypothesized by bioinformatic and in silico analysis.

TBHQ (CH3)3CC6H3-1,4-(OH)2 is a crystalline powder, a member of the class of
hydroquinones in which one of the hydrogens in the hydroquinone ring is replaced by
a tert-butyl group (Figure 1). This compound is commonly used as a synthetic food
antioxidant to prevent oxidative deterioration and the rancidity of oils and fats due to its
potent activity to inhibit lipid peroxidation [8,9]. Recent studies attribute various biological
activities, such as the preservation of testicular steroidogenesis and spermatogenesis, to
improving ethanol-induced gastric ulcers and radiocontrast-induced nephropathy [10–12].
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Keap1 protein contains a domain called BTB (bric-a-brac) that mediates dimerization, an-
other domain called the IVR (intermediate region) domain that is involved with the inter-
action with CUL3, and a joint domain called DC composed of the individual domains 
DGR (double glycine repeat) and CTR (carboxyl-terminal region). In this DC domain, the 
interaction with Nrf2 occurs. On the Nrf2 protein, there are DLG and ETGE motifs in the 
section called Neh2 (amino end) that interact with the DC domains of the Keap1 homodi-
mer [15,16]. Therefore, another objective of the present study was to analyze the interac-
tion between TBHQ and Keap1 in silico (Figure 2). 

Figure 1. Chemical structure of TBHQ.

The bioactive effect of TBHQ is attributed to the induction of phase II drug-metabolizing
enzymes through a dependent pathway of nuclear factor erythroid 2-related factor 2 (Nrf2),
which is a member of the basic leucine zipper transcription factor (bZIP), regulated mainly
by Kelch-like ECH-associated protein 1 (Keap1) [13]. Keap1 is an adapter substrate of the
Cullin–RING E3 ubiquitin ligase complex, which suppresses Nrf2 in the cytoplasm by
sequestration, ubiquitination, and proteasomal degradation [14]. Under the stimulus of
reactive oxygen species (ROS) or electrophilic agents, the hyperreactive cysteine residues of
Keap1 allow the inactivation of the E3 ubiquitin ligase, and Nrf2 is dissociated from Keap1.
Nrf2 accumulates in the cytoplasm and travels to the nucleus to mediate cytoprotective
gene expression through antioxidant-responsive elements (AREs). The Keap1 protein
contains a domain called BTB (bric-a-brac) that mediates dimerization, another domain
called the IVR (intermediate region) domain that is involved with the interaction with
CUL3, and a joint domain called DC composed of the individual domains DGR (double
glycine repeat) and CTR (carboxyl-terminal region). In this DC domain, the interaction
with Nrf2 occurs. On the Nrf2 protein, there are DLG and ETGE motifs in the section called
Neh2 (amino end) that interact with the DC domains of the Keap1 homodimer [15,16].
Therefore, another objective of the present study was to analyze the interaction between
TBHQ and Keap1 in silico (Figure 2).
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2. Results
2.1. Mortality and Survival

The CCl4 model allowed us to evaluate the protective capacity of TBHQ against lethal
and sublethal toxicity induced by CCl4 (Table 1). After 24 h, a lethal dose of CCl4 (4 g/kg,
i.p.) yielded 100% (6/6) mortality, while TBHQ pretreatment prevented 50% (3/6) of
mortality induced by the lethal dose. However, all animals injected with a sublethal dose
of CCl4 (1.6 g/kg, i.p.) survived. In addition, bile duct ligation (BDL group, 48 h) leads to
50% mortality and pretreatment with TBHQ shows a mortality of 20% (80% survival).

Table 1. Mortality and survival of CCl4 and BDL experimental models.

Liver Damage Model Mortality
(n) % Survival %

Lethal dose of CCl4
CCl4 (4 g/kg, i.p.) 6/6 100 0
CCl4 (4 g/kg, i.p.) + TBHQ 3/6 50 50
Sublethal dose of CCl4
CCl4 (1.6 g/kg, i.p.) 0/6 0 100
CCl4 (1.6 g/kg, i.p.) + TBHQ 0/6 0 100
BDL experimental model
BDL 5/10 50 50
BDL+TBHQ 5/10 20 80

2.2. Body and Liver Weights

Statistical analysis of body weights, liver weights, and liver/body ratio was performed
in both experimental models of liver damage (Table 2). Body weight was significantly
reduced in the CCl4+TBHQ group in relation to the CCl4 and TBHQ groups, while liver
weight increased in the CCl4 and CCl4+TBHQ groups compared to the Control group.
Furthermore, liver/body weight increased significantly in the CCl4 and CCl4+TBHQ groups
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compared to the TBHQ and Control groups. However, the SHAM (simulated surgery),
BDL, BDL+TBHQ, and TBHQ groups did not show statistically significant differences
between them for any of the weights.

Table 2. Body and liver weight of the rats in hepatotoxicity model with sublethal dose of CCl4 and
BDL model.

Group Body Weight (g) Liver Weight (g) Liver/Body Weight

Control 348.3 ± 4.70 11.5 ± 0.65 0.033 ± 0.00169

CCl4 350.8 ± 12.98 16.2 ± 0.67 a 0.046 ± 0.00194 ac

CCl4+TBHQ 302.9 ± 8.26 ab 15.21 ± 0.76 a 0.050 ± 0.00178 ac

TBHQ 370.3 ± 9.53 13.92 ± 0.37 0.038 ± 0.00010

SHAM 411.6 ± 3.32 16.23 ± 0.061 0.039 ± 0.00179

BDL 373.38 ± 16.55 15.36 ± 0.76 0.040 ± 0.00323

BDL+TBHQ 366.9 ± 11.62 14.48 ± 0.13 0.039 ± 0.00143

SHAM+TBHQ 335.93 ± 12.43 14.6 ± 0.49 0.043 ± 0.00056
Results were expressed as the mean ± SE. Statistically significant differences, p < 0.05: a significantly differ-
ent from the Control group; b significantly different from the CCl4 group; c significantly different from the
SHAM+TBHQ group.

2.3. Macroscopic Findings of Livers

Livers were observed in situ (Figure 3), and healthy control groups (Control, TBHQ,
SHAM, and SHAM+TBHQ) presented a uniform and smooth surface with soft consistency
on palpation. Additionally, livers in the BDL group showed an altered appearance with a
pale surface, while the CCl4 group presented an altered hepatic morphology with a necrotic
appearance. The gross appearance of the livers from the CCl4+TBHQ and BDL+TBHQ
groups showed a less damaged appearance compared to the damage groups (CCl4 or
BDL, respectively).
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2.4. Microscopic Evaluation of Liver Damage Induced by a Sublethal Dose of CCl4
The hepatoprotective activity of TBHQ was evaluated during the sublethal dose

of CCl4 with hematoxylin–eosin (H&E) staining (Figure 4). The hepatic parenchyma of
the Control and TBHQ groups showed a normal architecture characteristic of healthy
livers, with normal organization of hepatocytes organized in cords, in addition to clearly
identifying some central veins and hepatic sinusoids, as shown in the micrographs. On the
other hand, micrographs of the CCl4 group showed severe damage with evident steatosis
and inflammatory infiltrate with ballooned hepatocytes; however, in liver samples of the
CCl4+TBHQ group, less steatosis and ballooning degeneration were observed, showing
better architectural integrity than the CCl4 group, whose damage was greater.
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2.5. Microscopic Evaluation of Liver Damage Induced by BDL

H&E staining showed that two days after surgery, the BDL group presented liver
necrosis, with a loss of normal architecture of the liver cords and infiltration of inflammatory
cells with marked proliferation of the bile ducts. However, treatment with TBHQ prevented
acute liver damage induced by BDL, since the BDL+TBHQ group showed little infiltration
of inflammatory cells and mild proliferation of the bile ducts, as well as less hepatic
necrosis and preservation of cell integrity, which can be compared to that of the healthy
groups (Figure 5).
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2.6. Serum Biochemical Markers of Liver Damage

Hepatic functionality was evaluated using the serum enzymatic activities of ala-
nine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), and alkaline phos-
phatase (ALP) (Figure 6). Intoxicated animals with a sublethal dose of CCl4 (Figure 6a–c)
or with biliary obstruction (Figure 6d–f) showed significant increases in ALT, ALP, and
GGT, respectively. Compared to the CCl4 group, TBHQ treatment (CCl4+TBHQ) partially
but significantly prevented ALT (Figure 6a) and completely prevented increases in GGT
(Figure 6b) and ALP (Figure 6c), similarly, to the Control group. Similarly, BDL and TBHQ
partially prevent the increase in enzymatic activity of ALT, GGT, and ALP. The healthy
groups (Control, TBHQ, SHAM, and SHAM+TBHQ) did not show significant differences
between them in the enzymatic markers evaluated.
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model (a–c): Control, CCl4: CCl4 (1.6 g/kg, i.p.), CCl4+TBHQ: CCl4 (1.6 g/kg, i.p.) + TBHQ
pretreatment and TBHQ groups BDL model; (d–f): SHAM: SHAM surgery; BDL: bile duct ligation;
BDL+TBHQ and SHAM+TBHQ groups. Results were expressed as the mean ± SE. Statistically
significant differences: (*) p < 0.05, (**) p < 0.01, (***), p < 0.001, and (****) p < 0.0001.



Int. J. Mol. Sci. 2024, 25, 475 7 of 22

2.7. Identification of Potential TBHQ Protein Targets in the Liver

The possible mechanism of action of TBHQ was hypothesized using online platforms
to search for its potential protein targets and data curated from the public Human Protein
Atlas database. Thus, 49 potential targets for the THBQ protein were chosen (Table 3) if
readily indicated as liver, expressed in liver, enriched in hepatocytes, liver stellate cells,
or Kupffer cells (liver-specific macrophages), or were subunits of nuclear factor-kappa B
(NF-κB), which is known to be involved in liver damage [17].

Table 3. Putative protein targets for TBHQ in liver found in different databases.

Target Protein Name Protein ID Target Location and/or Function
(Human Protein Atlas) Target Search Platform

Nuclear factor erythroid 2-related factor NFE2L2 (Nrf2) Antioxidant
Liver—Metabolism P

Nuclear factor-kappa B p105 subunit NFKB1 NF-KB subunit SP

Transcription factor p65 RELA NF-KB subunit TN

Acetyl-CoA carboxylase 2 ACACB Cell type enhanced—Hepatocytes SP

Estrogen receptor ESR1 Cell type enhanced—Hepatocytes PM, S, TN

Endoplasmic reticulum-associated amyloid
beta-peptide-binding protein HSD17B10 Cell type enhanced—Hepatocytes P, SP

Dihydropteridine reductase QDPR Cell type enhanced—Hepatocytes S

Nuclear receptor ROR gamma RORC Cell type enhanced—Hepatocytes P

Excitatory amino acid transporter 3 SLC1A1 Cell type enhanced—Hepatocytes SP

Transthyretin TTR Cell type enriched—Hepatocytes PM, SP

Tyrosine-protein kinase receptor RET NRTN Cell type enhanced—Hepatocytes SP

Oxysterols receptor LXR-alpha NR1H3 Cell type enhanced—Hepatocytes TN

Glyceraldehyde-3-phosphate
dehydrogenase, liver * GAPDH Tissue enhanced—Liver ST

Hydroxysteroid 17-beta-dehydrogenase 3 HSD17B3 Tissue enhanced—Liver TN

Pyruvate dehydrogenase kinase 4 PDK4 Cell type
enriched—Liver–Hepatocytes S

Aryl hydrocarbon receptor AHR Liver—Metabolism TN

Transient receptor potential cation channel
subfamily V member 1 TRPV1 Liver—Metabolism TN

Aldo-keto reductase family 1 member C3 AKR1C3 Liver—Lipid metabolism PM

Monoamine oxidase A MAOA Liver—Lipid metabolism SP, TN

Androgen receptor AR Liver—Metabolism
Cell type enhanced—Hepatocytes PM, TN

Coagulation factor X F10 Liver—Metabolism
Cell type enhanced—Hepatocytes PM

Monoamine oxidase B MAOB Liver—Metabolism
Cell type enhanced—Hepatocytes TN

Bile acid receptor NR1H4 Liver—Metabolism
Cell type enhanced—Hepatocytes S

Cholinergic receptor nicotinic alpha 4
subunit (neuronal acetylcholine receptor) CHRNA4 Liver—Metabolism

Cell type enhanced—Hepatocytes SP

Cocaine esterase CES2 Liver—Lipid metabolism
Cell type enhanced—Hepatocytes TN

Nuclear receptor subfamily 1 group I
member 2 (pregnane X receptor) NR1I2 Liver—Lipid metabolism

Cell type enhanced—Hepatocytes SP, PM

Estrogen sulfotransferase SULT1E1 Liver—Lipid metabolism
Cell type enhanced—Hepatocytes PM
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Table 3. Cont.

Target Protein Name Protein ID Target Location and/or Function
(Human Protein Atlas) Target Search Platform

Xanthine dehydrogenase XDH Liver—Lipid metabolism
Cell type enhanced—Hepatocytes Ph, SP, TN

Serum albumin ALB
Tissue enriched—Liver
Liver—Hemostasis
Cell type enriched—Hepatocytes

PM, ST

Complement factor B CFB
Tissue enriched—Liver
Liver—Hemostasis
Cell type enhanced—Hepatocytes

PM

Prothrombin F2 Liver—Hemostasis
Cell type enriched—Hepatocytes PM

Hydroxysteroid 11-beta dehydrogenase 1 HSD11B1
Liver—Hemostasis and
lipid metabolism
Cell type enriched—Hepatocytes

SP, TN

Butyrylcholinesterase BCHE
Liver—Hemostasis and
lipid metabolism
Cell type enhanced—Hepatocytes

Ch

Carbonic anhydrase 5A, mitochondrial CA5A
Liver—Hemostasis and
lipid metabolism
Cell type enriched—Hepatocytes

TN

Liver carboxylesterase 1 * CES1
Liver—Hemostasis and
lipid metabolism
Cell type enriched—Hepatocytes

TN

Cytochrome P450 1A2 CYP1A2
Liver—Hemostasis and
lipid metabolism
Cell type enriched—Hepatocytes

TN

Cytochrome P450 2C9 CYP2C9
Liver—Hemostasis and
lipid metabolism
Cell type enriched—Hepatocytes

P, TN

IgG receptor FcRn large subunit p51 FCGRT Liver—Lipid metabolism
Cell type enhanced—Kupffer cells SP

Arachidonate 5-lipoxygenase ALOX5 Cell type enhanced—Kupffer cells SP, ST, TN

C-C chemokine receptor type 2 CCR2 Cell type enhanced—Kupffer cells SP

Tyrosine-protein kinase FGR FGR Cell type enhanced—Kupffer cells SP

Formyl peptide receptor 1 FPR1 Cell type enhanced—Kupffer cells SP

Lipoxin A4 receptor FPR2 Cell type enhanced—Kupffer cells SP

G-protein coupled bile acid receptor 1 GPBAR1 Cell type enhanced—Kupffer cells SP

Tyrosine-protein kinase SYK SYK Cell type enhanced—Kupffer cells PM

Hydroxysteroid17-beta-dehydrogenase 2 HSD17B2 Liver—ER transport pathway
Cell type enhanced—Hepatocytes S

Endoplasmic reticulum aminopeptidase 1 ERAP1 Liver—ER transport pathway SP

Tissue factor pathway inhibitor TFPI Tissue enhanced liver
Liver—ER transport pathway SP

Tyrosine-protein kinase YES YES1 Liver—ER transport pathway SP

All those with the highest probability and that, according to the curated data from the Human Protein Atlas,
had a liver-related tissue and/or cellular localization, and were specifically indicated (*) to be a liver protein.
Ch—ChEMBL; PM—PharmMapper; Ph—Pharos; P—PPB; S—SEA; SP—Super-PRED; ST—SwissTargetPrediction;
TN—TargetNet; ER—Endoplasmic reticulum.

2.8. Molecular Docking of TBHQ and Keap1

The molecular systems found in the PDB files mentioned above showed that the
amino acids in Keap1 interact with the residues Arg415, Ala556, Arg483, Arg483, Tyr334,
Ser363, and Ser602 of (3S)-1-[4-[(2,3,5,6-tetramethylphenyl) sulfonylamino] -1-naphthyl]
pyrrolidine-3-carboxylic acid, named as RA839 (Figure 7a). Examination showed that
the amino acids in Keap1 that interact with monoethyl fumarate (MEF) are present in
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two regions: the first consisted near the residues Gln530, Tyr525, and Tyr572 (Figure 7b)
and near the residues Asp422, Gly423 and Gly371, Gly372, Val369, and Val370 (Figure 7c).
The information obtained from the Keap1 complex of Keap1 and the N-terminal region
of Nrf2 showed that the Keap1 residues involved in the interaction are Arg415, Arg483,
Ser508, Tyr525, Gln530, Ser555, Ala556, Tyr572, and Phe577 (Figure 7d).
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(b,c) MEF, and (d) the Kelch domain of Nrf2.

Based on the previously described examination, we identified the common residues
in the interaction present in each complex between the molecule and Nrf2. In the case
of RA839, the Keap1 amino acids Arg 415, Arg483, and Ala556 are also involved in the
interaction between Keap1 and Nrf2. For MEF, the Keap1 amino acids Gln530, Tyr525, and
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Tyr572 are also involved in the interaction of Keap1 with Nrf2. Using SiteFinder, a potential
binding site was found near the residues shown in Table 4 and Figure 8, highlighting the
common residues involved in the interaction of the PDB files.

Table 4. Potential binding site identified by SiteFinder. In bold, the amino acid residues that also par-
ticipate in the interactions between Keap1 and the small molecules RA839 and MEF are highlighted.

Site Size Hyd Side Residues

Approximately the
highest propensity for
ligand binding

192 alpha spheres
(with the size of a
carbon atom sphere)

42 hydrophobic
contact atoms in
the receptor

64 side-chain contact
atoms in the receptor

TYR334 SER363 GLY364 LEU365 ALA366
GLY367 CYS368 ASN382 ASN414 ARG415
ILE416 GLY417 VAL418 GLY419 VAL420
GLY462 VAL463 GLY464 VAL465 ALA466
VAL467 SER508 GLY509 ALA510 GLY511
VAL512 CYS513 VAL514 TYR525 GLN530
SER555 ALA556 LEU557 GLY558 ILE559
THR560 VAL561 TYR572 PHE577 SER602
GLY603 VAL604 GLY605 VAL606
ALA607 VAL608

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 25 
 

 

Table 4. Potential binding site identified by SiteFinder. In bold, the amino acid residues that also 
participate in the interactions between Keap1 and the small molecules RA839 and MEF are high-
lighted. 

Site Size Hyd Side Residues 

Approximately 
the highest pro-
pensity for lig-
and binding 

192 alpha 
spheres (with 
the size of a 
carbon atom 
sphere) 

42 hydropho-
bic contact at-
oms in the re-
ceptor 

64 side-
chain con-
tact atoms 
in the re-
ceptor 

TYR334 SER363 GLY364 
LEU365 ALA366 GLY367 
CYS368 ASN382 ASN414 
ARG415 ILE416 GLY417 
VAL418 GLY419 VAL420 
GLY462 VAL463 GLY464 
VAL465 ALA466 VAL467 
SER508 GLY509 ALA510 
GLY511 VAL512 CYS513 
VAL514 TYR525 GLN530 
SER555 ALA556 LEU557 
GLY558 ILE559 THR560 
VAL561 TYR572 PHE577 
SER602 GLY603 VAL604 
GLY605 VAL606 ALA607 
VAL608 

 
Figure 8. Common residues involved in the interaction present in each complex between the mole-
cule and Nrf2. The MOE site-finding tool provides a high probability region filled with a set of 
dummy atoms for further docking experiments. Among the near residues are Arg380, Asp382, 
Ser363, Gly364, Tyr334, Gly603, Ser602, Tyr572, Ser555, and Tyr525. 

During the docking experiments, the three cocrystallized ligands were re-evaluated 
to assess their energetic binding affinity. The interaction energy between the ligand ob-
tained from PDB 7K2M, corresponding to the Nef2 domain of Nrf2, was observed to be 
the highest of all. The interaction of the MEF (from PDB 7C60) and RA839 (from PDB 
5CGJ) molecules has lower interaction energies. When comparing the resulting interaction 
energy for TBHQ, it was higher than that of MEF but lower than that of RA839 (Table 5). 

Figure 8. Common residues involved in the interaction present in each complex between the molecule
and Nrf2. The MOE site-finding tool provides a high probability region filled with a set of dummy
atoms for further docking experiments. Among the near residues are Arg380, Asp382, Ser363, Gly364,
Tyr334, Gly603, Ser602, Tyr572, Ser555, and Tyr525.

During the docking experiments, the three cocrystallized ligands were re-evaluated to
assess their energetic binding affinity. The interaction energy between the ligand obtained
from PDB 7K2M, corresponding to the Nef2 domain of Nrf2, was observed to be the highest
of all. The interaction of the MEF (from PDB 7C60) and RA839 (from PDB 5CGJ) molecules
has lower interaction energies. When comparing the resulting interaction energy for TBHQ,
it was higher than that of MEF but lower than that of RA839 (Table 5).

Table 5. Interaction energies resulting from the molecular docking analysis.

Ligand Nef2/Nrf2 MEF RA839 TBHQ

Energy (kcal/mol) −10.4673 −5.2186 −6.9461 −5.5491
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Here, we examined the modeled interaction between Keap1 and TBHQ. At the mod-
eled site, the ligand is deeply incorporated into the channel that Keap1 forms. This explains
the greater binding affinity of the ligand-receptor complex. If we look inside the 2D interac-
tions, we can see that the contour (dotted line in Figure 9) covers most of the molecular
surface of TBHQ and that the ligand exposure (marked with faded purple circles) is small.
The strongest interaction is due to the hydrogen bonding of one hydroxyl group with
Gly-367. The rest of the interactions responsible for stabilizing the complex are due to
electrostatic interactions, protein surface complementarity, and contact preferences. The
nearest residues are Gly367, Val604, Gly605, Gly464, Gly 558, and Val418, among others.
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Figure 9. Three-dimensional and two-dimensional interaction diagrams of Keap1 with TBHQ:
(a) front, (b) side, and (c) 2D.

Although the site of interaction of this simulated complex is far from the X-ray struc-
tures that we found and described above, the size of the molecule could be an explanation
for the position of the ligand in the protein. Considering that a channel is formed in the
structure of Keap1 and due to the size of TBHQ, after replication of the simulation, TBHQ
was always allocated deep into the channel, maintaining good binding energies (Figure 10).
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3. Discussion

Approximately 2 million people die from liver disease each year due to the poor
effectiveness of therapeutic treatments, leading to increased morbidity and mortality rates
around the world [1]. Therefore, it is necessary to search for new compounds that can
mitigate, prevent, or reverse liver damage. In the present work, we evaluated TBHQ
as a possible hepatoprotective agent due to its anti-inflammatory, anti-apoptotic, and
antioxidant properties that have been previously described [18–20]. Similarly, various
in vitro and in vivo studies have demonstrated that TBHQ exhibits chemopreventive effects,
although this compound has also been described as carcinogenic, though mainly when
used at high concentrations [13]. In the CCl4 model used in the present work, two doses of
TBHQ were used: 40 mg/kg, i.p., and 16.7 mg/kg, i.p., initially, TBHQ was administered
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for two days at 40 mg/kg, i.p., daily [21,22]; this dose in in vivo models increases the long-
term stability of curcumin [21] and leads to induction of UGT1A1, through the Nrf2–Keap1
pathway [22]. However, on the second day, immediately after administration, animals
became lethargic for 5 to 10 min and recovered (at this dose and the route of administration
in experimental animals, we were unable to find these side effects reported in the literature).
Taking into account these side effects, the dose was reduced to 16.7 mg/kg, i.p., every
8 h [19], and no adverse effects were observed in any of the animals. This dose of TBHQ
reduced ischemia/reperfusion injury in diabetic rats [19]. Therefore, further toxicological
tests should be performed. However, it was conclusive that the mortality of the animals
was reduced when they were pretreated with TBHQ (Table 1).

Rats in the BDL group had 50% mortality in 48 h, while the TBHQ+BDL group had
20% mortality with a survival rate of 80%. Furthermore, CCl4 at 4 g/kg, i.p., is lethal
to 100% of rats intoxicated but pretreatment with TBHQ reduces this mortality by 50%.
Common bile duct ligation induces liver damage by accumulating bile acids [23]. The
obstruction of bile flow induces severe liver damage, so the mortality rate in experimental
animals is very high [24]. Furthermore, cholestasis increases mortality and morbidity in
patients undergoing major liver surgery because it is associated with increased sepsis and
ischemia/reperfusion injury in the liver, accompanied by endothelial damage, inflamma-
tion, increased reactive oxygen species and proinflammatory cytokines, and activation of
coagulation and fibrinolysis [25]. Therefore, our results suggest that TBHQ may be a suit-
able candidate to try to reduce complications related to cholestasis. Furthermore, chronic
cholestatic liver diseases induce progressive hepatobiliary damage, with subsequent compli-
cations such as fibrosis and cirrhosis, ultimately leading to cancer [5]. Clinically, obstruction
of the bile duct generates jaundice, choluria, and hepatomegaly, and, biochemically, it
increases plasma liver enzyme markers [26,27]. All animals with obstruction of the bile
duct (BDL and BDL+TBHQ groups) presented jaundice (as well as choluria results not
shown); micrographs of the BDL group showed necrosis and duct proliferation, although
hepatomegaly was not evident (Figure 5, Table 2). The BDL+TBHQ group showed a more
preserved macroscopic and microscopic morphology (Figures 3 and 6) than the BDL group.
These results were consistent with serum biochemical analyses (Figure 6); animals partially
but significantly prevented enzymatic increases in the hepatocellular necrosis marker (ALT)
and the cholestasis marker (ALP or GGT). These findings suggest for the first time that
TBHQ protects against liver injury induced by obstructive cholestasis.

On the other hand, CCl4 is a chlorinated hydrocarbon that was anciently used as a
degreaser in household cleaning, industrial factories, dry cleaners, and textile laundries. It
was also used in fire extinguishers and as a precursor to refrigerants and propellants, but
due to its high oxidative toxicity, it has fallen into disuse; however, some industries still use
it [28]. Currently, it is used in scientific research with experimental animals, emulating acute
or chronic hepatocellular damage in humans, allowing the evaluation of new strategies
to prevent or reverse hepatocellular damage [23]. This toxic solvent is metabolized by
cytochrome p450, mainly by CYP2E1, producing free radicals such as CCl3* and CCl2* that
affect lipid metabolism by inhibiting its transport out of hepatocytes and, in turn, increasing
lipid synthesis, leading to steatosis [28]. In the present study, we observed steatohepatitis
in the groups of rats intoxicated with a sublethal dose of CCl4, with extensive areas of
ballooning hepatocellular degeneration (Figure 4), previously characterized by enlarged
hepatocytes with intermediate filaments embedded in clear cytoplasm in combination
with lobular inflammation, necrosis, and steatosis [29]; these morphologic alterations
were reduced in the CCl4+TBHQ group. In macroscopic analyses, it can be seen that the
liver weight/body weight ratio (Table 2) of the CCl4 and CCl4+TBHQ groups increased
considerably, presenting statistically significant differences with respect to the Control
group. The higher this value is, the larger the livers are compared to the weight of the
rat, indicating the possible presence of hepatomegaly, a very common alteration in livers
affected by CCl4 metabolism [30]. The inflammation process is a defense mechanism with
the aim of limiting and eliminating causes of cell damage, as well as facilitating the tissue
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repair process. Acute and chronic liver damage is caused by acute inflammation, which is
self-limited, contrary to prolonged chronic inflammation common in many diseases, such
as cirrhosis [31]. Some studies in animal models of liver damage have described that TBHQ
is a hepatoprotective agent, such as in the study carried out in male C57bl/6 mice, which
showed that TBHQ mitigates acute liver damage induced by CCl4 at a dose of 0.1 mL/kg,
i.p. (10 mL/kg body weight volume CCl4/volume olive oil = 1:99); another work showed
that TBHQ exerts anti-inflammatory activity in liver injury ischemia and reperfusion in
male Sprague-Dawley rats [32,33]. In addition, some in vitro studies suggest that TBHQ
at high doses (100 and 500 µM) is cytotoxic in human and murine hepatoma cell lines,
respectively [13]. Furthermore, a recent review described the beneficial and toxic effects
of TBHQ, suggesting that more research on public health and the mechanism of action in
different organs and cells should be carefully explored [34]. Therefore, the present work
made a comparison of two different types of liver damage, demonstrating for the first time
the anticholestatic effect of TBHQ.

Because TBHQ presents a wide variety of biological effects [10–12], it is possible
that it has multiple molecular targets in addition to the already known targets; therefore,
online platforms were consulted to predict its possible molecular targets (Table 3). Fifty-
six proteins were identified, of which two were transcription factors: Nrf2 (Protein ID:
NFE2L2) and p65 (Protein ID: RELA). TBHQ has been associated with the activation of
the Nrf2 pathway in HepG2 cells [32] and protects against ischemia/reperfusion-induced
liver injury through the activation of the Keap1/Nrf2/ARE signaling pathway in rats [33].
Keap1 represses the Nrf2/ARE pathway in two ways: in the cytoplasm, Keap1 recruits Nrf2
into the Cul3/containing E3 ubiquitin ligase complex of Cul3/containing E3, causing its
proteasomal degradation; however, Keap1 is able to translocate to the nucleus to dissociate
Nrf2 from ARE [35]. Furthermore, the activation of the Nrf2/ARE signaling pathway
induced by TBHQ is inhibited by the NF-κB subunit p65 through its interaction with Keap1,
which induces the nuclear export of Nrf2 [36,37]. In the present work, the interaction
between TBHQ and Keap1 was hypothesized.

Furthermore, in Table 3, other target proteins were identified, such as the nuclear factor-
kappa B p105 subunit (Protein ID: NFKB1), which is a suppressor of inflammation [38];
the nuclear receptor ROR gamma liver (Protein ID: RORC), considered a potential thera-
peutic target in liver fibrosis [39]; xanthine dehydrogenase (ID: XDH), which catalyzes the
oxidation of NADH-generating tissue injuries mediated by reactive oxygen species [40];
and the bile acid receptor (Protein ID: NR1H4), whose low expression is related to biliary
atresia characterized by fibrous obstruction in childhood liver diseases [41]. These, among
other molecules, make up 96.4% of the identified protein targets, for which the effects of
TBHQ are unknown. The meticulous analyses in this table open up the possibility of further
studies involving these proteins in liver disease.

4. Materials and Methods
4.1. Animals

A total of 36 male Wistar rats weighing between 200 and 250 g were used in the
CCl4 model and 40 male Wistar rats weighing 300 to 350 g were used in the bile duct
ligation model (BDL). All rats were kept with ad libitum water and a standard diet
(LabDiet 5008) [42] and 12 h of light and 12 h of darkness at 24 ◦C. Experimental pro-
cedures in rats were approved by the Research Ethics Committee of the Huasteca Zone
Faculty of Professional Studies of the Autonomous University of San Luis Potosí, México,
and were carried out based on international terms and guidelines, as well as technical
specifications for the production, care, and use of laboratory animals dictated by the official
Mexican standard NOM-062-ZOO-1999 [43].

4.2. Preparation of TBHQ

To be administered orally, 100 mg of TBHQ (Sigma-Aldrich, Saint Louis, MO, USA) was
dissolved in 100 µL of dimethylsulfoxide (DMSO, Sigma-Aldrich, Saint Louis, MO, USA)
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and then diluted with buffered sterile phosphate saline (PBS, pH 7.4), with constant stirring
in the dark to a final concentration of 5 mg/mL TBHQ in 1% DMSO and administered
immediately after preparation.

4.3. Experimental Protocol of the CCl4 Model
4.3.1. Administration of TBHQ to Rats Intoxicated with CCl4

Pretreatments with TBHQ (40 mg/kg, i.p., every 8 h) [21,22] started three days before
CCl4 intoxication [19].

4.3.2. Mortality Assessment during the Lethal Dose of CCl4
Twelve rats were divided into two groups (Figure 11). CCl4 group (n = 6): lethal

dose of CCl4 (4 g/kg, i.p.) [44] and TBHQ+CCl4 group (n = 6): TBHQ+CCl4 (4 g/kg, i.p.).
Mortality was recorded 24 h after CCl4 administration.
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Figure 11. In vivo experimental design to evaluate the ability of TBHQ to prevent rat mortality
from a lethal dose of CCl4. Twelve rats were divided into two groups for the lethal toxicity assay
of CCl4 (4 g/kg, i.p.): CCl4 (n = 6) and CCl4+TBHQ (n = 6). CCl4: carbon tetrachloride; TBHQ:
Tert-butylhydroquinone; DMSO: dimethylsulfoxide (vehicle for TBHQ); i.p.: intraperitoneal route.

4.3.3. Hepatoprotective Activity of TBHQ during the Sublethal Dose of CCl4
Twenty-four rats were divided into four groups (Figure 12). Control group (n = 6),

CCl4 group (n = 6): sublethal dose of 1.6 g/kg, i.p., of CCl4 [45,46], TBHQ+CCl4 group
(n = 6): TBHQ+CCl4 (1.6 g/kg, i.p.), and TBHQ group. Mineral oil (CCl4 vehicle) was
administered i.p. to the Control and TBHQ groups. Survival was recorded after 24 h of
CCl4 or mineral oil administration.

4.4. Experimental Protocol of the BDL Model

The rats were divided into four groups (Figure 13). BDL group (n = 10): rats were
previously administered 1% DMSO (1 mL, i.p., every administration, every 8 h) for a
total of four doses before surgery, which consisted of performing a double ligation in the
common bile duct, one close to the duodenum and another proximal to the liver; finally,
the bile duct was cut off [26,47] and administration of 1% DMSO continued every 8 h until
sacrifice. BDL+TBHQ group (n = 10): rats were pretreated 24 h before BDL with three
oral administrations of TBHQ (16.7 mg/kg, i.p., every 8 h) and the fourth administration
was carried out 30 min before the surgical procedure. After surgery, the administrations
continued every 8 h until sacrifice. SHAM group (n = 10): simulated surgery rats were
treated with 1% DMSO. SHAM+TBHQ group (n = 10): animals with SHAM surgery
and TBHQ administration. Mortality in rats from the acute liver cholestasis model was
recorded 48 h after undergoing SHAM or BDL surgical procedures. Finally, all animals
were sacrificed 48 h after SHAM or BDL surgeries.
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4.5. Sacrifice of Experimental Animals

The rats were weighed and immediately anesthetized with an i.p. mixture of xylazine
hydrochloride (Sigma-Aldrich) at 10 mg/kg and ketamine hydrochloride (Sigma-Aldrich)
at 80 mg/kg and immediately sacrificed by cardiac puncture. The blood collected was
centrifuged (1000× g, 10 min, 4 ◦C) to obtain serum. Furthermore, the liver was dissected,
washed in a cold saline solution, and weighed. Small liver fragments were then obtained
and immersed in 4% p-formaldehyde, pH 7.0.

4.6. H&E Staining Procedure

Liver tissues fixed for 48 h with 4% p-formaldehyde pH 7.0 were progressively dehy-
drated with organic solvents as follows (1 h each): 70% ethanol, 80% ethanol, 96% ethanol,
absolute ethanol, ethanol-xylene 1:1, xylene (twice), and hot paraffin (twice). Next, tissues
were embedded in paraffin, and 4 µm histological sections were prepared on an Ecoshel
model 202A microtome and fixed on slides treated with 2% 3-aminopropyltriethoxysilane
in acetone [48]. Next, they were subjected to deparaffinization at 60 ◦C for 24 h. H&E stain-
ing was carried out in the following order: xylol 10 min, xylol 1 min, absolute ethanol-xylol
(1:1) 1 min, absolute ethanol 1 min, ethanol 96% 1 min, ethanol 80% 1 min, hematoxylin
5 min, wash with tap water 6 min, acid alcohol 0.5% 1 s, distilled water 1 min, ammonia
solution 0.05% 5 min, distilled water 1 min, distilled water 1 min, eosin 1 min, 80% ethanol
1 min, 96% ethanol 1 min, absolute ethanol 1 min, absolute ethanol-xylene (1:1) 1 min, and
twice with xylene (1 min each).

4.7. Photographic Images of H&E Staining

H&E stains were visualized with a Zeiss Axioscope 40/40 FL microscope and analyzed
with ImageJ version 1.53e software.

4.8. Evaluation of Serum Biochemical Markers of Liver Damage

The enzyme activities of ALT [49], GGT [50], and ALP [51] were evaluated in serum
samples. Briefly, plasma ALT enzyme activity was evaluated in duplicate for each test:
250 µL of substrate solution (0.2 M D/L of alanine with 2 M α-ketoglutaric acid) and 50 µL
of serum were mixed and incubated at 37 ◦C for 60 min. Subsequently, 250 µL of the
chromogenic reagent (1 mM 2,4-dinitrophenylhydrazine) was added and the sample was
further incubated for 15 min at the same temperature. Finally, 1.5 mL of 0.4 N NaOH was
added and measured on a spectrophotometer at a wavelength of 515 nm. The enzyme
activity of ALP was determined in each sample in duplicate by adding 250 µL of 0.1 M
glycine buffer, 1 mM MgCl2 with a pH of 10.5, and 250 µL of p-nitrophenylphosphate
substrate, mixing and incubating at 37 ◦C for 5 min. After that time, 50 µL of serum
was added to incubate again at 37 ◦C for 30 min. Finally, NaOH 0.02 N was added and
absorbances were measured in a spectrophotometer with a wavelength of 410 nm. The
GGT enzymatic activities were carried out in duplicate in each sample with 400 µL of 0.2 M
Tris-HCl reagent, 100 µL of MgCl2, 100 µL of 0.04 M glycyl-glycine, and 100 µL of 10 mM
gamma-glutamyl-p-nitroanilide. Once the solution was prepared, it was incubated for
10 min at 37 ◦C, after which 200 µL of serum to evaluate was added, and it was incubated
again for 30 min at the same temperature of 37 ◦C. After incubation, 2 mL of 1.5 M acetic acid
was added to stop the reaction, and the absorbance was measured in a spectrophotometer
at a wavelength of 410 nm. For the three markers of liver damage, blanks were included,
and the respective standard curves were performed as suggested by the authors.

4.9. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.00 software. The results of
the biochemical studies were expressed as the mean values ± SE from each experimental
group, and comparative analysis was carried out using variance analysis followed by
Tukey’s test. Statistical significance was considered at p < 0.05.
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4.10. Identification of Potential Targets for TBHQ Protein in the Liver

Eight online platforms, where protein targets for chemical compounds can be searched
or predicted, were consulted to analyze the types of proteins with which TBHQ could
interact. The platforms used were ChEMBL [52,53], PharmMapper [54–56], Pharos [57],
PPB [58], SEA [59], Super-PRED [60], SwissTargetPrediction [61], and TargetNet [62], and
they were consulted between 5 and 14 July 2022. On these platforms, the TBHQ molecule
was submitted either by drawing it or in mol2 or SMILES formats, with both generated on
the ChemInfo website using OpenBabel software [63,64], where the molecule was drawn to
obtain them. From each set of data obtained, the protein targets with the highest probability
of being the said targets were chosen, according to the platform algorithm and if indicated
in the results (PharmMapper, Super-PRED, SwissTargetPrediction, and TargetNet), or all
those obtained by the other platforms were further used. Of the protein targets chosen,
their protein code was searched in the GeneCards database [65,66] if it was not listed in the
results of each platform. With this code, the Human Protein Atlas, a large compendium
that integrates results from omics technologies to map human protein expression in cells,
tissues, and organs, was consulted [67].

4.11. Molecular Docking of TBHQ with Keap1
4.11.1. Keap1/Nrf2 Protein

The Nrf2 is a transcription factor with seven domains: Neh 1, Neh 2, Neh 3, Neh 4,
Neh 5, Neh 6, and Neh 7 (Table 6 and Figure 14).

Table 6. Nrf2 domains.

Domain Name Residues/Amino Acids

Neh 1 sMAF and DNA binding 435–562

Neh 2 Keap1 binding 50–86

Neh 3 Transactivation domain 563–605

Neh 4 Transactivation domain 112–134

Neh 5 Transactivation domain 182–209

Neh 6 p-TrCp binding 338–388

Neh 7 RARalfa binding 210–316
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4.11.2. Molecular Docking

We analyzed the interaction of TBHQ by looking for molecules that inhibit the in-
teraction between Nrf2 and Keap1, since there are crystallized structures of Keap1 with
small molecules in the interaction domain between them that may function as controls
for this putative interaction. First, PDB 5CGJ, a Keap1 crystal structure of Keap1, bound
to RA839, a small molecule that binds noncovalently to the Keap1–Kelch domain and
affects its interaction with Nrf2 (Kd = 6 µM) [68]. This structure has an X-ray diffraction
resolution of 3.36 Å, an R-value of 0.226, and an R-value of 0.137. A preliminary analysis
identified the amino acids in Keap1 that interact with RA839. The second PDB used was
7C60, which contains the Keap1 crystal in a complex with MEF, which is the metabolite of
the Nrf2-activating drug dimethyl fumarate used for the treatment of multiple sclerosis [69].
This structure has an X-ray resolution of 1.95 Å, an R-value of 0.288, and an R-value of
0.214. A preliminary analysis was performed to identify amino acid residues involved in
the interaction between Keap1 and MEF. Finally, the interaction between Keap1 and Nrf2
was screened using PDB 7K2M, which has a resolution of 2.02 Å, an R-value of 0.261, and
an R-value of 0.237 [70]. Preliminarily, we analyzed which Keap1 residues are involved in
this interaction.

Molecular docking analysis was prepared and performed with the best-resolved
Keap1 protein from PDB 7C60 using MOE 2022.02 (Chemical Computing Group, Molecular
Operating Environment (MOE), 2022.02 Chemical Computing Group ULC, 1010 Sherbrooke
St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2022). The protein was parameterized
using the AMBER 14: EHT forcefield, water molecules were removed, and the structure was
minimized. Subsequently, the cocrystallized ligands were removed. By using SiteFinder
from MOE, a site was found where some of the already identified residues (shown in
Figure 8) and the tested small molecules (RA839, MEF, and TBHQ) could be hosted, and a
set of dummy atoms was placed near the site. With this information, that site was used
as a receptor for molecular docking. The receptor was programmed to be rigid, and the
search algorithm was based on the geometry of Triangle Matcher with London dG as the
scoring function to obtain 100 poses. The protocol was followed by a pose refinement
using the GBVI/WSA dG scoring function to filter 10 of the most energetically favorable
conformations of protein-ligand complexes [71–79].

5. Conclusions

Our results suggest for the first time that the administration of TBHQ increases survival
in animals with extrahepatic cholestasis or by lethal toxicity of CCl4 and propose new
protein targets that can be evaluated as possible protection mechanisms for TBHQ against
liver disease. In our proof-of-concept model, we found that TBHQ has a tendency to
introduce deeper into the protein structure compared to RA839, MEF, and the Nrf2–Kelch
domain, which explains its binding energy being greater than MEF but still lower than
RA839; nevertheless, the interaction and complementarity of TBHQ in Keap1 could have a
major influence on inhibition of the Keap1–Nrf2–Keap1 forming trimer Keap1–Nrf2–Keap1,
which could cause an increase in Nrf2 concentration into the cytoplasm to be translocated
to the nucleus, then activating the expression of antioxidant proteins responsible for the
hepatoprotective effect. Even when TBHQ could not interact directly with the residues
involved in the formation of the Keap1–Nrf2 complex, based on the idea that even a
small change in the geometry of the binding site could cause a large change in protein
conformation, the deeper introduction of our ligand into Keap1 could cause an impediment
to Nrf2 binding and then increase its concentration, causing the abovementioned effect.
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