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Abstract: Thromboinflammation, the interplay between thrombosis and inflammation, is a significant
pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2
causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators
of this process. Neutrophils, the most predominant white blood cells in humans, are strategically
positioned to promote thromboinflammation. By releasing decondensed chromatin structures called
neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These
structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immuno-
genic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4
(PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NE-
Tosis). The neutrophil inflammasome is also required for this process. Understanding the link between
the immunological function of neutrophils and the procoagulant and proinflammatory activities of
monocytes and platelets is important in understanding thromboinflammation. This text discusses
how vascular blockages occur in thromboinflammation due to the interaction between neutrophil
extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for
understanding the processes that drive thromboinflammation by linking the immunological function
of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This
article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction
of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in
ﬁr;)edcgtfgsr neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory

diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs
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and inflammasomes is critical for the progression of thromboinflammation in several diseases and
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Thrombotic events, including myocardial infarction after plaque rupture, are now
known to involve inflammation and innate immune cells. Several studies suggest that
platelet activation promotes a procoagulant state that drives inflammation and thrombosis
in a vicious cycle [2,3]. Over the last decade, the idea that innate immune cells also
contribute to thrombosis has gained recognition. Initially considered a safeguard response
against the invasion of pathogens by means of local fibrin accumulation, it is now clear
that innate immune cells can also make a significant contribution to sterile pathological
thrombosis [4,5]. Thromboinflammation is now increasingly recognised as important
therapeutic objective for a number of human disorders. The activation of platelets and
immune cells, along with endothelial activation/dysfunction (as shown in the graphical
abstract), is key to the concept of thromboinflammation. The result is microvascular
thrombosis and ultimately organ dysfunction [6].

Search Strategy

In September 2023, a review was conducted using PubMed to investigate the database
with the following search terms: “Tromboinflammation (56 to present)’, ‘Inflammasone
(2092 to present)’, ‘NET (1807 to present)’, 'NETtosi (160 to present)’, and ‘Neutrophils
coupled to NET (369 to present)’. ‘Neutrophils coupled to Inflammasome (135 to present)’,
‘Tromboinflammation coupled with Neutrophil (17 to present)’, “Tromboinflammation cou-
pled with Platelet (30 to present)’, and ‘Platelet coupled with Von Willebrand Factor (15
to present)’. The search prioritised identifying data from basic research articles, reviews,
observational cohort studies, and randomized controlled trials (RCTs) on the aforemen-
tioned topics. Full-text articles and reviews published in the past three years up to the end
of September 2023 were included, but some commonly referenced and highly regarded
older publications were not excluded. One particularity of this pathoanatomic condition
is the scarcity of randomized studies available on optimal treatment. This is due to the
prioritization of biomolecular research as regard this pathophysiological process.

2. Understanding the Role of Platelets and P-Selectin as Key Actors in
Thromboinflammation

In thromboinflammation, platelets play an important role (Figure 1) [7-9]. Upon
activation, they create heterotypic activation complexes with monocytes and neutrophils
by binding to the adhesion molecule P-selectin (CD62P). P-selectin plays a critical role in
leukocyte recruitment and activation and is stored and released by platelets and Weibel-
Palade bodies in endothelial cells [10-13]. The interplay between P-selectin and PSGL-1
results in P-selectin being cleaved to form soluble P-selectin (sP-selectin). The substance still
possesses many of its procoagulant and stimulatory characteristics [14-16]. High plasma
levels of sP-selectin are linked to an elevated risk of cardiovascular disease, myocardial
infarction, and stroke in both humans and mice [17-20].

It is noteworthy that COVID-19 patients referred for emergency cardiac surgery have
experienced significant issues with acute thromboinflammation and thromboembolism,
resulting in devastating post-operative complications that are difficult to manage. Similarly,
patients with acute aortic dissection and NSTEMI requiring emergency revasculariza-
tion have also experienced severe complications due to thromboembolic episodes before
disseminated intravascular coagulation. To prevent these complications, it is crucial to
closely monitor and manage thromboinflammation and thromboembolic events in these
patients [21-28].
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Figure 1. Platelet-endothelium adhesion occurs when activated endothelial surfaces express P-
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selectin, which interacts with platelet surface receptors GPIba and PSGL-1 to mediate platelet rolling.
Beta-3 integrins subsequently mediate firm adhesion. From Gawaz et al. Ref. [8].

On monocytes, P-selectin binding rapidly exposes tissue factor (TF), the coagulation
initiator, to the surface [29-34]. Over time, the expression of the TF gene increases and TF is
released from the surface of monocytes in extracellular vesicles. The primary source of TF
in the blood is then the activated monocyte [12,35]. TF and Factor VIla combine to aid in
the formation of the prothrombinase complex on the exterior of triggered platelets, thereby
producing high quantities of thrombin. Interestingly, researchers [3,9] have shown that
platelet-specific P-selectin deficiency alters the initiation of atherosclerosis in a preclinical
model of atherosclerosis based on the work of Russell Ross [1]. This modification has
the potential to decrease smooth muscle cell mobility, which may significantly impact
lipid levels and the number of cells in the growing plaque [36-39]. Nevertheless, trials
on patients presenting with acute coronary syndrome and administered inclacumab, an
anti-P-selectin antibody, found that while the drug reduced troponin release, it did not
have any effect on adverse effects during the SELECT-ACS trial [40,41]. This may be
attributed to E-selectin, another type of selectin, being expressed as a result of endothelial
activation through factors such as platelet factor-4 or other cytokines [42—44]. Perhaps in
treating atherothrombosis, it is necessary to adopt a dual approach that inhibits both P-
and E-selectin. Of these, 5-HT (serotonin) is of particular interest. In addition to inducing
vasoconstriction, 5-HT also amplifies platelet and endothelial activation, as evidenced by
its ability to facilitate Weibel-Palade body exocytosis [15,45,46]. (Etulain and colleagues
proposed that platelets induce neutrophils to release neutrophil extracellular traps (NETs)
via P-selectin and PSGL-1 signals during aseptic inflammation) [47].

Platelets play a multifaceted role in inflammation. These processes, along with platelet
aggregation and fibrin deposition, can cause vascular occlusion even without physical
injury to the blood vessels. Platelets also act as protectors by preventing bleeding in
inflamed venules caused by white blood cells passing through disrupted endothelial
junctions [48-51] (Figure 1).

Hook and colleagues [52] discovered that activated platelets interact with leukocytes
through P-selectin glycoprotein ligand 1 (PSGL-1). Two hours after inducing systemic
inflammatory response syndrome (SIRS), the expression of PSGL-1 in alveolar neutrophils
was higher in gp91phox-/-mice. The interaction between platelets and neutrophils de-
creased in the peripheral blood of gp91phox-/-mice, indicating that activated platelets
migrated to the lungs of mice lacking Nox2. Nox2-derived reactive oxygen species (ROS)
play a crucial role in maintaining immune homeostasis in the lungs and resolving inflam-
mation after a systemic inflammatory insult. The lungs are crucial organs where immune
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cells come into very close proximity with each other and the surroundings. Potential
inflammatory stimuli may be introduced on a routine basis. The function of Nox2 in inhibit-
ing basal platelet chemokine secretion, suppressing upregulation of neutrophil adhesion
molecules and regulating a crucial neutrophil enzyme involved in the creation of NETs.
Notably, tissue injury is not induced by the lack of Nox2 alone, but its absence increases the
likelihood of severe injuries in organs while also creating an environment with low-level
inflammation in the setting of systemic inflammation. To enhance outcomes for patients
who suffer from significant inflammatory organ injury, it is crucial to take into account the
diverse function of ROS in the inflammatory response [52] (Figure 2).
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Figure 2. Neutrophil activation is mediated by several factors including IL-8, G-CSF, resistin, lipocalin-
2, hepatocyte growth factor and NET re-release. The immune responses of both NK and T lympho-
cytes contribute to the formation of NETs, which in turn activate the complete system (C5 and C3).
This leads to microvascular thrombosis and subsequent organ damage. Abbreviations: C, comple-
ment; GF, growth factor; IL, interleukin; NK, natural killer. Other abbreviations are listed in the
previous figure. From Ref. [26].

3. Interaction of NETs with Ultra-Large VWF in Thromboinflammatory Vasculopathy
3.1. Identifying the Role Played by NETs

An organized cell death pathway, known as NETosis, takes place in a precise subset of
neutrophils in response to different pathological stimuli, such as ischemia [53]. Recently,
the cell biology of NETosis has been further researched [54-58]. The enzyme PAD4 (protein
arginine deiminase 4) plays a pivotal role in this process [56-58]. PAD4 possesses the sole
nuclear localization signal among the PAD family. On entry into the nucleus, PAD4 converts
positively charged arginine residues, common in histones, into citrulline, an uncharged
amino acid. This process weakens histone interactions within nucleosomes and DNA,
resulting in chromatin decondensation, histone proteolysis, and unwinding into NETs. H3
and H4 biomarkers are useful for identifying NETs in both animals and humans. They can
be detected by analysing plasma samples and tissue sections [56,58].

PAD4 is thought to have specific cytoplasmic targets that impact the cell biology of
NETosis and neutrophil inflammasome composition. NETosis is significantly impaired in
neutrophils lacking functional PAD4, either due to genetic deficiency or inhibition [58-61].
The investigators used high-resolution time-lapse microscopy to prompt NETosis in stimu-
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lated mouse neutrophils and human neutrophil-like cells. They showed that PAD4 has the
required enzymatic and nuclear localization capabilities for various stages, such as ruptur-
ing the nuclear envelope and releasing extracellular DNA [61,62]. Accordingly, researchers
have provided evidence demonstrating a correlation between the elevated NETosis and
heightened neutrophil PAD4 protein expression in type 1 diabetes patients [58,61]. This
finding clarifies their pro-NETotic phenotype. Moreover, a critical aspect for neutrophils
to undergo cell death and subsequently release chromatin involves the formation of gas-
dermin D-dependent membrane pores [63,64]. However, it appears that not all pathways
leading to NETs result in neutrophil demise. Significantly, in the course of an infection, it
was feasible to recognise well-operating cytoplasts (enucleated cells) with the ability to
underpin phagocytosis [65,66].

Adorned with histones, cytoplasmic, and granular proteins, NETs create a substantial
framework that damages the nearby tissue and introduces neoantigens, ultimately causing
autoimmune diseases. Recently, we demonstrated that the introduction of neutrophil
extracellular traps (NETs) with granulocyte colony stimulating factor (G-CSF) and collagen
injections triggered arthritis and joint erosion in a mouse strain typically resistant to the
disease [67]. In blood vessels, NETs, such as VWE, act as a platform for platelet adhesion
and initiation of coagulation [54,55,57,58].

Active PAD4, which is released in conjunction with NETs, also facilitates the citrulli-
nation of ADAMTS13, thus impeding VWF scission and allowing platelet aggregates to
remain close to the vessel wall in the coexistence of PADA4 [68,69].

Certain neutrophils release pieces of the inflammasome that include ASC (apoptosis-
associated speck-like protein containing a CARD) tangled in NETs [70]. These inflamma-
some leftovers, when taken up by cells, have been observed to propagate inflammasome
formation, similar to prion proteins. This cascade of events can increase IL-13 production
and accelerate systemic inflammatory responses [71]. Studies have found TF-containing
microparticles within NETs, consistent with their procoagulant function. Additionally,
microparticles can originate from other cells such as malignant ones. Microparticles are
derived from multiple sources including monocytes, which are the primary source of pro-
coagulant microparticles [72]. NETosis and the increase in NET-associated TF have recently
been linked to systemic inflammation and IL-1 levels, suggesting a common regulatory
pathway [71]. Furthermore, activation of both canonical and non-canonical inflammasomes
stimulates TF secretion from activated macrophages and monocytes, as demonstrated by
recent studies [73].

Over time, a plethora of clinical and experimental evidence has linked NETs to various
ischemia-related and thromboinflammatory ailments [54,55,57,58,66,74—77]. Inhibiting NET
production or their cleavage through DNases has been suggested as a novel therapy, akin
to ADAMTS13’s VWE cleavage [68].

Recently, Novotny and colleagues [78] conducted an in-depth histological examination
of arterial thrombi, revealing differences in both thrombus architecture and leukocyte
subset abundance among patients with acute ischemic stroke (AIS) and acute myocardial
infarction (AMI). The researchers discovered that while leukocyte and neutrophil levels
were similar between AIS and AMI thrombi, monocyte, eosinophil, B-cell, and T-cell counts
were higher in stroke patients compared to those with AMI thrombi. Moreover, there was
an uneven distribution of NETs in terms of quantity and appearance. These were evident
in all patients with AIS, but only in 20.8% of those with AMI. The abundance of NETs
in thrombi correlated with inferior outcome scores among patients with AIS. Conversely,
patients with AMI displayed reduced ejection fraction. This disparity in patient outcomes
distinguishes the crucial influence of NETs on thrombus stability in both disorders.

In a controlled trial of 108 acute ischaemic stroke patients, Ducrox et al. [79] reported
histological findings of thrombus retrieval. The aim of the study was to investigate the
presence of NETs in thrombi retrieved during endovascular therapy in AIS patients and to
evaluate their impact on tissue-type plasminogen activator (tPA)-induced thrombolysis.
The authors identified clusters of NETs in all thrombi. The network density was higher in
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the peripheral layers of the thrombus. The study has found that the presence of thrombus
NET content causes resistance to reperfusion. The study investigated both mechanistic and
pharmacological approaches, utilizing intravenous tPA. This was carried out irrespective
of the underlying cause. Therefore, the combination of DNAse 1 with tPA should be
considered a new strategy for exploration in the context of AIS. Novotny et al. [78] and
Ducrox et al. [79] discuss the importance of NETs in thrombosis and their potential clinical
benefits. The most significant finding is that recombinant DNAse 1 increased thrombolysis
induced by tissue plasminogen activator ex vivo. However, DNAse 1 alone did not produce
the same effect.

Most notably, Blasco et al. [80] presented findings of NETs in coronary thrombi among
patients with COVID-19 who had STEMI. The study reveals the fundamental process of
coronary blockage in STEMI patients, emphasizing the crucial involvement of NETs in the
development of COVID-19-associated coronary thrombosis. Researchers found elevated
levels of NETs in the blood clots of all COVID-19 patients. Specifically, patients with
STEMI and COVID-19 had notably more NETs than those without, according to earlier
findings from the same group. Immunohistochemical analysis demonstrated that all clots
comprised a greater proportion of fibrin and polymorphonuclear cells. The complete lesion
analysis, involving thrombi, NETs, and cellular infiltrate, demonstrated the absence of
atheromatous plaques. In contrast, 65% of non-infected patients displayed STEMI with
visible atheromatous plaques. It is also worth mentioning that the percentage of plaque
fragments in the patient historical control closely resembled that of a previous series of
142 patients who did not experience STEMI [80,81]. Furthermore, it is noteworthy that in
the cohort studied by Blasco et al., patients with STEMI did not report significant changes
in the coagulation parameters mentioned earlier, except for one patient who had a high
concentration of D-dimer. Furthermore, this investigation furnishes a reliable explanation
for the significant contribution of neutrophils and NETs to coronary thrombus formation in
COVID-19 subjects, despite the constraint of a small sample size [80].

Due to a lack of reliable evidence, it is unclear whether there is a causal relationship
between circulating NETs and adverse clinical outcomes after STEMI. Langseth et al.
analyzed serum collected an average of 18 h after PCI and correlated peripherally measured
NET-specific components with clinical outcomes in STEMI [81]. The observational cohort
study followed 956 patients who received PCI for STEMI for a median duration of 4.6 years.
Patients” serum double-stranded DNA (dsDNA) was used to assess the more precise NETs
markers, such as myeloperoxidase DNA and citrullinated histone. The authors did not
find any significant differences in the levels of NETs markers between groups with or
without a primary composite endpoint that encompassed reinfarction, stroke, heart failure
rehospitalization, unscheduled revascularization post the initial infarction for more than
three months, or all-cause mortality, regardless of their occurrence sequence. Despite this,
there was a significant increase in dsDNA levels (p < 0.001) in patients who didn’t survive
(n = 76) compared to those who did. High dsDNA levels above the median were found
to be associated with an increased mortality rate (54 vs. 22, p < 0.001), and upper quartile
levels of dsDNA were linked to a greater risk of mortality. Additionally, dSDNA showed a
weak correlation with D-dimer (rs = 0.17, p < 0.001), while elevated dsDNA levels were
linked to a higher risk of all-cause mortality. Similarly, in STEMI patients, elevated dsDNA
levels were weakly associated with hypercoagulability [82].

Studies by Blasco et al. [80,81] and Langseth et al. [82] have confirmed the importance
of neutrophil extracellular traps (NETs) in the pathogenesis of SARS-CoV-2 infection. These
results support the notion that targeting intravascular NETs is an appropriate goal in the
management of patients with STEMI and represents a viable method to prevent coronary
thrombosis in patients with severe COVID-19 [77,80,81] (Figure 3).
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Figure 3. The formation of Neutrophil Extracellular Traps (NETs) in severe COVID-19 patients
leads to cardiac injury caused by vascular inflammation, thrombogenesis, and NETOSIS, which arise
from the unstable atherosclerotic plaque. Abbreviations used: HMGB1, High Mobility Group Box
1; ISG-15, Interferon-Stimulated Gene 15; LDG, Low-Density Granulocytes; NDG, Normal Density
Granulocytes; NAD, Nicotinamide Adenine Dinucleotide; ROS, Reactive Oxygen Species; SIRT3,
Sirtuin 3. The same abbreviations are used as in the previous figure. The symbol 1 represents an
increase, while | represents a decrease. From Ref. [57].

3.2. The Role of VWF and ADAMTS13

Von Willebrand factor (VWF) is a multimeric glycoprotein that binds to platelet gly-
coprotein Iba and plays a crucial role in the recruitment and activation of platelets. Von
Willebrand factor (VWEF) is located in the same area as P-selectin, found in Weibel-Palade
bodies of ECs and o-granules. It plays a key role in supporting platelet tethering and
leukocyte adhesion in a similar fashion. Moreover, if the ultra-large VWEF stored in Weibel-
Palade bodies is not cleaved, it forms long strings, which are temporarily anchored to
the endothelial surface [83]. In artificial endothelial microchannels, von Willebrand factor
(VWE ) released from activated endothelial cells associates with itself to form elongated
strands that can span across the vascular lumen [84,85]. These ultra-large VWF molecules
fragment red blood cells, leading to the formation of schistocytes, as observed in thrombotic
thrombocytopenic purpura.

ADAMTS13 is mainly produced in the liver. Its primary role is to cleave von Wille-
brand factor (VWF) anchored on the endothelial surface, in circulation, and at the sites of
vascular injury. A deficiency of plasma ADAMTS13 activity (<10%) caused by mutations
of the ADAMTS13 gene or autoantibodies against ADAMTS13 leads to hereditary or ac-
quired (idiopathic) TTP. ADAMTS13 activity is typically normal or only slightly reduced
(by more than 20%) in other forms of thrombotic microangiopathy that are secondary
to hematopoietic progenitor cell transplantation, infection, disseminated malignancy, or
hemolytic uremic syndrome. Currently, plasma infusion or exchange is the preferred initial
treatment. However, new treatments such as recombinant ADAMTS13 and gene therapy
was developed. ADAMTS13 deficiency is a risk factor for developing myocardial infarction,
stroke, cerebral malaria, and preeclampsia [84].

Thrombotic thrombocytopenic purpura impairs the activity of ADAMTS13 [84], a met-
allopeptidase that contains a thrombospondin motif type 1 member 13) [86,87]. Fractured
red blood cells release heme, which triggers NETosis, intensifying the thromboinflam-
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matory process [88,89]. The uncut VWE with its activated binding sites, stimulates the
creation of platelet strings (see Figure 4) and microthrombi [90,91]. In cardiovascular dis-
ease and stroke, elevated concentrations of VWF are linked to an increase in the severity
of the disease [92-94]. Studies in mice show that deficiency of ADAMTS13, an enzyme
that converts VWE, results in increased thrombosis and inflammation [95,96]. The same
group has published two reports that show how recombinant ADAMTS13 can potentially
reduce inflammation in mice suffering from stroke and myocardial ischaemia/reperfusion
injury. The investigators have shown that recombinant ADAMTS13 has a protective anti-
inflammatory effect when administered in both scenarios [97,98].
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Figure 4. Flow models were used to investigate interactions between von Willebrand factor (VWF)
and neutrophils, providing insights into the relationships between the A1 domain of VWF multimers,
platelets, neutrophils, and NETs under conditions of high shear flow (indicated by red arrows) and
low shear flow (indicated by blue arrows). Abbreviations; ds, double strand; GP, glycoprotein.

Histological examination of both animal and human thrombi reveals interwoven fibrin,
NETs, and VWF localized in the solid matrix of thrombi. VWF stabilises the thrombus
by acting as a bridge between the vessel wall and the NETs. NET-associated histone
released from the NET enhances VWF delivery from ECs and stimulation of platelet
activation [83,99]. Figure 4 demonstrates a clear interaction between VWF and NETs. DNA
and histones both bind to VWE, effectively anchoring NETs in place [100-102]. In a crucial
study [103] predating the discovery of NETs [57], a distinct binding between the A1 domain
of VWF and histones had been identified, elucidating the purpose of this interaction site
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on VWE It has been observed that recombinant ADAMTS13 therapy not only clears VWF
from endothelial surfaces, but also removes NETs [83,84,104-107] (Figure 4).

3.3. Inflammasone to the Direction of All Actors

Excluding cellular interactions, the thromboinflammatory process is complex. It
involves the interaction of the coagulation cascade, complement and cytokines, predomi-
nantly the IL-1 family. A variety of regulatory proteins are produced as inactive precursors
and necessitate proteolytic processing in order to attain biological functionality. Initially
reported in 1989 by Black et al. [108,109], caspase 1, which is predominantly accountable
for processing pro-IL-1 intracellularly [110], was eventually unveiled as the primary
component of the inflammasome [111,112]. Inflammasomes are complex protein structures
composed of several components that gather in innate immune cells after activation [113].
Recent reports suggest that inflammasome assembly in neutrophils, which was previously
mainly researched in monocytes/macrophages, also takes place (Figure 4). Although
neutrophils are responsive to the same stimuli as monocytes, the latest studies have demon-
strated that they do not require LPS priming in vitro, indicating a more rapid response
time, aligning with their function as the host’s primary immune defense [60]. The main
driving force for the assembly of the inflammasome in sterile thrombo-inflammation is the
activated platelet [114,115]. Please refer to Figure for further details. It should be noted that
there are numerous other intracellular and extracellular stimulators that activate different
pathways of activation, which are discussed in more detail [116,117]. The importance
of the inflammasome in pro-IL-1p3 processing renders it a focal point in the evolution of
thromboinflammation, thereby presenting a plausible target for modifying inflammatory
pathways. The most extensively studied inflammasome in IL-1f3 activation is the NLRP3
receptor (pyrin domain containing three of the NLR family) [118].

Once activated and released, IL-13 acts as a pro-inflammatory cytokine, inducing
the production of endothelial adhesion molecules that attract leukocytes, including E-
selectin, ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion
molecule-1) [119-123]. The importance of the inflammasome in controlling the excessive
pro-inflammatory effects caused by the release of IL-1f3 is highlighted in some rare genetic
disorders. Gain-of-function mutations in the NLRP3 inflammasome are responsible for
cryopyrin-associated periodic syndromes (CAPS). Canakinumab, an anti-IL-1 antibody,
is approved as an orphan medication for treating these conditions. A recent study showed
that an exclusively neutrophil-expressed mutation that induces inflammasome assembly is
sufficient to trigger cryopyrin-associated periodic syndromes. This discovery emphasizes
the vital function of neutrophils in cryopyrin-associated periodic syndromes [112]. Thiam
and colleagues [62] have recently discovered that the formation of ASC specks is a useful
indicator of inflammasome activity in murine neutrophils, occurring before chromatin
decondensation. In line with this, Miinzer and colleagues [60] demonstrated that NLRP3
deficiency considerably decreases NETosis in vitro and leads to a lower density of NETs in
thrombi created by a mouse model of deep vein thrombosis induced by stenosis. This is an
intriguing discovery as it places the inflammasome upstream of yet another thromboinflam-
matory process known as NETosis. Additionally, citrullination promotes inflammasome
assembly [124], and in neutrophils, the citrullinating enzyme is PAD4 [76,125].

Pathological thromboinflammation is underpinned by the progression of the PAD4-
mediated inflammasome in neutrophils and subsequent NETosis. PAD4-mediated inflam-
masome assembly and subsequent NETosis underpin pathological thromboinflammation,
connecting the immunological role of neutrophils to the activation of platelets and mono-
cytes (Figure 5).
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Figure 5. Typical signalling pathways for NLRP3 inflammasome activation. Upon stimulation
of TLR4, IL-1R, or TNFR, TNF receptor-associated factor 2 (TRAF2) and TNF receptor-associated
factor 6 (TRAF6) recruit the inhibitor of nuclear factor-«B kinase «/f3 (IKK«/ ), resulting in the
translocation of NF-«B subunits to the nucleus. This enhances the transcription of NLRP3 and
pro-IL-1p, facilitating the activation of components in the local systems. Upon NLRP3 inflammasome
initiation through PAMPs and DAMPs, the subunits of NLRP3 and pro-IL-1§3 are enabled. As a result,
the inactive procaspase-1 is cleaved into active caspase-1, which triggers the following assembly of
NLRP3 inflammasome. Once activated, the NLRP3 inflammasome initiates the processing of signals.
Gasdermin D, pro-IL-18, and pro-IL-18 are transformed into their biologically active forms through
the cleavage of dormant procaspase-1 into active caspase-1, which then triggers the processing of
gasdermin D, pro-IL-1f3, and pro-IL-18 into their biologically active forms. From Wu et al. Ref. [123].

4. Focusing on the Thromboinflammation Process in Atherosclerosis and COVID-19

It is evident that the interaction between platelets, VWF, NETs, and inflammasomes
plays a crucial role in the progression of thromboinflammation associated with various
diseases. In this text, we will explore two distinct pathological processes where thromboin-
flammation is believed to be a contributing factor.

4.1. Implication of Atherosclerosis

In 2019, it will become possible to target inflammation in atherosclerosis using clinical
intervention, as shown by CANTOS, which supports the thesis that the development and pro-
gression of atherosclerosis is mainly due to the inflammatory response [1,119-122,124,126]. The
outcomes of this significant study demonstrate that interventions aimed at inflammation
can lead to encouraging clinical results. The CANTOS trial evidenced that administering an
anti-IL-1p antibody to patients with cardiovascular stability after a myocardial infarction,
following the guidelines, lowered the occurrence of renewed major adverse cardiovascular
events [113]. Nevertheless, this constructive result was associated with a considerable
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increase in infections, some of which resulted in fatalities [113]. In this section, we examine
the interconnection between atherogenesis and thromboinflammation while identifying
significant contributors. The goal is to identify potential therapy targets. See other sources
for a comprehensive overview of the condition [126,127].

As with other thromboinflammatory illnesses, in atherosclerosis, the initial stages
of leukocyte recruitment are reliant on the activation of endothelium and platelets [128].
Platelets secrete chemokines (such as CCL5) and cytokines (IL-1 beta) which promote
monocyte/neutrophil adhesion to the endothelium [129]. Leukocyte adhesion and the
progression of atherosclerotic lesions are supported by both platelet and endothelial P-
selectin [38]. Soluble E-selectin increases the risk of cardiovascular disease [17,130,131].
In mice, the absence of both P-selectin and E-selectin had the greatest negative impact
on lesion progression [131,132]. A possible role for VWF in initiating platelet function
within the lesion has been suggested by ultrasound molecular imaging, which has shown
increased VWF-mediated platelet adhesion to the endothelium preceding the development
of atherosclerotic plaques [133]. This finding explains that VWF-deficient mice fed with a
high-fat diet developed atherosclerotic-prone sites later than their wild-type counterparts,
and in unique locations [134].

In turbulent flow where lesions tend to form, von Willebrand factor (VWF) is neces-
sary to facilitate platelet adhesion, ultimately marking the site for monocyte recruitment.
In addition, the fatty streaks observed in VWEF-deficient mice were smaller in size and
contained fewer monocytes. This finding is in line with the discovery that endothelial
VWE as opposed to platelet-derived VWE, is essential in the development of atheroscle-
rosis in mice [135]. In all animal disease models where VWF is pathologically released,
ADAMTS13 deficiency accelerates the progression of atherosclerotic lesions, in contrast to
VWE deficiency [136,137].

High plasma levels of sP-selectin are correlated with the severity of cardiovascular
disease in humans, similar to VWE. Knock-in mice were created by deleting the cytoplasmic
domain necessary for P-selectin storage, resulting in an enhanced procoagulant state due
to the overproduction of thrombin. These mice exhibited an increased susceptibility to
atherosclerosis [20]. Although monocytes are widely considered the most critical factor
in atherosclerosis induced by lipids, there is evidence to support the involvement of
neutrophil-derived NETs in a process similar to endothelial erosion in mice [126]. Recent
genetic research revealed the presence of such NETs in this disease, with PAD4 deficiency
being an effective inhibitor. Reducing endothelial discontinuity and EC apoptosis in a
mouse model was also possible with the administration of DNAse [138]. This treatment not
only tackles the blood clotting effects caused by NETs but also their toxicity. Additionally,
it has been discovered that histone H4 in neutrophil extracellular traps (NETs) can cause
the death of smooth muscle cells in the arterial wall, which accelerates the destabilisation
of atherosclerotic plaques [139]. This finding may explain how acute infections, causing
an excessive amount of NETosis, contribute to cardiovascular risk [126,140,141]. Targeting
NETs could be beneficial for enhancing plaque stability in secondary prevention therapy,
such as for carotid disease and stable coronary artery disease [126].

The feedback loop between inflammasome assembly and NETosis via PAD4 promotes
IL-1 beta activation, which promotes NETosis and contributes to atherosclerosis [142].
There is strong experimental evidence for the activation of the NLRP3 inflammasome
by cholesterol crystals and thus a direct link to the path of atherogenesis. Research has
indicated that reducing atherosclerosis in mice can be accomplished by inhibiting NLRP3
or genetically deleting it [126,143-145]. Additionally, as NLRP3 deficiency also decreases
NETosis and the accumulation of NETs in thrombi [125], inhibition of PAD4 and NLRP3
targeting may present potential interventions for hindering atherothrombosis (Figure 6).
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Figure 6. Inflammatory pathways implicated in atherosclerosis are illustrated. Preclinical and
clinical trials have revealed a complex equilibrium between pro-inflammatory and anti-inflammatory
pathways. The balance is regulated by inflammatory cells (macrophages and T-cells) and the liver
(CRP), promoting endothelial dysfunction and the progression of atherosclerotic plaque via the
production of molecules with either a pro-inflammatory (red box) or anti-inflammatory (blue box)
effect. Plaque rupture is a potential result of an intensified inflammatory process. Abbreviations
used: CRP (C-reactive protein); MMPs (matrix metalloproteinases); IFN-y (interferon-gamma); IL-
1 (interleukin-1-alpha); IL-1p3 (interleukin-1-beta); IL-2 (interleukin-2); IL-6 (interleukin-6); IL-10
(interleukin-10). IL-18, interleukin-18; Lp-PLA2, lipoprotein-associated phospholipase A2; TGF-§,
transforming growth factor beta; Th-1, T-helper-1 lymphocyte; TNF-«, tumor necrosis factor alpha;
and T-reg, regulatory T lymphocyte. From Ref. [146].

4.2. Implication of Thromboinflammation in COVID-19

The World Health Organization is responsible for collecting and distributing mortality
statistics. Nature Journal investigators have been monitoring the COVID-19 pandemic
since the start of 2020. Reported COVID-19 mortality statistics are unreliable in many
countries due to differences in testing availability, varying diagnostic capabilities, and
inconsistent certification of COVID-19 as the cause of death. Apart from its direct impact,
the pandemic has caused significant collateral damage resulting in loss of lives and liveli-
hoods. Investigators recently reported a comprehensive and consistent measurement of the
impact of the COVID-19 pandemic by estimating excess deaths, by month, for 2020 and
2021. The investigators have used an overdispersed Poisson count framework that applies
Bayesian inference techniques to quantify uncertainty to predict all-cause deaths during
the pandemic period in locations where complete reported data is lacking. Investigators
have estimated that there were 14.83 million excess deaths globally, which is 2.74 times
higher than the 5.42 million deaths reported as being due to COVID-19 during the same
period. There are significant variations in the estimates of excess deaths among the six
regions of the World Health Organization [147].

Since the COVID-19 outbreak and the frequent occurrence of coagulopathy, throm-
boinflammation has been attracting attention. Blood clots in dialysis and ECMO circuits
have been observed in COVID-19 patients despite adequate anticoagulation, in line with
the definition of thromboinflammation [145]. The principal pathogenic mechanisms un-
derlying the pathology of COVID-19 are endothelial dysfunction [2,55,57,58,146,148,149]
and thromboinflammation [125]. SARS-CoV-2 infection involves the vascular endothelium,
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leading to endotheliitis, thrombosis, and infiltration of inflammatory cells. In severe cases,
the vascular barrier ruptures and edema occurs [2,26,55]. The resulting vascular angio-
genesis, either intussusceptive or germinative, distinguishes the pulmonary pathobiology
of COVID-19 patients from those with severe influenza virus-related infections [24]. Im-
munohistochemistry showed that ACE2 was highly expressed in alveolar epithelial and
endothelial capillary cells in the autopsy findings of patients who died from severe forms
of COVID-19. Additionally, ACE2-positive lymphocytes were present, and evidence of
an interaction between the ACE2 receptor and immune cells was detected in the perivas-
cular tissue or the alveoli of the lungs of patients infected with SARS-CoV-2 [55,57,58].
SARS-CoV-2 infection can cause acute inflammation, which may destabilise atherosclerotic
plaques and lead to acute myocardial infarction (AMI). The cytokine storm, characterised
by the release of cytokines such as IL-1¢, IL-1§3, IL-6, and TNF-«, is thought to play a sig-
nificant role in SARS-CoV-2 infection. These cytokines can disrupt the protective functions
of the normal endothelium and exacerbate pathological processes. Self-induction of the
pro-inflammatory cytokine IL-1 is closely linked to the pathophysiological mechanism of
cytokine storm. IL-1 induces its own gene expression, resulting in an amplification of its
production levels and leading to a cytokine storm [2,55,57,58].

Additionally, IL-1 induces the expression of other proinflammatory cytokines, such as
TNE-oc and IL-1, and leukocyte invasion. The latter stimulates the production of chemotactic
molecules, such as chemokines, which cause the infiltration of inflammatory cells into the
tissues [2,55,57,58].

Patients with the disease present an increase in platelet activation, formation of platelet-
monocyte aggregates, and a significant rise in monocyte tissue factor expression [150].
Despite the use of antiplatelet therapy, the outcome of hospitalized COVID-19 patients has
not shown any significant improvement [151-153]. This suggests that severe COVID-19 is
not solely driven by platelet aggregation but rather by the interaction between platelets
and various factors, such as NETs. Patients with COVID-19 exhibit a specific coagulopathy
marked by heightened levels of fibrinogen, D-dimer fibrin degradation products, and
significantly increased levels of VWF in the bloodstream [153-155]. There is emerging
evidence that that heightened activation of endothelial cells, causing the release of large
von Willebrand factor (VWF) multimers, in combination with insufficient VWF cleavage
due to ADAMTS13 consumption or disease pathophysiology related to COVID-19, might
lead to escalated interactions between platelets and vessel walls, ultimately resulting
in thrombotic microangiopathy [156]. Reports reveal COVID-19 to cause an excessive
stimulation of the complement and coagulation systems [156-158].

Due to its procoagulant nature, it's not unexpected that sP-selectin is related to disease
severity in COVID-19 patients [159,160]. However, a placebo-controlled, randomised trial
evaluating the impact of monotherapy dose of crizanlizumab, a P-selectin inhibitor, in mild
COVID-19 patients found no substantial improvement in clinical outcomes compared to
placebo, despite evidence of reduced thrombin activation and sP-selectin levels [161]. It is
planned to conduct a larger study with a larger number of random doses. Furthermore,
neutrophil extracellular traps (NETs) are probably implicated in the thromboinflammation
responsible for COVID-19 and the subsequent severe lung impairment [162]. In 2012,
scientists revealed NETs’ pathological involvement in acute respiratory distress syndrome
associated with acute lung injury due to blood transfusion in mice and humans, with NETs
found in the lungs [163,164]. Similarly, autopsy case reports of COVID-19 patients have
identified NETs in the lung parenchyma and alveolar space [165]. Aymonnier et al. [166]
conducted a study of freshly isolated neutrophils from severe COVID-19 patients as part
of a clinical trial on DNase 1 inhalation (https://www.clinicaltrials.gov, accessed on 15
December 2023; unique identifier: NCT04402944). Investigators discovered that a signifi-
cant number of neutrophils were poised for NETosis, evidenced by 40% of nuclei testing
positive for citrullinated histone H3. Additionally, 2% of neutrophils taken from either
blood or tracheal aspirate (i.e., from the lung) were observed to be forming inflammasome,
as detected by ASC speck assembly. Observation of the spots in the vicinity of multi-
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lobulated neutrophil nuclei before the standard nuclear rounding of NETosis indicates
that inflammasome assembly takes place prior to NETosis in COVID-19 patients [166],
thereby highlighting its potential as a treatment target. In our study, though, neutrophils
and monocytes depicted a comparable rate of inflammasome positivity (2%). However,
it is imperative to note that the bloodstream contains ten times more neutrophils than
monocytes. Thus, the possible underestimation of the importance of neutrophil-produced
IL-1p cannot be ignored. The inflammasome activates an autocrine IL-1f3 feed-forward
loop that may be involved in the pathogenesis of adult acute respiratory distress syndrome,
cytokine storm and microvascular thrombosis, ultimately leading to multi-organ failure in
severe COVID-19 cases [166] (Figure 7).
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Figure 7. NETs cause arterial blockage. During atherothrombosis, NETs produced by neutrophils can
contribute to a range of biochemical events that can activate the coagulation process. By destabilising
the atheromatous plaque and inducing its rupture, NETs enhance the stability of the blood clot. From
Ref. [2].

5. Nex Steps

Itis evident that thrombosis and inflammation do not occur in isolation during diseases.
As further knowledge is acquired, the complexity of vascular processes is unveiled. For
example, the formation of a blood clot can no longer be interpreted as being solely a matter
of cleaved fibrinogen with plasma proteins, since the DNA content of the clot also has to
be taken into account for clot lysis. Likewise, platelet clots are no longer just fibrinogen-
crosslinked platelets. It was unexpected to discover that thrombi could still be produced in
mice following an injury, despite their lack of both fibrinogen and VWEF [167].

Recent studies show that deep vein thrombosis formation is not only related to platelets
and red blood cells, but also involves monocytes and neutrophils [168-170]. Researchers
have been aware of the role of platelets and platelet-derived factors in inflammation since
the beginning with ongoing research supporting their impact [2,3,7,32,102]. The traditional
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cellular players of inflammation and thrombosis fully intertwine, validating the term
thromboinflammation.

Neutrophils have a central role in thromboinflammation since they can assemble
inflammasomes and produce NETs. NETs contribute equally to thrombosis, immune
response, and tissue damage, making them critical to the development of this disease.
NETosis sets off platelets, leads to the release of toxic histones [101,171-173] and active
enzymes, hence modifying thrombus stability [174,175]. The assembly of the inflamma-
some, along with heightened PAD4 activity, leads to the discharge of cytokines that are
both pro-inflammatory and pro-thrombotic. This also activates the endothelium, further
increasing the recruitment of leukocytes as well as inflammasome assembly in adjacent
cells. As such, PAD4 and inflammasome emerge as pertinent targets for antithromboin-
flammatory therapy. However, there are numerous outstanding mechanistic queries that
remain unanswered. Identifying the specific protein targets of PAD4 citrullination neces-
sary for inflammasome formation, and the intracellular substrates of caspase 1 (the enzyme
produced by inflammasomes) that must be cleaved to trigger NETosis, could enhance our
comprehension of how to regulate the behaviour of neutrophils.

It is important to note that the function of PAD4 is multifaceted. The role of PAD4-
induced NETosis via cathepsin G-mediated platelet-neutrophil interaction in ChAdOx1
vaccine-induced thrombosis has recently been investigated. Patients with VITT show in-
creased thrombogenesis through PAD4-mediated NET formation via cathepsin G-mediated
platelet-neutrophil interaction [176].

Some aspects require consideration. The implementation of therapeutic techniques,
ongoing clinical trials, and the potential contribution of Netosis inhibitors may offer av-
enues for further investigation into NET and NETosis. The expression of cytokine Chi311
has recently been investigated in relation to the role of certain mediators that significantly
inhibit Netosis [176]. In the context of triple-negative breast cancer (TNBC), the restriction
of CD8+ T cells in the stroma is associated with adverse clinical outcomes and a lack of
response to immune-checkpoint blockade (ICB). To identify factors causing T cell stromal re-
striction, murine breast tumours that lacked the transcription factor Stat3 has been analyzed.
Stat3 is commonly hyperactive in breast cancers and promotes an immunosuppressive
environment. The expression of the cytokine Chi3ll was reduced in Stat3-/-tumours.
CHI3L1 expression was higher in human TNBCs, and other solid tumours that showed
T cell stromal restriction. Ablation of Chi3ll in the polyoma virus middle T model of
breast cancer generated an immune response against tumours and postponed the onset
of mammary tumours. These outcomes corresponded with an elevated T cell infiltration
to the tumour and an enhanced response to immune checkpoint blockade. In terms of
mechanisms, Chi3l1 facilitated neutrophil recruitment and extracellular trap formation,
resulting in the inhibition of T cell infiltration. Taifour et al., sheds light on the mechanism
that limits CD8+ T cell function in stromal tissue and proposes that targeting Chi3l1 may
enhance anti-tumor immunity across numerous types of tumors [177].

Finally, an ongoing randomized study, currently in phase 1, is evaluating the effect of
danirixin on NETs in individuals suffering from chronic obstructive pulmonary disease
(COPD). This mechanistic study intends to evaluate the ability of danirixin to decrease
the formation of NETs, also known as NETosis. The subjects were randomly allocated in a
3:1 ratio to either 35 mg of danirixin hydrobromide taken orally twice a day or a placebo
for 14 days. Participants can use inhaled COPD maintenance and rescue medication
throughout the study. The study involves a screening period with a maximum duration
of 30 days, followed by a 2-week treatment period, and a 1-week phone call follow-up
appointment. Approximately 50 participants will undergo screening, of whom around 24
will successfully complete the study [178,179] Table 1.
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Table 1. Clinical Studies on Mediators of Thromboinflammation with Therapeutic Applications.

Therapeutic Indication Study Preclinical/Clinical Refs
Agent/Drug Name No./Status Study Outcome )
P-selecti No improvement
Crizanlizumab __se ecn NCT03814746 in clinical [161]
inhibitor
outcomes
Reduces
Pulmozyme NETosis in NCT04402944 Phase 2 [166]
neutrophils.
Advanced Reduced levels of
helper and
. . cancet. cytotoxic T cells in
Targeting Chi3l1 Er}hance TNBC tumors led [177]
anti-tumor
immunit to decreased
y tumor infiltration.
Danirixin Reduces NETs
hydrobromide formation NCT02453022 Phase 1 [178,179]

6. Limitation

One limitation of the study is its reliance on observational data, which may introduce
biases in study design. Additionally, the exclusion of non-English studies, particularly
those from China, the initial epicenter of the COVID-19, may have limited the scope of the
study. In addition, the limited availability of randomized studies on optimal treatment for
patients with thromboinflammatory disease limits the validity of this review.

7. Conclusions

Clearly, thrombosis and inflammation are not isolated diseases. As we gain more
knowledge, the complexity of vascular processes becomes more apparent. For instance,
the formation of a blood clot cannot be solely attributed to cleaved fibrinogen and plasma
proteins, as the DNA content of the clot must also be considered for clot lysis. Similarly,
platelet clots do not consist solely of platelets cross-linked with fibrinogen. Despite the
absence of both fibrinogen and VWE, thrombi can still form in mice following an injury.

Recent studies have shown that the formation of deep vein thrombosis is not only
associated with platelets and erythrocytes. Monocytes and neutrophils are also involved.
Several investigations have highlighted the role of platelets and platelet-derived factors
in inflammation. Ongoing research continues to support their impact. Inflammation and
thrombosis are closely linked, supporting the term thromboinflammation.

Due to their newly discovered ability to form inflammasomes and produce NETs,
neutrophils have been identified as central to thromboinflammation. NETs play a critical
role in the development of this disease by contributing equally to thrombosis, immune
response and tissue damage. NETosis triggers platelets, resulting in the release of toxic
histones and active enzymes, which modifies thrombus stability. Inflammasome assembly,
together with increased PAD4 activity, results in the release of cytokines that are both proin-
flammatory and prothrombotic. This activates the endothelium, which in turn increases
the recruitment of leukocytes and the assembly of inflammasomes in neighboring cells.
Therefore, potential targets for antithromboinflammatory therapy include PAD4 and the
inflammasome. Nevertheless, many mechanistic questions remain to be answered. Our
understanding of how to regulate neutrophil behaviour may be improved by identifying
the specific protein targets of PAD4 citrullination required for inflammasome formation
and the intracellular substrates of caspase 1 (the enzyme produced by inflammasomes) that
need to be cleaved to induce NETosis.
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