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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer,
characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral hetero-
geneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to
explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC progno-
sis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable
source of inter-individual variation in genomic sequence. In this review, we outline the origin, main
characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC,
including those that have been clearly shown to have a pathogenic role, and further highlight some
key examples of their involvement in tumor development and progression. The ability to efficiently
identify and analyze CNVs in tumor samples is important to support translational research and
foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We
provide insights into understanding the CNV landscapes and the role of both somatic and germline
CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment.
Although there has been significant progress in this field, understanding the full contribution of
CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays
such as single-cell techniques and larger cohorts than have been performed to date.

Keywords: pancreatic ductal adenocarcinoma (PDAC); copy number variations (CNVs); non-allelic
homologous recombination (NAHR); patient stratification

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent type of pancreatic
cancer. Due to the absence of early symptoms and the lack of effective and reliable meth-ods
for early diagnosis and screening, the majority of the patients (80–85%) present distant
metastatic or locally advanced disease that is not resectable [1], with an overall 5-year
survival rate of 12% [2]. PDAC thus remains one of the most challenging and aggressive
malignancies facing oncologists today and has been projected to become the second leading
cause of cancer death by 2030 [3]. A comprehensive understanding of the biology of the
disease is therefore urgently needed as part of an effort to develop more effective therapy
and improve survival.

Genetic variations have been appreciated since the emergence of molecular genetics. In
the human genome, they are present in various forms, such as mutations, variable number
of tandem repeats (VNTRs), transposable elements, structural alterations, insertion and
deletion variations (indels), and single nucleotide polymorphisms/variations (SNPs/SNVs).
SNPs were previously believed to be the predominant type of genomic variation responsible
for most of the phenotypic variability. However, the Human Genome Project identified
DNA sequence variations other than SNPs and collectively named them copy number
variations (CNVs). They include translocations of various segments of a chromosome and
deletions and insertions of nucleotides [4].
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Among the cancer-associated genetic variations, mutations have been the best char-
acterized. More recently, however, thanks to new sequencing techniques, the roles of
ge-nomic recombinations, such as CNVs, in tumor onset, heterogeneity, and prognosis
have also emerged [5]. For this reason, we report the involvement of CNVs in PDAC
develop-ment and progression.

1.1. Classification of CNVs

Copy number variations refer to a phenomenon in which segments of the genome are
repeated or deleted, with varying numbers of these repeats among different individuals’
genomes. Observations made in 2006, when the first comprehensive human haplotype map
(HapMap) project Phase II of the human genome was constructed by Redon et al. [6], re-
vealed that CNVs cover 12% of the human genome (about 360 Mb pairs), most of which are
small-size rearrangements (<20 kb). The CNVs lay in both coding and non-coding regions,
encompassing hundreds of genes and other functional elements. When the frequency of a
CNV is less than 1%, it is a rare CNV, as opposed to common or polymorphic CNVs, which
have a frequency >1% [7].

Researchers generally distinguish CNVs into two categories, depending on the length
of the sequence affected [8]. The first category consists of copy number polymorphisms
(CNPs), which are prevalent in the general population, with the majority being less than
10 kb in length and frequently enriched for genes encoding proteins that are important in
immunity and drug detoxification. Therefore, these CNVs have well-documented roles in
evolutionary adaptation to new environmental niches [4,9].

The second category consists of relatively rare variants that are longer than CNPs,
having up to over a million base pairs. These variants, also referred to as microduplications
(smaller than 5 Mb) and microdeletions [8], can arise within a family during the develop-
ment of the oocyte or spermatozoa that give rise to a specific individual and be passed
down to offspring.

Copy number variants have also been divided into three groups depending on their
origin: (i) de novo CNVs, newly acquired but not present in a parent; (ii) germline CNVs,
inherited and present in a parent; and (iii) somatic CNVs, meaning that they occurred
after the single-cell stage of an embryo [10]. For example, although monozygotic (MZ)
twins are expected to be genetically identical, one study on 19 pairs of MZ twins revealed
many different CNVs among them and suggested that these variations may have occurred
during somatic development [11]. Somatic mutations were also observed in 10–20% of
the nucleated blood cells of the MZ twins [11]. CNVs have also been observed between
different tissues of the same individual, further supporting the idea that CNVs can occur
in either somatic or meiotic tissues [12]. Further studies on age-stratified MZ twins and
single-born subjects [13] as well as on DNA samples (mainly from peripheral blood) of
more than 50,000 individuals genotyped for the Gene-Environment Association Studies
(GENEVA) consortium [14,15] have revealed the accumulation of CNVs with age in the
nuclear genome of blood cells [13,15]. Data from population genetics analysis of CNVs
and SNPs, collected in the HapMap project, showed that over 99% of the observed copy
number variations of individuals are due to inheritance rather than new mutations, and
nearly 80% of the former are due to common CNVs [10].

1.2. Mechanisms of CNV Formation

To date, several different mechanisms have been shown to be involved in the develop-
ment of CNVs, including germline genomic rearrangements that result in losses or gains of
DNA segments [16].

1.2.1. Genomic Factors and Molecular Mechanisms of CNV Formation

CNVs are produced through a variety of mutational mechanisms, including those
connected to DNA replication, repair, and recombination. Although the mechanisms
underlying the formation of CNVs are not completely understood, the fact that they
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preferentially occur within or near duplicated sequences such as long interspersed nuclear
elements (LINEs) and short interspersed nuclear elements (SINEs) has provided some clues
to their origin [8]. During meiosis, the presence of different repetitive DNA sequences (low
copy repeats, LCRs) in male and female homologous chromosomes at non-corresponding
positions (i.e., that are not alleles but share significant sequence homology) can “mislead”
the recombination machinery and result in an unequal crossing-over event. This aberrant
recombination, known as non-allelic homologous recombination (NAHR) [17], leads to the
loss or gain of copies of genomic segments [18] (Figure 1).
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Figure 1. Non-allelic homologous recombination (NAHR). (A) Normal alignment of homologous
chromosomes. (B) Misalignment of homologous chromosomes before crossing over, for example, due
to abnormal pairing between repetitive sequences with high sequence identity. (C) Duplication and
deletion that result from the unequal crossing over.

Other molecular mechanisms proposed to be responsible for the formation of CNVs
include the (i) replication Fork Stalling and Template Switching (FoSTeS) model [19,20],
which suggests that the stalling of a replication fork can cause the lagging strand to
disengage from its original template and, owing to microhomology, invade and switch to
another active replication fork’s template, where it restarts DNA synthesis. The occurrence
of a deletion or duplication is determined by the location of the ectopic association, and
the nascent lagging strand has the potential for further disengagement and invasion of
other replication forks. FoSTeS happens during DNA replication and can therefore occur
either in mitosis or meiosis. (ii) Microhomology-mediated end joining (MMEJ) and non-
homologous end joining (NHEJ) mechanisms [19,21], which can lead to some chromosomal
rearrangements by joining nonhomologous sequences during the repair of DNA double-
strand breaks (DSBs). In particular, these damages prompt NHEJ- and MMEJ-associated
proteins to repair and ligate DNA sequences together. Sequence deletions, or duplications,
can occur when fragments from different chromosomes are joined together. NHEJ and
MMEJ occur throughout the cell cycle. Not all DSBs result in chromosomal rearrangements
since they can be repaired through homologous recombination (HR) [22,23].

1.2.2. Environmental Factors in CNV Formation

It is unclear how environmental factors contribute to the emergence of CNVs. How-
ever, various studies have demonstrated that chemical and physical mutagens can induce
the formation of CNVs and that chemical mutagens generate copy number losses more
frequently than gains, while ionizing radiation induces deletions and duplications equally
across the human genome [16].
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Replication stress caused by chemical mutagens, such as hydroxyurea (HU), which is a
ribonucleotide-reductase inhibitor as well as an important drug for the treatment of various
diseases, including sickle-cell disease, has been demonstrated to induce the formation of
de novo CNVs in the human genome [24].

Physical mutagens such as ionizing radiation (including X-ray, gamma ray, and ultra-
violet light) can also induce de novo CNVs through a replication-dependent mechanism
because the DNA strand breaks due to radiation, which may cause the replication fork to
collapse [16,25,26]. A study by Costa et al. [27] demonstrated that the offspring of parents
who had exposure to low doses of ionizing radiation had a 1.5-fold higher germline CNV
mutation load. In a retrospective analysis of human populations exposed to low doses
of ionizing radiation, the load of de novo CNVs has been demonstrated to be a helpful
biomarker of parental exposure. Another study on CNVs in papillary thyroid carcinoma
(PTC) among victims of the Chernobyl accident [28] reported that following their exposure
to radiation from this disaster, PTC significantly increased in the irradiated individuals.
Further studies of these radiation-induced PTCs revealed more multiple aberrations of the
chromosome structure than in spontaneous thyroid tumors [29,30].

1.3. Distribution of CNVs

Research has revealed that CNVs are more common in genes that play a role in brain
development and activity and in the immune system [6], functions that have evolved
rapidly in humans. In contrast, CNVs tend to be rare in genes involved in early devel-
opment and basic cellular activities since the alteration of essential cellular functions can
have adverse effects, suggesting that their genes could have been subjected to powerful
purification selection associated with copy number variation [31].

Some scientists propose that CNVs are not random in the human genome but rather
tend to cluster in areas of complex genomic architecture. These proposed hotspot regions
where CNVs are enriched [20] comprise complex patterns of inverted and direct low-
copy repeats (LCRs) as well as high-copy repeats (e.g., SINEs, LINEs). LCRs provide the
homology required for recombination that causes NAHR-mediated modifications. LINEs
and SINEs are retrotransposons that contribute to the CNVs by NAHR either because
of persistent single-strandedness (e.g., due to replication pausing, secondary structures,
or extensive transcription) or frequent DNA breaks in these regions (e.g., due to live
transposon activity), which make them potential sites for annealing by single-stranded
DNA ends [11,20].

The question of whether the localization of CNVs in the human genome is random or
not is still a highly debated topic [20,32–35], but more recent studies highlight a random
distribution [9,36,37].

1.4. Identification and Detection of CNVs

Over the years, “targeted” approaches (single gene or single panel testing) or “whole”
approaches (whole genome or whole exome) have been used to detect CNVs.

1.4.1. “Whole” Approaches

The process of microarray technology involves the immobilization of specific probes
on a solid support, which then hybridize with target DNA segments. The two most widely
used microarray technologies are array-CGH and SNP-array. In aCGH, a test sample
and a reference sample are compared by labeling their genomic DNA (gDNA) with two
different fluorescent dyes and applying them to an array of probes to detect differences
in fluorescence intensity. On the contrary, SNP arrays consist of oligonucleotide DNA
probes that correspond to regions in the genome exhibiting SNPs among individuals
and do not require the use of reference sample DNA. CNV location and organization of
structural variants (SVs) are not determined by microarray methods, making it necessary
to subsequently perform FISH [38,39].
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Next Generation Sequencing (NGS) technology involves the sequencing of highly
fragmented DNA molecules to produce “reads”, which are then mapped to a human
reference genome using bioinformatics software. After alignment, any differences between
the newly sequenced reads and the reference genome can be identified, and the “dosage” of
that specific DNA fragment and the presence of CNVs may be calculated using the number
of reads generated [40]. Currently, there are four distinct methods used for the detection of
CNVs from NGS data [41,42]. These methods include read-depth-based detection (RD),
paired-end mapping-based detection (PE), de novo assembly-based detection (DA), and
split read-based detection (SR), of which RD is the most used. Details regarding the
operation of these methods have been described in other studies [43–45].

1.4.2. “Targeted” Approaches

These involve the analysis of only one single gene or a group of genes, whether they
are scattered across the genome or adjacent, and identifying a long chromosomal trait.
Targeted approaches include Southern blot, fluorescent in situ hybridization, quantitative
polymerase chain reaction, and multiplex ligation-dependent probe amplification.

Born in the seventies, Southern blot is still useful in the detection of some CNVs
with high or extremely high numbers of repeats, particularly in the diagnosis of repeat
expansion diseases. Restrictions endonucleases are used to fragment the target DNA,
followed by electrophoresis to separate the resulting fragments [46]. These fragments are
then incubated with DNA probes labeled either by incorporating radioactivity or by tagging
the molecules with a chromogenic or fluorescent dye. CNVs are detected by comparing the
hybridization intensities between a normal control and unknown samples [46] and/or by
observing changes in fragment sizes (differentiated by length) and mobility following the
hybridization and electrophoresis steps [39].

The fluorescent in situ hybridization (FISH) technique utilizes fluorochrome-labeled
probes to match with chromosomes on a plate in order to detect any CNVs or translocations
affecting a specific chromosomal region. FISH has high levels of sensitivity and specificity
and is capable of detecting deletions, duplications, and translocations. However, FISH
is limited in its ability to detect small imbalances and cannot be used to scan the entire
karyotype without prior knowledge of the target region and appropriate probe selection.
FISH can determine the location of CNVs identified by microarrays, NGS, and WGS [38,39].

Quantitative polymerase chain reaction (qPCR), also known as real-time PCR (rt-PCR),
measures the accumulation of PCR amplicons in real time [39] by use of fluorescent probes.
For the quantification of CNVs, a test locus with an unknown copy number and a reference
locus with a known copy number are amplified in qPCR. Fluorescence intensity increases
in direct proportion to the quantity of amplicon generated in each PCR cycle, and by
determining the number of cycles needed to reach a specific threshold level of fluorescence,
the quantity of the initial template can be determined [47].

The multiplex ligation-dependent probe amplification (MLPA) technique is based
on the hybridization and ligation of specific DNA regions with two adjacently located
complementary probes, followed by multiple PCR using a single pair of fluorescent primers.
In particular, primer pairs containing identical 5′ sequences are used to amplify the target
DNA sequences, followed by pooling into a probe mix [48] since all probes possess the
same 5′ sequences. The PCR products are then separated by a capillary sequencer based on
their size, and the resulting fluorescence intensities are exported for further analysis [48].
This method’s capability to analyze sequences of high identity is greatly attributed to the
sensitivity of the ligation step, which allows for the design of probes containing mismatches
at the ligation site. MLPA can detect CNVs at multiple loci (>40) from relatively low
amounts of genomic DNA [49] and is gaining popularity due to its simplicity, fast execution,
cost efficiency, and robustness.
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1.5. Implications of CNVs

Significant human inter-population variations in gene copy number, as reported by
Redon et al. [6] and Jakobsson et al. [50], suggest that CNVs may be involved in adaptation
to various environments, evolution, and susceptibility to common diseases.

In several organisms, a large number of CNVs have been reported in genes with
tissue-specific expression rather than in genes that are widely expressed and may have
housekeeping activities. The evolution of myoglobin, hemoglobin, trichromatic vision, and
olfactory genes are a few of the most often mentioned instances of evolutionarily significant
CNVs in humans that conform to this concept. The amylase (AMY) gene family, an enzyme
that digests starch, can be used as a multifaceted example in understanding evolutionary
processes mediated by CNVs. The number of copies of the AMY genes in modern humans
differs from those in other primates and even other species of early humans. The current
human population has up to 20 copies of the alpha-amylase 1 gene (AMY1) [51], unlike
Neanderthals, who had only two copies. Given that gene expression is affected by the
number of its copies and that the copy number variation of the AMY1 gene has been linked
to diet, it is an example of recent human evolutionary adaptation. This suggests that our
lineage evolved specific adaptations to digest foods rich in starch, foods of increasing
importance in our diet [52].

CNVs and other variations of the human genome play an important role in human
health and disease. Considering that CNVs occur throughout the genome and can cover a
large number of genes and regulatory regions, pathogenic CNVs have been associated with
genomic disorders and syndromes as well as complex multifactorial diseases including
neurodevelopmental, neurodegenerative, autoimmune, and cardiovascular diseases [16].

There is a common basis and high similarity in the mechanisms through which CNVs
can cause disease and yet contribute to evolution. Given that copies of redundant genes can
acquire new roles, duplications (or multiplications in any number) are the most commonly
mentioned mechanisms considered as key sources of evolutionary variation. If fitness is not
compromised because the duplicated gene is not dosage-sensitive, one copy of a gene may
retain its original function while the other copy escapes selective pressure, continuously
undergoes mutation, and can even develop a new and different function [16].

CNVs also act on evolution and disease through other processes [35], including:

(i) direct influence on the expression of a gene product, giving rise to changing levels of
a protein. For example, Miller et al. [53] demonstrated an almost perfect correlation
between the α-synuclein (SNCA) gene dosage and its mRNA and protein levels in
Parkinson disease. SNCA triplication resulted in a doubling in the effective load of
the normal gene and increased deposition of aggregated forms of the protein level in
the brain into insoluble fractions.

(ii) alteration of regulatory regions due to CNVs on non-coding sequences. This directly
influences the levels and timing of expression and the cellular localization of the
related protein. For example, the regulation of SOX9 gene expression in the testis is
governed by a set of regulatory elements (RevSex and XYSR) located upstream of its
promoter [54,55]. Loss of one or both of these regions in an XY individual results in
a loss of SOX9 expression and male-to-female sex reversal [55], while duplication of
the RevSex region in an XX individual could increase SOX9 expression and lead to
female-to-male sex reversal [56–59].

(iii) recombination of functional domains of different genes, leading to the formation of
modified or new products with newly acquired functions, as seen in the example of
glucocorticoid-remediable aldosteronism (GRA). Some researchers have shown that it
is caused by a chimeric 11 β-hydroxylase (CYP11B1)/aldosterone synthase (CYP11B2)
gene formed when a gene duplication resulting from unequal crossing over fuses
the 5′ regulatory region of 11/β-hydroxylase to the coding sequences of aldosterone
synthase [60]. The ectopic expression of CYP11B2 in the adrenal zona fasciculata may
be responsible for these abnormalities because the gene is normally only expressed in
the adrenal zona glomerulosa [35,60].
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1.6. CNVs and Cancer

Cancer refers to a group of diseases characterized by the uncontrolled proliferation of
certain cells in the body with the possibility of invasion or spreading to other parts of the
body. The uncontrolled proliferation is due to dysregulation in the activity and expression
of genes that control this function [61]. Somatic or germline mutations in tumor suppressor
genes and oncogenes are the most well-known causes of cancer. With the increasing use
of whole-genome techniques, somatic and germline CNVs have also been recognized as
genomic alterations that lead to cancer development [5].

Germline CNVs are present in egg or sperm cells and can be passed down from parent
to offspring. If they involve particular genes, an individual can be significantly predisposed
to inherited cancers [35] as a result of alterations in DNA repair processes [20,62] or
variations in the gene dosage of oncogenes and tumor suppressor genes [63]. Using a
hereditary cancer panel to detect cancer susceptibility, Genekor’s Medical S.A. laboratory
evaluated a total of 2163 patients [62]. Of these, 1785 had breast cancer, 267 had ovarian
cancer, and 111 had colon cancer. NGS and MLPA techniques revealed 464 samples (21.5%)
to have pathogenic/likely pathogenic variants (P/LP), referring to alterations in DNA
that are predicted to result in a known genetic condition, of which 10.8% (50/464) were
attributed to CNVs. Notably, CNVs accounted for 10.2% (37/362) and 6.8% (5/74) of
pathogenic variants in breast and ovarian cancer patients, respectively. Meanwhile, in
colorectal cancer patients, CNVs were responsible for 28.6% (8/28) of P/LP variants. Out of
the 50 CNVs found, 8% were in a low-risk cancer gene (8% FANCA), 20% in moderate-risk
genes (4% ATM, 16% CHEK2), and 72% in high-risk genes (2% BRCA2, 8% MSH2, 8%
PMS2, and 54% BRCA1) [62].

Somatic CNVs are those present only in particular cells and are primarily non-
hereditary. They are acquired during an individual’s lifespan, mostly as a result of environ-
mental factors or errors in cell division. Somatic CNVs are classified as either large-scale
variants or focal variants based on their size. Both types are important in the context of
disease, but focal variants are considered more suitable for identifying candidate driver
genes due to their relatively small size and low gene content [16]. Genome-wide analysis
using high-resolution SNP arrays is currently being used to define the extent of somatic
CNVs in cancer genomes. This has enabled the observation of a more immediate and direct
role of these CNVs in the cancer cells themselves, whereby the cancer cells often display
differential gene expression, especially of oncogenes and tumor suppressor genes [64].

Common cancer CNVs. In addition to phenotypic influence, CNVs that are common
in the healthy population are also likely to play a role in carcinogenesis. In one correlation
study between common CNVs and malignancy [5], all known CNVs in the normal human
genome whose loci coincide with those of cancer-related genes such as ERBB2 and TP53
(as cataloged by [65]) were mapped and named common cancer CNVs. Although all
gene regions are usually thought to be little affected by CNVs [6], it was surprising that
49 cancer-related genes were found to be directly overlapped or encompassed by a CNV in
many individuals from the large reference population of 770 healthy genomes [5]. Each of
the common cancer CNVs only slightly increases the risk of disease, but collectively, they
can induce a significantly elevated risk [5].

Rare cancers are CNVs. These are the rare CNVs (with a population frequency of
<1%) observed in cancer-related genes. Most are associated with hereditary cancer syn-
dromes and involve genes such as FANCA in Fanconi anemia A, CHEK2 in familial breast
cancer, RB1 in familial retinoblastoma, and MSH6 in hereditary non-polyposis colorectal
cancer [5,66]. There are more than 200 cancer syndromes, most of which arise infrequently,
and they account for approximately 5–10% of all cancers [67]. Rare cancer CNVs are often
highly penetrant on their own, exhibit autosomal dominant inheritance, and will most often
show co-segregation with the disease in families in contrast to low-penetrance alleles [67].
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2. CNVs and Pancreatic Ductal Adenocarcinoma

Although mutations are recognized as the most commonly known genetic altera-tions
able to cause cancer, genomic alterations such as CNVs are also playing an emergent role.
Here we focus on the implications of CNVs in PDAC.

2.1. Mechanisms of Pancreatic Cancer Pathogenesis

Whole-genome sequencing has revealed that somatic mutations in oncogenic genes
such as KRAS and loss-of-function mutations in tumor suppressor genes such as TP53,
CDNK2A, and SMAD4 are the main drivers of PDAC [68]. Other causes of PDAC include
(i) epigenetic modifications, which in turn lead to altered transcriptional reprogramming;
and (ii) chromosomal alterations [69].

While most PDACs arise sporadically, up to 10% occur in patients with familial and
hereditary predispositions. For instance, patients are more likely to develop PDAC if they
have germline mutations in the BRCA1, BRCA2, PRSS1, or mismatch repair genes [70].
Even though initial correlation studies showed no significant association between CNVs
and PDAC tumorigenesis and progression [71], current research has revealed associations
between sporadic and familial pancreatic cancer (FPC) with CNVs [72,73] (Figure 2).
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Figure 2. Associations in the development of pancreatic cancer, including the relationship between
PDAC and copy number variations (CNVs).

CNVs in sporadic pancreatic cancer. CNV analysis in PDAC has revealed common cancer
CNVs, including amplifications of KRAS (12p12.1), GATA6 (18q11.2), MYC (8q24.2), ERBB2
(17q12), PAK4 (19q13), NCOA3/AIB1 (20q13.12), SKAP2/SCAP2 (7p15.2), and AKT2
(19q13), as well as deletions of SMAD4 (18q21.2), CDKN2A (9p21.3), CDKN2B (9p21.3),
PTEN (10q23.31), MAP2K4 (17p12), RUNX3 (1p36.11), TP53 (17p13.1), DCC (18q21.1), and
ARID1A (1p36.11) [74–76]. Other CNVs are reported in Supplementary Table S1. However,
it has not been established whether these CNVs are the cause or effect of cancer.

CNVs in familial pancreatic cancer. Hereditary CNVs in the genome may also contribute
to a genetic susceptibility to PDAC. One study used representational oligonucleotide
microarray analysis (ROMA) to characterize germline CNVs in 60 cancer patients from
57 FPC families, i.e., those in which at least two first-degree relatives have been diagnosed
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with pancreatic cancer. A total of 56 distinct genomic areas, including 25 deletions and
31 amplifications, were found to have CNVs that were not present in the healthy con-
trols [77]. Among these CNVs, functionally interesting candidate genes were selected
whose germline amplification (e.g., JunD, MAFK, RND1, WNT10B, WNT1, MAP2K2,
and BIRC6) or deletion (e.g., ANKRD3, PDZRN3, and FHIT) may contribute to tumor
development. These CNVs may define potential candidate loci for familial PDAC.

2.2. Identification and Analysis of CNVs in PDAC

Overexpressed proteins in PDAC due to CNVs could be therapeutic targets as well as
diagnostic and prognostic markers. For example, in a genome-wide analysis of
27 microdissected PDAC samples using high-density microarrays representing ∼116,000
single nucleotide polymorphism (SNP) loci, frequent gains of 1q, 2, 3, 5, 7p, 8q, 11, 14q,
and 17q (≥78% of cases) and losses of 1p, 3p, 6, 9p, 13q, 14q, 17p, and 18q (≥44%) were
detected [76]. Quantitative real-time PCR revealed that the SKAP2 gene (7p15.2), a mem-
ber of the src family kinases, was the most frequently amplified (≥3 copies found in
59–63% of cases), and reverse transcription PCR was used to confirm its recurrent over-
expression in eight out of 12 PDAC cases (67%). Moreover, in situ RNA hybridization
(ISH) and FISH analyses revealed a significant correlation between SKAP2 DNA copy
number and its mRNA expression level, suggesting that SKAP2 upregulation is due to
CNVs [76,78]. The overexpression of SKAP2 was observed consistently from early-stage
(I–II) to late-stage (III–IVb) tumors, suggesting a potential involvement of this gene in the
development of PDAC, including control of the growth and differentiation of PDAC cells
via α-Synuclein [79], as well as modulation of their motility and spread by interacting with
the focal adhesion kinase RAFTK [80]. Based on these findings, scientists proposed that the
SKAP2 gene could be used as a potential target for therapeutic intervention as well as a
potential marker gene for early diagnosis in PDAC [76].

GATA binding protein 6 (GATA6), a zinc-finger transcription factor that plays an im-
portant role in the normal development of endodermal and mesodermal tissues, including
the pancreas, is amplified in PDAC due to CNVs [81]. Since the progression of normal
pancreatic ductal epithelium to infiltrating cancer is believed to occur through a series of
morphologically defined precursors known as pancreatic intraepithelial neoplasia (PanIN-1,
2, and 3) [82], the GATA6 copy number was assessed in microdissected samples of normal
duct epithelium, PanIN, and human PDAC to investigate its role in PDAC. Quantitative
PCR revealed no gain of GATA6 in normal duct epithelium (0 of 4), PanIN-1 (0 of 13), or
PanIN-2 (0 of 10) lesions when compared to the haploid genome [83]. However, an in-
creased GATA6 copy number (≥2.3 copies) was identified in 6/17 samples (35%) of PanIN-3
and in 18/55 samples (33%) of PDAC, and confirmed through FISH in paraffin-embedded
sections of 10 PDAC samples and one PanIN-3. This GATA6 amplification and consequent
transcriptional upregulation observed late in PDAC carcinogenesis suggest that detectable
GATA6 copy number gain may have value as a diagnostic marker [83]. Early findings
from Comprehensive Molecular Characterization of Advanced Pancreatic Ductal Adeno-
carcinoma for Better Treatment Selection (COMPASS; a prospective study: NCT02750657)
further demonstrated that molecular profiling can predict how different patients with lo-
cally advanced or metastatic PDAC and with different genomic and transcriptome subtypes
will respond to chemotherapy. Patients with the transcriptomic “basal-like subtype”, a
highly chemoresistant phenotype, have a shorter median overall survival than those with
the “classical” subtype. The latter are easily identified by positive GATA6 staining by an
RNAscope in situ hybridization (ISH) assay and high GATA6 expression. GATA6 could
therefore be a useful marker for the classical subtype [84,85].

Another target of gene amplification in PDAC is MYC, a member of a family of
transcription factors that work together to control cell proliferation, metabolism, and the
expression of genes necessary for these processes [86]. Pre-clinical experimental evidence
has shown that MYC is an essential and non-redundant node of oncogenic signaling
and therefore should be a therapeutic target [87–90]. It is usually upregulated by gene
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amplifications, and consequently, it can enhance the progression of cancer by promoting
cell competition, survival signals in hypoxic settings, and altered metabolic pathways.
This amplification is inversely correlated to that of GATA6, and a high MYC expression
level is typical in the basal-like PDAC subtype [91]. MYC also has an emerging role in
remodeling the tumor microenvironment (TME). TME is a distinctive feature of PDAC that
makes up about 90% of the tumor mass and is characterized by a prominent desmoplastic
reaction [92]. MYC amplification in PDAC induces the depletion of CD3 T cells while
increasing the recruitment of immune cells such as neutrophils, macrophages, B cells, and
granulocytic myeloid suppressor cells [93], collectively enhancing an immunosuppressive
phenotype [93,94]. Genomic and transcriptomic analyses have further linked MYC to a
high number of metastases in patients (>10 metastases in a patient) in PDAC [95]. In terms
of drug resistance, MYC overexpression has been linked to the resistance to inhibitors of
the serine/threonine protein kinase mammalian target of rapamycin (mTOR) [96–101].

Alteration of regulatory regions due to CNVs on non-coding sequences can also influ-
ence the level and timing of expression of the related protein [102]. In a case–control cohort
consisting of 1031 controls and 1027 pancreatic cancer cases, researchers demonstrated that
CNVR2966.1, a CNV located in a gene desert region on 6q13, is significantly associated
with the risk of developing disease and functions as a potential trans-acting regulator of
the CDKN2B (p15 or INK4B) gene located on 9p21.3. CNVR2966.1 is an insertion/deletion
and chromosome conformation capture-on-chip (4C), and other functional experiments
have shown that it may contain a transcriptional activation element and regulate CDKN2B
transcription through interchromosomal long-range interaction. CDKN2B is a tumor sup-
pressor that encodes a cyclin-dependent kinase inhibitor that regulates cell growth and the
cell cycle G1 progression by preventing the activation of cyclin-D-dependent kinases [103].
It has been found to be frequently co-deleted with the neighboring tumor suppressor
gene CDKN2A (which codes p16-INK4a and p14ARF) in various tumors, and its deletion
has been reported in a significantly high proportion in pancreatic cancer [76,104]. There-
fore, CNVR2966.1 may be important for risk assessment, early detection, and a better
understanding of PDAC [72].

In another study aimed at exploring potential biomarkers of PDAC, analysis of tran-
scriptomic and clinical data from The Cancer Genome Atlas Program (TCGA) revealed
high expressions of the COL17A1 and ECT2 genes and associated this expression with
CNVs [105]. The highly expressed genes of these patients were also related to the cell
cycle and proteasome pathways. COL17A1 is a transmembrane protein that can affect the
proliferation and differentiation of epithelial cells and therefore acts as an important factor
in the formation and maintenance of multilayered epithelial structures in PDAC [106],
while ECT2 is an oncogene that plays an important role in cell proliferation and metastasis.
Clinical correlations further showed that the expression of these two genes was signifi-
cantly associated with tumor grade and that the overall survival (OS) rate decreased with
an increase in their expressions. Since several research studies have demonstrated the
success of combining anti-PD-1 antibody immunotherapy with chemotherapy in treating
PDAC [107,108], this study further demonstrated that the high-ECT2 group exhibited
greater sensitivity towards anti-PD-1 therapy and 20 chemotherapeutic agents (e.g., borte-
zomib and rapamycin). These discoveries suggest that ECT2 and COL17A1 are potential
diagnostic and prognostic markers for PDAC that can also facilitate innovative approaches
for personalized treatment [105].

2.3. CNV-Based Classifications of PDAC

Researchers proposed that reclassifying PDAC into subtypes based on genetic and
molecular characteristics may guide novel treatment choices with prognostic and biological
significance [109]. According to this hypothesis, PDAC has further been classified into struc-
tural [75] and molecular [110] subtypes, for example, based on CNVs as highlighted below.
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2.3.1. Structural Variation Profiles

Some researchers performed a deep WGS and CNV analysis using SNP arrays in
100 normal and tumor-derived samples obtained from patients with PDAC. After retrieval,
validation of the presence of carcinoma in the samples to be sequenced, and estimation of
the ratio of malignant epithelial nuclei to stromal nuclei, the samples were removed, fol-
lowed by processing in formalin or full-face sectioning using optical coherence tomography
(OCT). Macrodissection was carried out, when necessary, to excise non-malignant tissue
areas, followed by the extraction of nucleic acids. CNVs analyses led to a classification
of the disease into four subtypes based on the number, frequency, and distribution of
structural rearrangement events across the genome in each patient [75]. The majority of
these structural rearrangements were due to a copy number change (events classified as
deletion, duplication, tandem duplication, amplified inversion, and foldback inversion).

Stable (subtype 1). Tumors contain a few structural rearrangements (<50) located
randomly throughout the genome. They exhibit aneuploidy, suggesting cell cycle/mitosis
defects, given that although aneuploidy was classically defined as whole chromosome
numerical aberrations, this definition has recently been expanded in the cancer genome
literature to include losses or gains of chromosome arms [111–113].

Locally rearranged (Subtype 2). Tumors exhibit non-random intra-chromosomal rear-
rangements on one or a few chromosomes. These are further classified as either: (i) focal
amplifications where most of the events are gains in known oncogenes including GATA6,
SOX9, and KRAS, as well as therapeutic targets like CDK6, MET, ERBB2, PIK3R3, and
PIK3CA; or (ii) complex rearrangements involving complex genomic events like breakage–
fusion–bridge (BFB) or chromothripsis (i.e., the simultaneous occurrence of multiple struc-
tural alterations in a single mitotic event) [114].

Although in this subtype the most known oncogene copy-number increases in tumors
were observed in a few patients, most of these oncogenes are well-recognized therapeutic
targets (MET, FGFR1, ERBB2) with readily available inhibitors. The other oncogene amplifi-
cations identified include GATA6, which is known to be amplified in PDAC and correlates
with a poor prognosis [75].

Scattered (Subtype 3). Tumors contain 50–200 structural rearrangements scattered
throughout the genome.

Unstable (Subtype 4). Tumors contain many structural rearrangements (>200) scattered
throughout the genome. Such a large scale of genomic instability suggests defects in DNA
maintenance, in addition to potentially highlighting sensitivity to DNA-damaging agents.

Notably, these authors did not perform clinical correlation analyses.

2.3.2. Molecular Subtypes

Some researchers profiled genomic alterations in a Chinese cohort of 608 PDAC
patients from a database containing somatic mutations, CNVs, and pathogenic germline
variants [110]. Targeted-region capture and sequencing were performed using two gene
panels specifically designed for cancer gene detection, comprising 566 and 764 genes,
respectively. Germline and somatic CNVs were identified, and this information was used
to perform unsupervised consensus clustering of the patients as well as differential CNV
analysis. Functional/pathway enrichment analysis was then conducted for genes with
significantly higher CNV values in each cluster or group. More specifically, consensus
clustering revealed two groups, namely CNV-G1 and CNV-G2. Based on the CNV of genes
involved in DNA repair and receptor tyrosine kinase (RTK)-related signaling, patients
from CNV-G1 were further subdivided into two subtypes: the proliferation-active subtype
and the repair-deficient subtype. Patients from CNV-G2 were also subdivided into two
subtypes: the repair-enhanced and the repair-proficient subtypes [110].

CNV-G1 is characterized by deletions predominantly in DNA repair genes, higher
copy number instability (CNI), and defects in DNA-DSB (double-strand break) repair by
homologous recombination (HR). It consists of the (i) proliferation-active group with a high
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CNV score and amplification of genes in the RTK-related signaling pathway, and the (ii)
repair-deficiency group with a low CNV score.

CNV-G2 is characterized by amplifications predominantly in DNA repair genes, a
higher tumor mutational burden (TMB), and defects in polymerase POLE. It consists of the
(i) repair-enhanced group with a low CNV score and amplification of genes in the HRR
pathway, and the (ii) repair-proficient group with a high CNV score.

The prognosis of the repair-deficient subtype was better (median survival time of
410 days) than that of the other three subtypes, suggesting that deletion of genes in the
DNA repair pathway (specifically the HRR pathway) causes greater genomic instability and
is detrimental to the survival of cancer cells. On the contrary, patients in the proliferation-
active and repair-enhanced subtypes showed worse prognoses, with median survival times
of 197 and 239 days, respectively. Furthermore, the prognosis of the proliferation-active
subgroup was worse than that of the repair-deficient subgroup, suggesting that genetic
amplification in RTK-related signaling would promote cancer cell proliferation and thereby
confer a worse prognosis [110].

Together with the evidence from genomic footprint analysis, the study proposes that
repair-proficient and repair-enhanced subtypes are better suited for immunotherapy, while
DNA-damage therapies (such as platinum-based chemotherapy and PARPi) are highly
recommended for repair-deficient and proliferation-active subtypes [110].

3. CNV Studies in PDAC
3.1. Literature Review

We carried out a literature search for several published papers on copy number varia-
tions and pancreatic cancer and highlighted the CNV landscape in the disease
(Supplementary Table S1). We analyzed a total of 41 published articles from PubMed
and SCOPUS in which researchers examined the expression levels of the genes that were
discovered to have amplifications or deletions (in pooled public datasets or samples) in
normal pancreatic tissues in comparison to malignant tissues (Figure 3). We further ana-
lyzed the biological and clinical importance of these studies, particularly whether these
genes displayed dysregulated expression linked to survival outcomes.
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Samples were obtained from diverse sources, with most studies being carried out on
samples from primary tumors only (21/41). Other studies, however, included both primary
and metastatic samples (5/41). Other sample sources included were from public databases
such as TCGA and NCBI GEO (13/41), tissue microarrays (TMAs) samples (1/41) and
peripheral leukocytes from patients and controls (1/41). Some studies included cell lines
(8/41) in the verification of identified CNVs, while others (33/41) did not.

Most of the studies were performed using “whole” (whole genome or whole exome)
approaches (63.5%), including SNP-arrays (10/41), aCGH (8/41), tissue microarrays (TMA)
(2/41), NGS (4/41) and both SNP/aCGH (2/41) techniques. Targeted approaches were
used in the rest of the studies we considered (36.5%). Use of the “whole” approach resulted
in the identification of numerous CNVs in the whole PDAC genome in comparison to
normal controls; however, subsequent studies such as the roles of the identified CNVs in
the development and progression of disease as well as their effects on currently available
therapy were focused only on a few selected genes.

We noted that the use of diverse techniques for analyzing CNVs in different PDAC
samples, as well as confirming their effect on levels of mRNA expression, did not signifi-
cantly affect the consistency of the results. Moreover, most of the CNVs detected could be
verified in various publicly available datasets, such as NCBI GEO and The Cancer Genome
Atlas Program (TCGA). Recurrent gains on chromosomes 1q, 2p, 3q, 5p, 6p, 7q, 8q, 11q, 12p,
15q, 17q, 18q, 19q, and 20q included several known or suspected oncogenes, and recurrent
losses on chromosomes 1p, 3p, 6, 8p, 9p, 10q, 12q, 13q, 15q, 17, 18, 19p, 20p, 21 and 22, which
included several known or suspected tumor suppressor genes. In general, tumors with
more copy number alterations (an indicator of chromosomal instability) trended toward a
poor prognosis.

As expected, CNVs were almost always observed in the classical mutation genes
in PDAC, including amplification of the oncogene KRAS (12p12.1) and deletions of the
tumor suppressor genes TP53 (17p13.1), CDNK2A (9p21.3), and SMAD4 (18q21.2) to
further confirm their role in the disease [75,76,115–129]. Interestingly, the frequencies of
CNVs are consistent throughout various ethnicities, even though disparities have been
observed in the frequency of driver mutations in PDAC, such as a lower frequency of
KRAS mutations in Korea [130,131] and Japan [125]. For instance, one study performed
microarray and CNV analyses of 93 pancreatic cancer data derived from the Japanese
version of the Cancer Genome Atlas (JCGA) and revealed frequent CNVs as gains in 3q, 7q,
and 2q and losses in 7q, 12q, 19q, and 19p [125], which are consistent with CNVs in other
ethnicities [75,76,115–129].

The most frequent CNVs reported were amplifications of MYC (8q24) (15/41) and
GATA6 (18q11.2) (7/41), and deletions of CDKN2A (9p21.3) (16/41), CDKN2B (9p21.3)
(7/41), and SMAD4 (18q21.2) (14/41). MYC overexpression is typical in the basal-like PDAC
subtype, which exhibits poor prognosis and chemoresistance. GATA6 overexpression
is typical of the classical PDAC subtype, and its expression is observed late in PDAC
carcinogenesis, suggesting that detectable GATA6 copy number gain may have value as
a diagnostic marker. GATA6 overexpression has been associated with poor prognosis,
but interestingly, it has been shown to correlate to a better prognosis after resection and
adjuvant therapy, where it was believed to act as a suppressor of mutant KRASG12V-driven
PDAC [75,117,121,123,126,132,133].

In chromosome 1, the amplifications of 1p12 (NOTCH2) [115,118,123] and 1p13.1-
p12 (REG4) [75,116,117] and the deletion of 1p36.11 (ARID1A) [75,117,126] were the more
recurrent CNVs. REG4 overexpression was associated with poor prognosis and resistance
to gemcitabine treatment in one study, suggesting that adjuvant therapies that target reg4
could enhance the usual gemcitabine-based treatment of pancreatic cancer [75,116,117].

ASAP2 (2p25.1) amplification has been associated with lower overall survival (OS)
as well as lower relapse-free survival (RFS) [134,135]. FHIT (3p14.2) and ATR (3q23)
deletions were mostly reported in both sporadic familial cases, indicating their possible
role in PDAC susceptibility as well as progression [77,110,118,133,136]. FHIT (3p14.2)
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deletions and ECT (3q26.31) amplifications have also been correlated with poor prognosis
in PDAC [73,77,105,118,133,136].

The most recurrent amplification on chromosome 8 was 8p11.21 (FGFR1, IDO1,
ZNF703) [110,123,126,129], observed in both sporadic and familial PDAC. One study
demonstrated that the loss of 8p was exclusively observed in patients with shorter survival
and associated this with specific CNV acquisitions due to potential positive selection and
genetic drift. The genes that have been associated with this location are 8p, 8p23.2 (CSMD1)
in sporadic PDAC, 8p23.1 (MCPH1 and ANGPT2), and 8p22 (NAT1) in FPC [116,117,136].

Some researchers examined a patient’s complicated evolutionary history and very
long postsurgical survival period (43 months) and proposed that this could be due to the
amplification of a segment 9p.22 covering the FREM1 gene, which has recently been linked
to increased immune cell (IC) infiltration. They suggested that an active immune response
could improve the outcome. FREM1 in this particular context could be further explored
both as a molecular target and/or immune checkpoint-blocking therapeutic strategy and
as a biomarker of an active local immunological response [116].

No deletions were reported on chromosome 11, but there were amplifications on
11q13.3 (CCND1, TMEM16H), 11q13.5 (EMSY), and 11p14.1 (LGR4), of which the CCND1
gene was the most recurrent amplification [118,120,132,134,137]. One study showed that
the presence of elevated EMSY copy numbers in relatively large, clustered cells surrounded
by tumor cells expressing normal copy numbers suggests that the mutation occurred later
in the carcinogenesis process rather than at an early stage. This could clarify a previous
investigation that discovered a negative correlation between this mutation and the course
of the disease [137].

In one study, TMEM132E (17q12) amplification was prevalent in a relapse (within
1 year after resection) subgroup (n = 15) compared with a non-relapse subgroup (n = 15) of
47% vs. 7% [138].

Some researchers demonstrated that the loss of a specific cytoband, 18q22.3, which
encompasses only five genes, including the carboxypeptidase of glutamate-like (CPGL)
gene, is linked to a poorer prognosis in both a testing cohort and an independent validation
cohort of surgically resected pancreatic cancers. Further experiments involving reintro-
ducing the CPGL gene, or its splicing variant CPGL-B, into CPGL-deficient pancreatic
cancer cells showed a reduction in anchorage-independent cell growth and migration while
promoting G1 accumulation. These findings imply that CPGL is a novel growth suppressor
for pancreatic cancer cells and that risk classification in pancreatic cancer patients who
have had their tumors removed could be based on the CPGL gene [132].

In one study, the perineural invasion in PDAC was linked to gains of 4q13.3, 4q35.2,
7p12.2, 10q26.3, 11q13.3, 17q23.1, 22q13.32, and loss of 6p21.32, whereas the amplification
of 8q24.13 was strongly correlated with the T, N, and M stages simultaneously [134].

Some CNVs have also been associated with the increased glycolysis observed in PDAC.
One study compared the SNP microarray data of glycolysis-high samples to glycolysis-low
samples and found substantial amplifications of MYC (8q24.2), GATA6 (18q11.2), FGFR1
(8p11.21), and IDO1 (8p11.21), as well as deletions of SMAD4 (18q21.2) that were associated
with the aerobic glycolysis phenotype characteristic of PDAC [123].

Another study demonstrated that the assessment of overall CNV burden through
genome-wide methylation profiling could be a valuable prognostic tool in patients with
surgically treated PDAC [129]. By analyzing DNA extracted from 108 chemotherapy-
naïve, surgical PDAC specimens, the researchers were able to gather data on the DNA
methylation status of more than 850,000 CpG sites located in various regions such as the
promoter, enhancer, and gene body. Morphological subtyping, as per Kalimuthu et al. [139],
classified PDAC into Group A tumors, which showed a dominant conventional and/or
tubulopapillary growth pattern, and Group B tumors, which showed a dominant composite
and/or squamous growth pattern. CNV profiles were then generated from the accumulated
CpG methylation signal distributed throughout the genome (except for 13p, 14p, 15p, 21p,
and 22p, X, and Y), and all the PDACs were classified into three distinct groups based on the
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number of chromosomal arm-level alterations: high (≥17), moderate (5–16), or low (0–4).
The most prevalent chromosomal arm-level aberrations included gains of 1q (19%) and 8q
(29%), as well as losses of 8p (25%), 19p (26%), 6p (26%), 9p (36%), 6q (37%), 18q (43%),
and 17p (55%). In particular, the CNVs involved deletions of CDKN2A/B, KDM6A, and
SMAD4 and focal amplifications of MYC, FGFR1, or CDK6. Overall, low CNV burden was
observed in Group A tumors, while high CNV burden was observed in Group B tumors,
and this higher CNV burden in Group B was further associated with a poor prognosis and
shorter overall survival [129]. Notably, this study was performed on PDAC-enriched FFPE
tissues, and further studies are necessary to establish the possibility of performing CNV
burden analysis on endoscopic ultrasound-guided fine-needle biopsies from non-resectable
PDAC patients, as well as whether this has any prognostic value [140,141].

In another study, by analyzing 21 FFPE tumor tissues of PDAC patients, the authors
analyzed the mutational spectrum of the disease and assessed the therapeutic relevance of
OncoPan, a previously developed and validated NGS panel of 37 genes [142]. This panel
includes the evaluation of indels, SNVs, and CNVs of various actionable genes for the
identification of therapeutic targets as well as inherited cancer syndromes. Oncopan led
to the discovery of biomarkers for personalized therapy in five PDAC patients. Among
these patients, two exhibited HER2 amplification, making them potentially eligible for
immunotherapy [142]. Numerous ongoing clinical studies are utilizing trastuzumab for
pancreatic cancer treatment, and in a recent study, Hirokawa et al. reported that patients
with HER2-positive heterotopic pancreatic cancer responded well to trastuzumab treat-
ment [143]. These kinds of studies are a practical example of the clinical relevance of CNVs,
and therefore it is expected that further/new panels will be developed to evaluate CNVs of
a greater number of genes.

In the future, these assessments will also be less invasive thanks to the possibility
of carrying out liquid biopsies. In fact, the use of circulating tumor DNA (ctDNA) is
gaining significant popularity in molecular diagnosis, observation of clonal evolution,
evaluation of treatment response, identification of cancer recurrence, and evaluation of
drug resistance [144–146]. One study in 48 late-stage non-small cell lung cancer (NSCLC)
patients analyzed matched tumor tissues and blood samples and determined gene-level
CNVs from ctDNA [147]. Although the identification of somatic CNVs from ctDNA
samples using targeted sequencing is challenging, amplifications of the EGFR, ERBB2, and
MET genes were observed. Further comparison of these amplifications between tissue WES
and ctDNA showed significantly high concordance and sensitivity, with 100% specificity
observed for all three genes. Although the study was performed on NSCLC, the pipeline
can be extended to other cancers, including PDAC [147], where liquid biopsies sequencing
provides an alternative to obtaining the patient’s genomic information in cases where tissue
biopsies are not available [146].

3.2. CNVs in PDAC Stages and Grades

Research is being carried out to identify CNVs that may be useful clinical markers,
and a recent study on ovarian cancer has provided results that encourage continued
in-vestigation of these relationships. In particular, CNV-profiling analyses have been suc-
cessfully used to distinguish between malignant and nonmalignant, as well as early and
late stages in ovarian tumors [148]. The possible roles of CNVs in the early or late stages of
pancreatic cancer have also been studied to assess their usefulness as potential markers of
the various stages as well as the grades of the disease. For example, a gain in copy number
at the 7p15.2 locus that causes the overexpression of the SKAP2 gene characterizes both
PanIN lesions and early- (I–II) and late-stage (III–IVb) PDAC tumors. Therefore, it could
be a potential marker gene for early diagnosis as well as a possible target for therapeutic
intervention [76].

Some researchers also studied the relationships between 19q13 amplification and
clinicopathological characteristics in PDAC and observed that the frequency of 19q13 gains
increased from G1-G2 (low/moderate) to G3 (high grade) tumors and from pT1-pT2 (early)
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to pT3-pT4 (late) stage tumors. Moreover, none of the G1 tumors exhibited 19q13 copy
number changes, while 11% of G2 tumors and 16.8% of G3 tumors displayed an in-crease
in 19q13 copy number [149].

Among the CNVs in PDAC, amplification and overexpression of the PSCA and
HMGA2 genes have further been associated with lymph node metastasis (N0) and in-
vasive depth of the disease, respectively [124].

In another study, SNP arrays on 20 PDAC tumors identified two different CNV groups
with different genetic profiles: group 1 (n = 9) showed losses at Xp22.33, 17p13.3, 9p24.3,
9p22.1, 6q25.2, and 1p36.11 chromosomal regions and gains at 1q21.1, while group 2
(n = 11) showed gains at 22q13.32, 22q13.31, 22q13.1, 16q24.3, 16q24.1, 11q13.4, 11q13.3,
11q13.1, 10q26.3, 10q26.13, 5q32, 3q22.1, and 2q14.2 chromosomal regions. From a clinical
and histological perspective, grade I/II PDAC tumors that were smaller and well- or
moderately-differentiated were linked to group 1 cases, while grade III carcinomas that
were primarily poorly-differentiated made up group 2 PDAC cases, which were bigger in
size [150]. Further analyses of these CNV regions showed that they harbor various cancer-
associated genes, including those that have been specifically associated with PDAC, such
as the TNFRSF6B gene, whose amplification has been observed in many tumors [151–154]
and whose overexpression is known to block growth inhibition signals in PDAC [155], and
the MAPRE2 gene, whose deletion has been observed in leukemic cells [156] as well as
pancreatic cancer [157]. In this study, deletions of other genes, such as MYOCD [158] and
PTAFR [159], were found to be recurrent in PDAC, although the association of these genes
with PDAC pathogenesis should be further investigated [150].

3.3. CNVs in PDAC Chemoresistance

Using aCGH and qPCR in 14 PDAC samples, some researchers detected and confirmed
gains in the copy number of the REG4 gene (1p13.1-p12) in all the analyzed samples [160].
CNV analysis in six pancreatic precancerous lesions (PanINs) also revealed an increase in
REG4 copy number (in 6/7, 1/7, and 0/6 of PanIN3, PanIN2, and PanIN1 lesions, respec-
tively), suggesting that this amplification is an early event in PDAC development [160].
REG4, a member of the multigenic family named reg, plays a role in the resistance of
cells to anticancer drugs like 5-fluorouracil and methotrexate [161,162], and it promotes
over-expression of the antiapoptotic proteins Bcl-xL, Bcl-2, and survivin, as well as the
phosphorylation of AKT [162,163]. Its overexpression is observed in cancerous tissues of the
stomach [164], colon [161,165], and pancreas [166]. In this study, PDAC-derived cells with
REG4 protein overexpression grew more rapidly and were more resistant to gemcitabine
treatment, and this enhanced growth was also confirmed in PDAC cell lines. Circulating
REG4 protein is therefore a potential target to make PDAC sensitive to gemcitabine [160].

4. Challenges and Limitations in Clinical Application

Interpretation of any detected CNVs is important because they could have clinical im-
plications [167,168], but this is faced with various challenges. Determining the pathogenicity
of CNVs is difficult, and accurate interpretation often depends on the amount of infor-
mation available in databases [7]. However, there are several important considerations
when utilizing public databases. Firstly, there may be variations in the reported sizes of
identical CNVs due to the usage of various array platforms [169]. For example, a large
number of the previously reported benign CNVs may be overestimated in size because
they are based on the bacterial artificial chromosome (BAC) microarray technique [170].
Secondly, it is not always possible to obtain sex information about the individuals included
in these databases. This is particularly significant when studying X-linked CNVs in males,
as many of the reported benign variants found in the databases are observed in females.
However, the same alteration may already be pathogenic in males who possess only one X
chromosome. Thirdly, the majority of CNVs reported in large population studies have not
undergone validation. Lastly, factors such as incomplete penetrance, variable expressivity,
age of onset, and parent of origin imprinting effects were not recorded [7,171].
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It is also important to note that the interpretation of CNVs is heavily reliant on the
specific clinical indications, and therefore clinicians must provide detailed clinical pheno-
types to enable accurate interpretation of the results [172]. To facilitate this process, several
groups have devised graphical workflows for CNV interpretation, which prove invaluable
in routine diagnostic work. However, interlaboratory comparisons and external quality
control schemes (such as the European Molecular Genetics Quality Network (EMQN) and
the USA quality assessment scheme CAP (College of American Pathologists)) on the use of
some technologies, such as arrays, in diagnostic laboratories show that there are differences
in the interpretation, quality, and reporting among laboratories [172]. Therefore, the mini-
mum detection resolution, reporting, and interpretation of CNVs should be standardized
among laboratories.

The different types of CNV analysis software used are also unique, frequently employ-
ing varying default settings and/or statistical methodologies [173–178]. Additionally, each
laboratory implements its own experimental and analysis protocols. These variations in
protocols and software directly affect the sensitivity and resolution of a test, giving results
that are very different from each other or only partially in agreement [172].

5. Conclusions

Copy Number Variations (CNVs) are the most frequent genetic structural alterations,
making up approximately 12% of the human genome [6].

Currently, many lines of evidence have also shown that CNVs play important pathogenic
roles in a variety of human disorders, from causative high-penetrance CNVs in rare genomic
disorders to intermediate or low-penetrance CNVs in complex multifactorial diseases such
as cancer [16–18]. The identification of these amplification and deletion events is therefore
one of the main goals of medical genetics research.

Indeed, CNVs have been observed in patients with pancreatic ductal adenocarcinoma
(PDAC) [74–77,179–187]. However, the detection of CNVs and their subsequent association
with functional and clinical phenotypes remains very challenging. With the increasing use
of whole-genome technologies to detect CNVs, germline and somatic CNVs are now recog-
nized as frequent contributors to the spectrum of mutations leading to PDAC development,
progression, and drug resistance.

Recent advances in technology have provided powerful tools for the detection and
analysis of CNVs at the level of the genome as well as for targeted loci. For example,
single-cell RNA-seq (scRNA-seq) studies in human tumors have revealed new insights into
tumor heterogeneity and distinct subpopulations, which are pivotal for comprehensively
dissecting tumor-related mechanisms [188]. In PDAC, scRNA-seq has been used to acquire
the transcriptomic atlas of individual pancreatic cells from primary and metastatic tumors,
as well as control pancreases and identify diverse stromal and malignant cell types. This
has facilitated the comprehensive delineation of PDAC intratumoral heterogeneity and the
underlying mechanisms for PDAC progression [188].

The correlation between CNV and gene expression suggests that the analysis of cancer
genome CNVs may be useful in informing therapeutic decisions on the management of
individual patients with particular patterns of mutations [109].

Although it is evident that CNVs have a significant impact on inter-individual vari-
ation in gene expression, the full extent to which they contribute to the molecular basis
of PDAC remains to be established. This is due to persistent technical challenges in the
accurate measurement of CNVs [189]. Further studies, using accurate genotyping assays in
large population cohorts, will help to define the overall role of CNVs in PDAC pathogenesis
more precisely [63].
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