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Abstract: Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while
protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs
is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with
either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the
promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation
mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2
domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-
SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change
in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the
activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway.
Although various compounds that increase SHP-1 activation or expression have been proposed as
tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical
significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype
by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting
SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor
cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of
combination therapies should be considered.

Keywords: receptor tyrosine kinases; protein tyrosine phosphatases; Src homology region 2 (SH2)
domain-containing phosphatase 1; anticancer drug

1. Introduction

Protein tyrosine kinases (RTKs), particularly receptor tyrosine kinases, are well known
for their contribution to tumorigenesis. RTKs mediate intercellular communication, con-
trolling a wide range of biological functions, including cell division, cell motility, and
differentiation. Mutations responsible for abnormal activation of genes encoding RTKs,
such as EGFR, HER2/ErbB2, and MET, have been identified in various cancer types [1].
Many studies have been conducted on how they contribute to cancer development, and
the RTKs have been proposed as targets for developing tumor therapies [2,3]. RTKs are
activated by receptor-specific ligands, such as growth factors, leading to receptor dimeriza-
tion or oligomerization. Dimerization induces activation of the intracellular tyrosine kinase
domain through trans-autophosphorylation.

In contrast to RTKs, phosphatases are enzymes that dephosphorylate substrate pro-
teins, and among them, protein tyrosine phosphatase (PTP) is thought to inhibit RTK
function by dephosphorylating proteins phosphorylated by RTK. However, not all PTPs
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inhibit PTK-mediated tumorigenesis, and PTPs that contribute to tumorigenesis were re-
cently reported [4–6]. Among the PTPs, Src homology region 2 (SH2) domain-containing
phosphatase 1 (SHP-1) is the first known SHP and is involved in cell cycle control, can-
cer cell migration and invasion, and apoptosis induction. In this review, we summarize
the regulation of SHP-1 expression, the relationship between SHP-1 expression and tu-
mors, the regulation of SHP-1-mediated cell signaling, the function of SHP-1 in the tumor
microenvironment, and the use of SHP-1 in the development of tumor therapeutics.

2. Epigenetic Regulation of SHP-1 Expression

PTPN6 encodes SHP-1, a nonreceptor tyrosine phosphatase. PTPN6 mutations have
been reported in several cancers; the total incidence of such mutations is 2.7% (uterine
carcinosarcoma, 7.01%; testicular germ cell carcinoma, 6.04%; ovarian cancer, 5.82%; and
melanoma, 5.18%). Phosphatase mutations occur most frequently (42.27%); however, there
are few reports on their correlation with the SHP-1 function, which is scarce [7]. Two
proteins of different sizes can be synthesized from different translation initiation codons
located in exon 1 and of the PTPN6 gene, located on human chromosome 12p13 [8,9]. The
two proteins show similar enzymatic activity [8,10]. Promoter 1, located upstream of exon
1, is activated in epithelial-origin cells [11], and promoter 2, located upstream of exon 2,
is activated in hematopoietic cells [12]. Promoter 1 is activated by various transcription
factors, including NFκB, upstream stimulatory factor 1 (USF-1), or NF-Y [11,13]; promoter
2 can be activated by NFκB p65 and PU.1 in hematopoietic cells (Figure 1A) [14,15].

Epigenetic silencing affects SHP-1 expression in tumor cells. DNA methylation is a
crucial epigenetic mechanism in regulating gene expression, with reports that hypomethy-
lated DNA is associated with tumorigenesis and tumor development [16]. Reports suggest
the transcriptional repression of the PTNP6 promoter by hypermethylated CpG islands
during the regulation of SHP-1 expression, which shows tumor suppressor activity in
hematological malignancies [17–19], esophageal squamous cell carcinoma [20], and gas-
tric adenocarcinoma [21,22]. To date, three types of DNA methyltransferases (DNMT)
have been identified: DNMT1, DNMT2, and DNMT3a/b. [23]. Among them, DNMT1
controls SHP-1 expression by inducing aberrant methylation on promoter 2 of PTPN6 in
chronic myelogenous leukemia cells [24]. SHP-1 expression has an inverse relationship
with DNMT1 and STAT3; its expression decreases when the activation of DNMT1 and
STAT3 in tumor cells increases [25]. This is because activated STAT3 induces DNMT1
expression [26]. STAT3-DNMT1 interaction [27], which requires STAT3 acetylation [28],
mediates DNMT1-mediated epigenetic gene silencing [28]. Therefore, the activated STAT3
inhibits SHP-1 expression via DNMT1 [27]. In carcinoma-associated fibroblasts (CAFs),
which mediate the initiation of a pro-invasive tumor microenvironment, p300-histone
acetyltransferase acetylates STAT3, which in turn upregulates and activates DNMT3b DNA
methyltransferase. DNMT3b represses SHP-1 expression via CpG motif methylation of
the PTPN6 promoter. Consistently, in human lung and head and neck carcinoma, STAT3
acetylation and phosphorylation are inversely correlated with SHP-1 expression [29].

In addition to DNA methylation, histone acetylation is another representative epi-
genetic gene expression regulation mechanism. In a cohort of 37 patients with diffuse
large B-cell lymphoma (DLBL), hypermethylation of the P2 promoter of PTPN6 was only
observed in 57% of patients. When treated with a DNA methyltransferase inhibitor (5-
aza-deoxycytidine) and histone deacetylase (HDAC) inhibitor (LBH589), the inhibition of
PTPN6 expression in DLBL cells was reversed. LBH589 induces SHP-1 expression by in-
creasing the H3K9Ac mark within the PTPN6 P2 promoter [30]. Although LBH589 induces
SHP-1 expression in chronic myeloid leukemia, HDAC does not directly combine with
the PTPN6 promoter [31]. HDAC3 and DNMT1 expression are increased in hypertrophy
cell models and high-fat diet rat models. It was reported that HDAC3-mediated DNMT1
deacetylation causes an increase in DNMT1 stability. Therefore, an increase in DNMT1 sup-
presses SHP-1 expression (Figure 1B) [32]. Although promoter methylation is a relatively
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well-established epigenetic gene expression regulation mechanism of SHP-1, more precise
mechanisms for HDAC-mediated regulation need to be investigated.
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Figure 1. PTPN6 gene structure and regulation of SHP-1 expression. (A) Schematic diagram of the
SHP-1 gene (PTPN6). The PTPN6 has 17 exons; promoters 1 and promoter 2 are located in exon 1
and exon 2, respectively. Promoter 1 and 2 are mainly active in epithelial and hematopoietic cells,
respectively. (B) The epigenetic regulatory mechanism regulating SHP-1 expression. JAK induces
phosphorylation of STAT3 (pSTAT3), and the pSTAT3 forms a dimer and induces the transcription of
DNMT3B.The methylation of the SHP-1 promoter region via DNMT and H3L9 acetylation (Ac) via
histone acetyltransferases can down- and upregulate SHP-1 expression, respectively. USF—upstream
stimulatory factor; DNMT—DNA methyltransferases; HDAC—histone deacetylase; 5-AZA—5-Aza-
2′-deoxycytidine.



Int. J. Mol. Sci. 2024, 25, 331 4 of 17

3. SHP-1 Expression in Tumors

SHP-1 expression may be regarded as a prognostic marker associated with decreased
and increased tumor pathological symptoms. The association between SHP-1 expres-
sion and patient survival differs based on tumor type (Table 1). High levels of SHP-1
expression are related to high survival rates in patients with tumors, including breast
cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, and prostate can-
cer [20,33–37]. Additionally, there is a report on the antitumor function of SHP-1 in gastric
cancer, although it is not associated with SHP-1 expression [38]. The expression of colon
cancer-associated transcript (CCAT5) was upregulated in ascites-derived gastric cancer
cells, and increased expression of CCAT5 was found to be associated with poor patient
prognosis. CCAT5 binds to the C-end domain of STAT3 and inhibits STAT3Y705 dephos-
phorylation mediated by SHP-1, thereby inducing STAT3 nuclear entry and metastatic
activation, which promotes gastric cancer progression. In contrast, few reports suggest
that SHP-1 expression and tumor patient survival are inversely correlated in patients with
acute myeloid leukemia, colorectal cancer, and glioblastoma [39–41]. Therefore, although
SHP-1 is generally regarded as a phosphatase with a tumor suppressor function, its role in
tumor prognosis is probably dependent on the cancer type. Although the mechanism of
STAT3 suppression by SHP-1 as a tumor suppressor mechanism is well-established, the
SHP-1-mediated tumor-friendly molecular mechanism is not.

Table 1. Clinicopathological role of SHP-1 in tumors.

Tumor Type Reported Findings Predicted Function Refs

Acute myeloid leukemia SHP-1 expression was negatively correlated with the
overall survival of leukemia patients. Oncogenic [39]

Breast cancer

SHP-1 expression is inversely correlated with pSTAT3
and positively correlated with recurrence-free survival

in patients.
Tumor suppressive [33]

According to the TCGA database, high expression of
SHP-1 was associated with better overall survival. Tumor suppressive [34]

Higher SHP-1 expression associated with better
overall survival. Tumor suppressive [35]

Colorectal cancer
The survival time of patients with high SHP-1

expression is shorter than those of patients with low
SHP-1 expression.

Oncogenic [40]

Esophageal squamous cell
carcinoma

Negative correlation with the tumor-node metastasis
staging system, pathological differentiation, and lymph

node metastasis: The downregulation and
hypermethylation of SHP-1 are associated with

poor survival.

Tumor suppressive [20]

Glioblastoma

Upregulation of SHP-1 in GBM patients according to
TCGA analysis.

High expression of SHP-1 was associated with advanced
grade and poor overall survival of glioma.

Oncogenic [41]

Hepatocellular carcinoma

Downregulation of SHP-1 in hepatocellular carcinoma
(HCC) is negatively correlated with tumor growth and
overall survival in patients with HCC and hepatitis B

virus infection.

Tumor suppressive [36]

Prostate cancer

A decreased SHP-1 expression is associated with higher
proliferation rates and increased risk of recurrence or

progression-free survival after radical prostatectomy for
localized prostate cancer.

Tumor suppressive [37]
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4. The Function of SHP-1 and Tumors
4.1. SHP-1 Structure and Its Activity

SHP-1 comprises two N-terminal SH2 domains (N-SH2 and C-SH2), a PTP domain,
and a C-terminal tail containing several phosphorylation sites and a nuclear localization
signal [42]. A structural study on SHP-1 lacking the C-terminal tail revealed that the
intramolecular interaction of the N-SH2 domain with the PTP domain forms an autoin-
hibitory form of SHP-1, preventing the N-SH2 domain from exposing Cys455 of the active
site and blocking substrate access to the active site. This autoinhibitory form is further
stabilized by hydrogen bonding and salt bridge formation between the N-SH2 domain
and PTP domain residues. The C-SH2 domain has been proposed as flexible and mobile
and might play a role in sensing phosphopeptides, thereby weakening the autoinhibitory
interaction between the SH2 and PTP domains (Figure 2A) [43].
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Figure 2. Protein structures and regulation of SHP-1. The enzymatic activity of SHP-1 is inhibited
by intramolecular interaction between the N-SH2 and PTP domains. (A) The binding of the SH2
domain by tyrosine-phosphorylated substrates and (B) phosphorylation of tyrosine residues in
the C-terminal tail causes a conformational change that opens the phosphatase active site and
contributes to phosphatase activation. ITIM—immunoreceptor tyrosine-based inhibitory motif;
ITSM—immunoreceptor tyrosine-based switch motif.

Furthermore, a recent study elucidating the structure of the full-length and active forms
of SHP-1 has shown that when the two SH2 domains bind to a ligand, the flexible C-SH2
domain rotates, causing the N-SH2 domain to rearrange and detach from the ligand’s active
site. In addition, newly identified interactions between the N-SH2 and PTP domains and
between the two SH2 domains further stabilized the open conformation of SHP-1 [44]. SHP-
1 activity can also be regulated by phosphorylation, and three phosphorylation sites have
been discovered to date: Tyr536, Tyr564, and Ser591. Tyr536 and Tyr564 are phosphorylated
by Src family kinases, leading to increased SHP-1 activity. Tyr536 phosphorylation increases
SHP-1 activity by inducing interaction with the N-SH2 domain and inhibiting interaction
with the PTPase domain. On the other hand, Tyr564 phosphorylation indirectly increases
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PTPase activity by binding to the C-SH2 domain [45]. Additionally, upon stimulation by
cellular activation signals, protein kinase C phosphorylates C-terminal Ser591 of SHP-1,
thereby inhibiting its phosphatase activity (Figure 2B) [46,47]. Thus, additional biochemical
and molecular biology studies are necessary to clarify how the C-terminal tail regulates
SHP-1 activity and function and how it interacts with the other three domains.

4.2. Antitumor Activity of SHP-1

Tyrosine phosphorylation of proteins is a reversible posttranslational modification
regulated by tyrosine kinases and PTPs. A common feature of cancer progression is the
abnormal activation of tyrosine kinases due to an imbalance between phosphorylation and
dephosphorylation. The Janus kinase (JAK)/signal transducer and activator of transcrip-
tion (STAT3) pathway is a representative tyrosine phosphorylation-mediated oncogenic
signaling pathway.

STAT3 forms a dimer by phosphorylating tyrosine residues (Tyr705), and the dimerized
STAT3 moves to the nucleus, where it acts as a transcription factor [48–51]. Unregulated
activation of STAT3 occurs in various cancers and contributes to tumorigenesis [52,53].
As upstream tyrosine kinases of STAT3, JAKs transmit the signals from receptors/ligand
interactions to STAT3. Various ligands, such as IL-6, IFNs, PDGF, TGF, IGF, and EGF,
activate STAT3 via their receptor-associated JAK activation [54–60]. The IL6/JAK2/STAT3
signaling axis is best studied in the context of tumor metastasis and tumor pathology
since it induces epithelial–mesenchymal transition (EMT), resulting in tumor metastasis
by promoting the expression of EMT-inducing transcription factors, such as Snail, ZEB1,
JunB, and Twist1 [51,61–64]. Therefore, regulating the JAK/STAT3 signaling axis may
be an effective target in tumor therapy. SHP-1 is a representative tyrosine phosphatase
associated with tumor suppression and is a negative regulator of receptor-related signaling
of three families: growth factor receptors with tyrosine kinase activity [65–67], cytokine
receptors [60,68,69] and receptors involved in the immune response [70–73]. Generally,
SHP-1-mediated inhibition of the JAK/STAT3 pathway is inversely correlated with tumor
progression, aggressiveness, and metastasis [74–76]. SHP-1 binding to erythropoietin
receptor (EPOR) inhibits erythropoietin (EPO)-mediated cell proliferation by inducing
JAK2 dephosphorylation [69,77]. Furthermore, SHP-1 acts to dephosphorylate JAK1 in the
IFN-α receptor signaling pathway [68]. SHP-1 silences the JAK/STAT pathway by inducing
the dephosphorylation of both JAK and STAT3, and the loss of SHP-1 expression enhances
JAK/STAT3 signaling in large cell lymphoma [78].

SHP-1 was reported to exert tyrosine phosphatase activity that directly downregulated
pSTAT3 (Tyr705) and was a potent inhibitor of EMT in HCC and colorectal cancer (CRC)
(Figure 3) [79,80]. Studies on several small molecules showing anticancer efficacy more
clearly suggested SHP-1-mediated inhibition of the JAK/STAT3 signaling axis. Treatment
with small molecules, such as 1′-acetoxychavicol acetate (ACA) [81], plumbagin [82], and
allicin [83], significantly inhibited STAT3 through induction of SHP-1 in several types of
cancer cells, including breast cancer, gastric cancer, and cholangiocarcinoma.

4.3. Association of SHP-1 with Tumorigenesis

The molecular mechanisms underlying the function of SHP-1 as a protein associated
with tumorigenesis are not as well understood as those underlying the function of SHP-1
as a tumor suppressor. However, SHP-1 has been suggested to be associated with pro-
tumorigenesis in some cancers. P53 inhibits SHP-1 expression, which reduces the Inhibition
of SHP-1 expression by p53 reduces the proliferation of breast cancer cells by inducing
trkA-Tyr674/Tyr675 phosphorylation [84]. Altered SHP-1 expression leads to changes
in some components of the cell cycle. In ovarian cancer, where SHP-1 expression levels
are high, inhibiting SHP-1 expression gradually reduces tumor growth by increasing the
intracellular levels of Cdk2/p27 Kip1 and Cdk2/SHP-1 complex [85], which is opposite to
the mechanism used by SHP-1 to inhibit cell division.
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Figure 3. SHP-1-mediated inhibition of the JAK/STAT signaling pathway. Several growth fac-
tors and cytokines activate their associated receptors, which, in turn, activate JAK. Activated
JAK then activates STAT through phosphorylation and moves the activated STAT (p-STAT) to
the nucleus, upregulating the expression of STAT-related genes. SHP-1 directly dephosphorylates
STAT3 or its upstream JAKs, thereby inhibiting cell proliferation, survival, migration, and invasion.
EPO—erythropoietin; EPOR—erythropoietin receptor; TYK2—tyrosine kinase 2.

Additionally, SHP-1 deficiency in prostate cancer resulted in p27 accumulation, CDK6
reduction, retinoblastoma protein hypophosphorylation, cyclin E-CDK2 inhibition, and
cycle arrest in phase G1 [86]. A common cause of radiotherapy failure in many tumors is
radiation resistance, and the degree of radiosensitivity varies among tumor cells. SHP-1 has
been found to reduce radiosensitization, and SHP-1 overexpression in the nasopharyngeal
carcinoma cell line CNE-2 caused radiation resistance, which, in turn, reduced apoptosis
by enhancing DNA double-strand break repair and increasing cell cycle arrest in phase
S [87–89]. The molecular mechanisms underlying the double-edged sword of SHP-1’s effect
on tumorigenesis remain poorly understood, suggesting differential protein expression
pools in various cancers and differences in oncogenic signaling.

4.4. SHP-1-Related Small Molecules for Tumor Therapy

SHP-1 is a candidate molecular target for anticancer drug development because it
regulates tumor growth and progression by downregulating JAK/STAT3 signaling. Nat-
ural products have recently received considerable attention regarding their potential as
antitumor drugs, and several small molecules that inhibit STAT3 activity by inducing
SHP-1 have been proposed as anticancer drug candidates (Table 2). To date, these small
molecules have only been observed to have limited effects at the cellular level or in animal
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models. The Food and Drug Administration has approved two SHP-1-related anticancer
drugs: sorafenib and regorafenib (Figure 4). Sorafenib is a multikinase inhibitor that
promotes apoptosis by targeting STAT3 signaling in a variety of carcinomas, including
pancreatic cancer and glioblastoma [90,91]. Sorafenib also increases the enzymatic activity
of SHP-1 through direct interaction between the N-SH2 and the PTP domains in HCC
cells, thereby downregulating STAT3 activity. Among the sorafenib derivatives, SC-43
and SC-40 were reported as more potent SHP-1 agonists than sorafenib and showed ther-
apeutic potential for HCC treatment [92]. Additionally, SC-43 was confirmed to act as
an SHP-1 agonist in cholangiocarcinoma [93], CRC [94], and breast cancer [95]. SC-60,
another sorafenib derivative, also had an anticancer effect by increasing SHP-1 activity
in HCC and triple-negative breast cancer (TNBC) [93,96,97]. Regorafenib is a multiple
protein kinases inhibitor that is very similar to sorafenib, and it enhances SHP-1 activity
in HCC and CRC to promote apoptosis by inhibiting STAT3 signaling [98,99]. SC-78, a
derivative of regorafenib, also inhibits tumor growth and metastasis in TNBC by inter-
fering with the paracrine and autocrine pathways of VEGF-A through the SHP-1/STAT3
signaling axis [100].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 18 
 

 

Icariside II Epimedium 
koreanum 

Myeloid leukemia 
SHP-1 inhibition using siRNA significantly blocked 

icariside II-induced STAT3 inactivation and apoptosis 
in U937 cells. 

[111] 

Honokiol (HNK) 
Magnolia 
officinalis Myeloid leukemia 

HNK induces the expression of SHP-1 by increasing the 
expression of its related transcription factor, PU.1. [112] 

Zerumbone 
Zingiber 
zerumbet 

Renal cell 
carcinoma 

Zerumbone inhibited growth of human RCC xenograft 
tumors and STAT3 activation in athymic nu/nu mice. [113,114] 

α-mangostin 
(α-MGT) 

Mangosteen Hepatocellular 
carcinoma 

α-MGT exhibited anti-HCC effects by inhibiting SHP-1 
degradation induced by the ubiquitin–proteasome 

pathway. 
[115] 

Emodin Rheum 
palmatum 

Hepato 
cellular carcinoma 

(HCC) 

Emodin inhibited human HCC orthotopic tumor 
growth and STAT3 activation in athymic male nu/nu 

mice. 
[116] 

Plumbagin Plumbago 
zeylanica Gastric cancer 

Plumbagin not only induced apoptosis but also 
inhibited gastric cancer cell proliferation, migration, 

and invasion. 
[82] 

Allicin Garlic 
Cholangiocarcino

ma(CCA) 

Allicin inhibited CCA cell migration, invasion, and 
EMT and induced cell death. It also attenuated CCA 

tumor growth in a nude mouse model. 
[83] 

1′-acetoxychavicol 
acetate (ACA) 

Languas 
galanga Breast cancer 

ACA potently inhibited osteolysis in a mouse breast 
cancer skeletal metastasis model through the SHP-

1/STAT3/MMPs signaling pathway. 
[81] 

Pectolinarigenin 
Cirsium 

chanroenicum Osteosarcoma 
Pectolinarigenin interfered with the 

STAT3/DNMT1/HDAC1 complex formation at the 
SHP-1 promoter. 

[117] 

 
Figure 4. Chemical structures of SHP-1 agonists, regorafenib, and sorafenib and their derivatives. 

  

Figure 4. Chemical structures of SHP-1 agonists, regorafenib, and sorafenib and their derivatives.

Although SHP-1 is generally known as a tumor suppressor, its expression is upreg-
ulated in some high-grade breast cancers [101] and ovarian cancers [102]. Substantial
inhibitors of SHP-1 phosphatase activity have been developed and are undergoing pre-
clinical and clinical studies at present, including NSC-87877, sodium stibogluconate (SSG),
tyrosine phosphatase inhibitor 1, and suramin, but only a few have shown antitumor
activity in experimental tumor models [93]. SSG has undergone Phase I trials for both
malignant melanoma (NCT00498979) and advanced malignancies (NCT00629200), but no
significant effect on tumor development was reported [103,104].
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Table 2. Natural compound-mediated STAT3 inhibition through SHP-1 induction.

Compound Source Cancer Type Remarks Ref

Guggulsterone Commiphora mukul Myeloma

Guggulsterone suppressed the expression
of STAT3-associated antiapoptotic gene
products and enhanced the anticancer

effects of bortezomib.

[105,106]

Morin Moraceae
family Myeloma

The number and position of hydroxyl
groups in the B ring of flavonols are

important inhibitors of STAT3 activation.
[107]

Genipin Gardenia Myeloma
Genipin effectively enhanced the cytotoxic

effects of anticancer drugs such as
bortezomib, thalidomide, and paclitaxel.

[108]

Capillarisin
(CPS)

Artemisia
capillaries Myeloma

CPS induced cell cycle arrest in the sub-G1
phase and enhanced the anticancer effects

of bortezomib.
[109]

Ergosterol peroxide
(EP)

Ganoderma
lucidum Myeloma

EP inhibited the growth of U266 cells
inoculated into female BALB/c mice and

effectively reduced STAT3 activity and
CD34 expression.

[110]

Icariside II Epimedium
koreanum Myeloid leukemia

SHP-1 inhibition using siRNA significantly
blocked icariside II-induced STAT3

inactivation and apoptosis in U937 cells.
[111]

Honokiol (HNK) Magnolia officinalis Myeloid leukemia
HNK induces the expression of SHP-1 by

increasing the expression of its related
transcription factor, PU.1.

[112]

Zerumbone Zingiber zerumbet Renal cell carcinoma
Zerumbone inhibited growth of human

RCC xenograft tumors and STAT3
activation in athymic nu/nu mice.

[113,114]

α-mangostin
(α-MGT) Mangosteen Hepatocellular

carcinoma

α-MGT exhibited anti-HCC effects by
inhibiting SHP-1 degradation induced by

the ubiquitin–proteasome pathway.
[115]

Emodin Rheum palmatum
Hepato

cellular carcinoma
(HCC)

Emodin inhibited human HCC orthotopic
tumor growth and STAT3 activation in

athymic male nu/nu mice.
[116]

Plumbagin Plumbago zeylanica Gastric cancer
Plumbagin not only induced apoptosis but

also inhibited gastric cancer cell
proliferation, migration, and invasion.

[82]

Allicin Garlic Cholangiocarcinoma
(CCA)

Allicin inhibited CCA cell migration,
invasion, and EMT and induced cell death.
It also attenuated CCA tumor growth in a

nude mouse model.

[83]

1′-acetoxychavicol
acetate (ACA) Languas galanga Breast cancer

ACA potently inhibited osteolysis in a
mouse breast cancer skeletal metastasis

model through the SHP-1/STAT3/MMPs
signaling pathway.

[81]

Pectolinarigenin Cirsium
chanroenicum Osteosarcoma

Pectolinarigenin interfered with the
STAT3/DNMT1/HDAC1 complex
formation at the SHP-1 promoter.

[117]

4.5. The Function of SHP-1 and SHP-2 in the Tumor Microenvironment

SHP-1 affects not only tumor cells but also the tumor microenvironment. From the
perspective of tumor treatment, the antitumor effect of SHP-1 on tumor cells is expected,
while in the tumor immune environment, the function of SHP-1 is generally tumor-friendly.
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SHP-1 is expressed in all mature hematopoietic lineages. Notably, its regulatory mechanism
related to T-cell activation is thought to be closely related to tumor targeting activity and
tumor treatment in the tumor microenvironment. SHP-1 limits antigen-specific T-cell
activation by dephosphorylating the T-cell receptor (TCR) ζ chain or downstream adapter
proteins, such as lymphocyte-cell-specific protein-tyrosine kinase (Lck), ZAP70, Vav family
proteins, and PI3K [42,118]. CD8+ T-cells from SHP-1 deficient motheaten mice [119]
showed more stable and longer-lasting immunological synapses with antigen-presenting
cells (APC), which reduced the T-cell activation threshold, thereby increasing the activation
of T cells with low antigen specificity, leading to effective tumor suppression through
tumor-specific effector T cells [120,121]. Knockout of SHP-1 in CD133 chimeric antigen
receptor (CAR) T-cells significantly enhanced the cytolytic effect on CD133+ glioma cell
lines by CAR T-cells and increased secretion of TNF-α, IL-2 and IFN-γ [122]. CAR T-cells
currently approved by the US FDA possess a TCR-derived ζ chain as an intracellular
activation domain in addition to a co-stimulatory (4-1BB or CD28) domain [123]. CARs
containing CD3δ, CD3ε, or CD3γ cytoplasmic tails have outperformed conventional ζ
CAR T-cells in vivo. Making CARs mutated to phenylalanine on the intracellular domain
N-terminal tyrosine of CD3γ and CD3δ will only phosphorylate at the C-terminal tyrosine
(BBγFY and BBδFY), and SHP-1 will preferentially bind to CARs containing that single
phosphorylated BBδ, fine-tuning and balancing T-cell activation to prevent exhaustion
and dysfunction [124]. SHP-1 is strongly activated on CD8+ nonlytic tumor-infiltrating
lymphocytes (TILs), co-localizes with Lck on nonlytic TILs, and inhibiting SHP-1 on lytic
TILs overcomes the inhibition of TIL cytolysis by tumors. Contact between nonlytic TILs
and tumor cells activates SHP-1, which rapidly dephosphorylates the Lck activation motif
(Tyr394), thereby inhibiting effector phase function [125].

Immune checkpoints suppress autoimmunity and contribute to maintaining immune
homeostasis by limiting T-cell activation. The exhausted T cells express inhibitory receptors
such as PD-1 as immune checkpoint molecules. Some tumor cells use immune checkpoints
to acquire immune tolerance to tumor-specific T cells [126]. Strategies blocking the in-
teraction between programmed cell death protein 1 (PD-1) and PD ligand (PD-L)1/2, or
between cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and CD80/CD86 have been
developed to overcome the immune checkpoints in tumor tissue. SHP-1 is recruited to
the cytoplasmic tail of PD-1 by binding to immunoreceptor tyrosine-based switch motifs
(ITSM), which then induces dephosphorylation and inactivation of proximal signaling
molecules activated through TCRs [127,128]. Lymphocyte-activating gene 3 (LAG3) asso-
ciates with SHP-1/2, and LAG3/PD-1 collaboration limits CD8+ T-cell signaling, which
dampened antitumor immunity in a murine ovarian cancer model [129]. Recently, it
has also been reported that PD-1 interacts more effectively with SHP-2 than SHP-1. B
and T-lymphocyte attenuator (BTLA), on the other hand, has been reported to interact
more effectively with SHP-1 than SHP-2 due to an interaction between the immunorecep-
tor tyrosine-based inhibitory motif (ITIM) and the N-terminus of SHP-1 [130,131]. PD-1
interacts primarily with SHP-2 but also with SHP-1 in the absence of SHP-2, and both
PD-1-SHP-1 and PD-1-SHP-2 complexes attenuate TCR and CD28 signaling pathways [132].
Although the interaction between SHP-1/SHP-2 and PD-1 is thought to contribute to T cell
exhaustion, the CD4cre Ptpn6/11fl/fl mice do not improve T cell-mediated tumor control.
Depleting these phosphatases from the polyclonal T-cell compartment does not improve
tumor control, suggesting that caution should be taken when considering their inhibition
for immunotherapeutic approaches [133].

The function of regulatory T-cells (Tregs) in immune tolerance in the tumor microenvi-
ronment has been well studied, but the function of SHP-1 in the tumor microenvironment
in relation to Tregs is paradoxical. Loss of SHP-1, a negative regulator of TCR signaling,
renders naïve CD4+ and CD8+ T-cells resistant to Treg-mediated suppression in a T-cell-
specific manner (Figure 5) [134]. On the other hand, loss of SHP-1 expression in Tregs
significantly increases their capacity, and specific pharmacological inhibition of SHP-1
enzymatic activity via the anticancer drug SSG considerably increased Treg suppressive
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activity both in vivo and ex vivo [135]. Therefore, SHP-1 function differs according to the
cell population, and the ability to control SHP-1 expression or function in different cell
populations would be advantageous for tumor control.
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tivation by negatively regulating TCR signaling through binding to the ITSM site and ITIM do-
main of the coinhibitory molecules, PD-1 and BTLA, respectively. APC—antigen-presenting cell;
LAG—lymphocyte-activating gene 3; LCK—lymphocyte-cell-specific protein-tyrosine kinase;
ZAP70—zeta-chain-associated protein kinase 70; PD1—programmed cell death protein 1;
HVEM—herpes virus entry mediator; BTLA—B and T-lymphocyte attenuator.

5. Conclusions

With some exceptions, SHP-1-mediated inhibition of RTK signaling in cancer cells
is generally associated with antitumor effects, and small molecules that increase SHP-1
expression and induce its activity may still be important candidate anticancer therapeutics.
However, the clinical development of drugs that increase SHP-1 function or expression is
extremely limited. Even if a drug candidate exerts a tumor-suppressing function specific to
tumor cells, it is difficult to judge its overall effectiveness because it also suppresses the im-
mune environment within the tumor tissue. In particular, it inhibits the activity of cytotoxic
T lymphocytes, which display specific cytotoxicity against tumor cells. Therefore, when
developing a tumor treatment targeting SHP-1, the function of SHP-1 in the type of cancer
to be treated must first be determined, and the development of an effective combination
treatment must also be considered. For example, for carcinomas with antitumor effects
mediated by SHP-1, the combination of an SHP-1 agonist with SHP-1 knockdown or the
CD3-mutated [124] CAR T-cell therapy may be considered.
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