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Abstract: Current diagnostic algorithms are insufficient for the optimal clinical and therapeutic
management of cutaneous spitzoid tumors, particularly atypical spitzoid tumors (AST). Therefore, it
is crucial to identify new markers that allow for reliable and reproducible diagnostic assessment and
can also be used as a predictive tool to anticipate the individual malignant potential of each patient,
leading to tailored individual therapy. Using Reduced Representation Bisulfite Sequencing (RRBS),
we studied genome–wide methylation profiles of a series of Spitz nevi (SN), spitzoid melanoma (SM),
and AST. We established a diagnostic algorithm based on the methylation status of seven cg sites
located in TETK4P2 (Tektin 4 Pseudogene 2), MYO1D (Myosin ID), and PMF1-BGLAP (PMF1-BGLAP
Readthrough), which allows the distinction between SN and SM but is also capable of subclassifying
AST according to their similarity to the methylation levels of Spitz nevi or spitzoid melanoma. Thus,
our epigenetic algorithm can predict the risk level of AST and predict its potential clinical outcomes.

Keywords: Spitzoid melanocytic tumors; Spitz; melanoma; methylation; algorithm; novel biomarkers

1. Introduction

Cutaneous spitzoid tumors constitute a heterogeneous subgroup of melanocytic neo-
plasms with variable malignant potential, ranging from benign Spitz nevus (SN) to spitzoid
melanoma (SM), with potential metastatic dissemination [1]. However, there is a challeng-
ing intermediate diagnostic group called Spitz melanocytomas/atypical Spitzoid Tumors
(AST) [2]. SN are melanocytic neoplasms composed of large epithelioid and/or spindled
melanocytes with a regular architecture, usually symmetrical, sharply circumscribed, and
typically less than 6 mm in diameter [2]. SM is a melanoma with an initiating genomic
alteration characteristic of SN, larger than 6 mm and often greater than 10 mm, more
deeply invasive, and showing greater cellular atypia with asymmetry, color variegation,
or ulceration [2]. AST is a melanocytic neoplasms characterized by one or more atypical
features (at least 5 mm and often greater than 10 mm in diameter, may be asymmetric, with
irregular borders, and not well circumscribed) and is genetically intermediate between SN
and SM [2].

Current diagnostic algorithms are insufficient for the proper diagnosis and prognosis
of AST, which affects the optimal clinical and therapeutic management of these patients. In
fact, clinicians often overdiagnose malignancy, resulting in unnecessary use of resources
and treatment, with severe emotional and physical impacts on the patients and their
relatives [3]. Therefore, predicting the metastatic potential of AST and the clinical outcome
of these patients is a major challenge for clinicians [4].

Various approaches have been used over the years to correctly categorize and prognos-
ticate ASTs, including immunohistochemical techniques (p16, ki67 or HMB45) [4]; analysis
of copy number variations (CNV) by comparative genomic hybridization (CGH) [5]; flu-
orescence in situ hybridization (FISH) [6,7]; genetic point mutations [8] in genes, such as
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HRAS [9,10], NRAS [9], BRAF [11] or TERT [12,13]; and kinase fusions [14] in genes such as
ROS1 [15], ALK [16] and NTRK1 [17]. In fact, a diagnostic algorithm for ASTs based on the
combination of immunohistochemical techniques, FISH and CGH has been described [18],
although the diagnostic value of FISH for AST tumors is limited due to their heterogeneity;
and lower than for SN and SM [4,6,19].

However, these molecular techniques are not capable of predicting the clinical be-
havior of AST and are insufficient for optimal clinical and therapeutic management. It
has been proposed that epigenetic changes, which are heritable and reversible events
that modify gene expression without changing the DNA sequence, can be used as new
biomarkers [6,8,20]. DNA methylation is an epigenetic event that involves the addition of
a methyl group to the fifth carbon of a cytosine nucleotide. It is typically associated with
stable transcriptional silencing and plays an important role in several biological processes
associated with development and disease, such as cell differentiation and regulation of
gene expression [21]. In fact, in conventional melanoma, DNA methylation changes have
been described to serve as diagnostic, prognostic, and therapeutic biomarkers, and it has
been noted that DNA methylation is involved in tumor progression and prognosis [22–24].
These DNA methylation changes can be used as epigenetic biomarkers to diagnose and
classify spitzoid tumors.

Although the methylation profiles of genes commonly affected in melanoma have
been studied using the multiple ligand–dependent probe amplification (MLPA) technique,
these limited methylation studies have not been able to identify relevant genes for AST
classification [25,26]. As MLPA only allows the methylation study of single genes, it is
necessary to assess the global genome methylation status of cutaneous spitzoid melanocytic
tumors. Recently, global methylation profiles have been described to discriminate benign
spitzoid tumors from conventional nevi and melanomas [27]. Here, using a methylation
array, we found that genome–wide methylation levels of SN were similar to those of benign
conventional nevi, but the Leukocyte UnMethylation for Purity (LUMP) score of SN was
comparable to that of conventional melanoma. The LUMP score was used to estimate the
leukocyte content in tumor samples and is a surrogate marker of leukocyte/lymphocyte
infiltration [28]. In addition, SN showed homogeneous methylation in comparison to
conventional melanoma, which presented a heterogeneous profile that was suggested to be
related to its malignant behaviour [27]. However, the latter study only compared SN with
conventional melanomas and did not include other spitzoid lesions such as AST and SM.
We aimed to diagnose and classify all spitzoid tumors correctly.

Therefore, we used reduced representation bisulfite sequencing (RRBS) to determine
the genome–wide methylation profile of the full spectrum of spitzoid lesions. Chatterjee
et al. previously used RRBS to identify DNA methylation changes that could serve as
progression markers [23] or their relationship with PD-L1 expression [29] but only used
primary and metastatic melanoma cell lines. In this way, we found differences between
them and constructed a molecular algorithm to classify AST according to their similarity to
benign or malignant spitzoid lesions.

2. Results
2.1. Differential Methylation Analysis

When comparing the methylation status of SN, AST, and SM samples at the same time,
there were no differences between the groups (Figure 1).

Only hypermethylated sites (214 sites) were detected in some chromosomes with a
significance of q-value < 0.05 and a methylation difference higher than 10%. The heatmap
of the significant sites showed that there was no separation between SN and SM (Figure 2)
because ASTs included samples of unknown malignant potential. By studying only the
methylation status of SN and SM tumors, differences between them were defined (Figure 3),
and 224 sites were detected, including hypomethylation and hypermethylation.
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Figure 2. Heatmap showing the sites (214) with more than 10% methylation difference with respect to
the control (SN) (q-value < 0.05 when comparing the three experimental groups). There is a histogram
in the color key showing the number of cg sites (count) and the methylation percentage (value).

2.2. Predictive Equations

To predict the clinical behavior of the AST group, the results obtained from the
differential methylation analysis between the SN and SM were used to build the prediction
algorithms.

Modeling using binary logistic regression was performed for each of the 224 CpG sites.
This analysis resulted in the selection of seven CpGs (p-value < 0.02) for the construction
of the predictive algorithms: cg9825862, cg9825882, cg9826034, cg9826086, cg31149610,
cg31149858, and cg156186376 (Figure 4), located in the genes MYO1D (Myosin ID), TEKT4P2
(Tektin 4 Pseudogene 2), and PMF1-BGLAP (PMF1-BGLAP Readthrough) (Table 1).
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Table 1. Differentially methylated CpGs were selected for the construction of the predictive algorithms.

Position (cg) Chromosome Gene Transcript

31149610 17 MYO1D NM_015194

31149858 17 MYO1D NM_015194

9826086 21 TEKT4P2 NR_038327

9825862 21 TEKT4P2 NR_038327

9825882 21 TEKT4P2 NR_038327

9826034 21 TEKT4P2 NR_038327

156186376 1 PMF1-BGLAP NM_001199662
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Receiver operating characteristic (ROC) curve analysis was performed to determine
the predictive ability of each of the seven methylation sites (Figure 5), yielding an area
under the curve (AUC) rank of 0.833–0.861 (minimum specificity of 0.667 and a minimum
sensitivity of 0.833) (Table 2).

Table 2. Specificity, sensitivity, and area under the curve (AUC) of the 7 cg differentially methylated.

Position (cg) Gene Specificity Sensitivity AUC Cut-Off

31149610 MYO1D 0.75 0.889 0.861 17.163

31149858 MYO1D 0.75 0.889 0.852 10.554

9826086 TEKT4P2 0.75 0.889 0.861 21.219

9825862 TEKT4P2 0.833 0.778 0.852 11.014

9825882 TEKT4P2 0.667 1 0.833 10.007

9826034 TEKT4P2 0.917 0.778 0.861 21.041

156186376 PMF1-BGLAP 0.75 0.889 0.852 15.235
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(e) cg9826034, (f) cg31149858 and (g) cg156186376.

We observed that the methylation levels of the seven CpGs were significantly higher
in SM than in SN (Figure 6), whereas the methylation status of the ASTs was scattered.

The first predictive algorithm was built with an equation that calculates the probability
of being classified as melanoma Equation (1), where the indices from A to G are the
percentages of methylation found in each of the seven sites included in the equation (A:
cg9825862, B: cg9825882, C: cg9826034, D: cg9826086, E: cg31149610, F: cg31149858, G:
cg156186376).

P(Melanoma) =
1(

1 + exp−(−342.3+3.4A−10.3B+3.4C+8.9D+8.0E+11.0F−8.7G)
) (1)

A second prediction algorithm Equation (2) was constructed using the glmulti R
package version 1.0.7 to obtain the best predictive combination of the seven CpGs, resulting
in cg31149610 (index E) and cg9826086 (index D) (Figure 7):

P(Melanoma) =
1(

1 + exp−(−0.16−0.012E+0.014D)
) (2)



Int. J. Mol. Sci. 2024, 25, 318 7 of 16

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 18 
 

 

We observed that the methylation levels of the seven CpGs were significantly higher 

in SM than in SN (Figure 6), whereas the methylation status of the ASTs was scattered. 

 

Figure 6. Methylation levels of individual CpG according to diagnosis. * = (p-value < 0.05); ** = (p-

value < 0.01). 

The first predictive algorithm was built with an equation that calculates the probabil-

ity of being classified as melanoma Equation (1), where the indices from A to G are the 

percentages of methylation found in each of the seven sites included in the equation (A: 

cg9825862, B: cg9825882, C: cg9826034, D: cg9826086, E: cg31149610, F: cg31149858, G: 

cg156186376). 

𝑃(𝑀𝑒𝑙𝑎𝑛𝑜𝑚𝑎) =
1

(1 + 𝑒𝑥𝑝−(−342.3+3.4𝐴−10.3𝐵+3.4𝐶+8.9𝐷+8.0𝐸+11.0𝐹−8.7𝐺))
 (1) 

A second prediction algorithm Equation (2) was constructed using the glmulti R 

package version 1.0.7 to obtain the best predictive combination of the seven CpGs, result-

ing in cg31149610 (index E) and cg9826086 (index D) (Figure 7): 

𝑃(𝑀𝑒𝑙𝑎𝑛𝑜𝑚𝑎) =
1

(1 + 𝑒𝑥𝑝−(−0.16−0.012𝐸+0.014𝐷))
 (2) 

Figure 6. Methylation levels of individual CpG according to diagnosis. * = (p-value < 0.05);
** = (p-value < 0.01).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 7. Heatmap showing the methylation levels of the two methylation sites from algorithm 2 

(Spitzoid nevi and melanoma groups). There is a histogram in the color key showing the number of 

cg sites (count) and the methylation percentage (value). 

2.3. Risk Prediction of the Samples 

For both algorithms, we obtained a probability value named P(melanoma). If P(mel-

anoma) < 0.4, the spitzoid tumor is classified as benign (SN) and therefore has no risk of 

clinical aggressiveness. Conversely, if P(melanoma) is ≥ 0.4, the spitzoid tumor is classified 

as having a high risk of clinical aggressiveness (SM). 

Hence, a conservative false-positive characteristic is assumed because the model 

would rather err by saying that a spitzoid lesion would behave as an SM when it is not 

than classify a true SM as an SN. 

Regarding the correct classification of the samples used for the construction of the 

predictive algorithms, Equation (1) was capable of classifying 100% of the samples in the 

correct group (SN and SM) with a p-value of 0.0002. In other words, the identified epige-

netic signature makes it possible to classify melanoma cases with 100% sensitivity and 

Spitz nevi cases with 100% specificity. A total of 52.63% of AST cases were classified as SN 

(10/19), whereas 47.37% were classified as SM (9/19). 

A ROC curve was obtained to evaluate the ability of the second algorithm to correctly 

classify spitzoid tumors, showing an AUC of 0.903 (IC 95% 0.75–1.00) with a p-value of 

0.002, sensitivity of 88.9%, and a specificity of 91.7% (Figure 8). Equation (2) failed to clas-

sify one SN and SM (Table 3). Here, 36.84% of the ASTs were classified as SN (7/19) and 

63.16% as SM (12/19). 

Figure 7. Heatmap showing the methylation levels of the two methylation sites from Equation (2)
(Spitzoid nevi and melanoma groups). There is a histogram in the color key showing the number of
cg sites (count) and the methylation percentage (value).

2.3. Risk Prediction of the Samples

For both algorithms, we obtained a probability value named P(melanoma). If
P(melanoma) < 0.4, the spitzoid tumor is classified as benign (SN) and therefore has no
risk of clinical aggressiveness. Conversely, if P(melanoma) is ≥0.4, the spitzoid tumor is
classified as having a high risk of clinical aggressiveness (SM).
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Hence, a conservative false-positive characteristic is assumed because the model
would rather err by saying that a spitzoid lesion would behave as an SM when it is not
than classify a true SM as an SN.

Regarding the correct classification of the samples used for the construction of the
predictive algorithms, Equation (1) was capable of classifying 100% of the samples in
the correct group (SN and SM) with a p-value of 0.0002. In other words, the identified
epigenetic signature makes it possible to classify melanoma cases with 100% sensitivity
and Spitz nevi cases with 100% specificity. A total of 52.63% of AST cases were classified as
SN (10/19), whereas 47.37% were classified as SM (9/19).

A ROC curve was obtained to evaluate the ability of the second algorithm to correctly
classify spitzoid tumors, showing an AUC of 0.903 (IC 95% 0.75–1.00) with a p-value of
0.002, sensitivity of 88.9%, and a specificity of 91.7% (Figure 8). Equation (2) failed to
classify one SN and SM (Table 3). Here, 36.84% of the ASTs were classified as SN (7/19)
and 63.16% as SM (12/19).

Table 3. Prediction of Equations (1) and (2) of SN and SM tumor samples.

Sample Diagnosis Prediction 1 Prediction 2

1 SM SM SM

2 SM SM SM

3 SM SM SN

4 SM SM SM

5 SM SM SM

6 SM SM SM

7 SM SM SM

8 SM SM SM

9 SN SN SN

10 SN SN SN

11 SN SN SN

12 SN SN SN

13 SN SN SN

14 SN SN SN

15 SN SN SN

16 SN SN SM

17 SN SN SN

18 SM SM SM

19 SN SN SN

20 SN SN SN

21 SN SN SN

Although both algorithms coincided in the prediction of 84.21% of our samples, three
AST values predicted as SN in Equation (1) were classified as SM in Equation (2) (Table 4).
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Table 4. Prediction of Equations (1) and (2) of AST samples.

Sample Diagnosis Prediction 1 Prediction 2

22 AST SN SN

23 AST SN SN

24 AST SN SM

25 AST SM SM

26 AST SN SN

27 AST SM SM

28 AST SN SN

29 AST SM SM

30 AST SM SM

31 AST SM SM

32 AST SN SN

33 AST SM SM

34 AST SM SM

35 AST SM SM

36 AST SM SM

37 AST SN SN

38 AST SN SM

39 AST SN SM

40 AST SN SN

3. Discussion

Although several biomarkers, techniques, and molecular algorithms (based on im-
munohistochemistry, FISH, and CGH [18]) have been proposed in recent decades to cor-
rectly classify, diagnose, and predict the clinical behavior of spitzoid tumors, there is still
no widely accepted and effective clinical procedure to accomplish this task, largely due to
the heterogeneity of AST tumors [4,6].

As previously described [27], SN lesions showed a different methylation profile com-
pared to benign and malignant conventional melanocytic tumors, but the differences within
the whole spitzoid tumor spectrum have not been investigated. Global methylation pat-
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terns and LUMP scores have been used to distinguish SN from conventional melanocytic
tumors, but these tumors already have clear histological differences and are routinely
correctly diagnosed by pathologists. In our study, we focused on the differences between
SN, AST, and SM.

RBBS was performed because it can be applied to FFPE samples with small amounts
of DNA and has a large genomic coverage. In addition, RBBS does not have batch effects
compared with microarrays. Whole genome bisulfite sequencing (WGBS) was discarded
because of its high sequencing costs and DNA requirements.

Here, we demonstrated a differential methylation status between SN and SM by
observing 224 cg sites that were differentially methylated using RRBS. We found seven
CpGs with a methylation difference higher than 10% and a q-value < 0.02 between Spitzoid
samples located in MYO1D (2 sites), TEKT4P2 (4 sites) and PMF1-BGLAP (1 site) genes.

Using this information, we created two predictive bioinformatics models based on
methylation status to first distinguish SN and SM and additionally to subclassify AST
according to their potential risk of clinical aggressiveness as a function of the probability
value we called P(melanoma). Low risk means that the tumor has a low probability of
behaving like an SM, i.e., SN lesion behavior is predicted when P(Melanoma) is less than
0.4. Conversely, if P(melanoma) is greater than or equal to 0.4, the lesion has a high risk of
behaving like an SM lesion. In this way, a conservative false–positive character is adopted;
that is, the model prefers to err by saying that a spitzoid lesion would behave as SM and
not really before it would be a real SM and classify it as an SN.

Although the sensitivity and specificity of predictive Equation (2) (88.9% and 91.7%,
respectively) were lower than those of Equation (1) (sensitivity and specificity of 100%), this
improved the classification of each of the seven sites individually. Although the AUC of
Equation (2) was 0.903, the AUC values of the individual sites ranged from 0.833 to 0.861.

Considering the classification power of Equation (1) for the known samples, we con-
clude that the two CpG sites from Equation (2) explain most of the variance in the predictive
model, and the five additional CpG sites from Equation (1) improve the classification.

The TEKT4P2, MYO1D, and PMF1-BGLAP genes, which are involved in Equation (1),
have been described in several tumors, but there is no information related to spitzoid lesions.

TEKT4P2 is a pseudogen that has been described as a progression biomarker in
cutaneous conventional melanoma [30]. It has been seen that TEKT4P2 levels decrease as
the stages increase (I/II and III/IV compared with stage 0), and additionally, TEKT4P2
interacts with several miRNAs associated with the development of cutaneous melanoma,
such as miR-193-3p, miR-194-3p or miR-194-5p [30]. Therefore, similar to conventional
cutaneous melanoma, methylation of the non–coding RNA TEKT4P2 could cause gene
silencing and regulate other epigenetic markers, such as miRNAs in SM.

MYO1D encodes an unconventional myosin protein involved in actin filament orga-
nization. High levels of MYO1D have been described as a poor prognostic biomarker in
urothelial cancer but as a good prognostic biomarker in renal cancer [31]. Thus, MYO1D
may have dual activity. In fact, although a low expression of MYO1D is related to progres-
sion in prostate cancer due to hyperactivation of histone H3K27me3 [32], an overexpression
of MYO1D levels in colorectal cancer and acute myeloid leukemia causes an increase in
EGFR expression, activating oncogenic pathways, and therefore promoting tumor progres-
sion [33,34]. Although it has been described that H3K27me expression is associated with
melanocytic lesions, there is no information regarding its role in spitzoid tumors and its
relationship with MYO1D methylation [8,35].

The locus PMF1-BGLAP is the read-through transcription site between PMF1 and
BGLAP. Its expression has been described as an unfavorable prognostic marker in liver
cancer and renal cancer [31]. PMF1-BGLAP encodes PMF1 (polyamine-modulated factor 1),
a protein regulated by polyamines involved in chromosome alignment and segregation
during mitosis [36]. The methylation of PMF1 in bladder cancer patients has been associated
with poor clinical outcomes [37]. Because PMF1-BGLAP is important during mitosis,
increased PMF1-BGLAP methylation in SM may be associated with a higher mitotic ratio [2].
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Previous studies using RRBS or WGBS in melanoma cell lines described that methyla-
tion differences between primary and metastatic melanomas at TBC1D16 and EBF3 were
associated with tumor progression [23,38,39]. However, among the 224 cg differentially
methylated sites, when comparing spitzoid tumors, we did not find differences in TBC1D16
and EBF3 methylation levels.

Thus, the predictive algorithms disclosed herein have high predictive power and
offer a solution in the field of personalized precision medicine [40] to the current clin-
ical challenge posed by patients with spitzoid melanocytic tumors currently classified
as “of uncertain malignant potential,” thus providing a precise, clear and personalized
answer to the diagnosis and prognosis of these patients [4,8,41]. In fact, despite the cost
of RRBS and the difficulty of using this technology in health centers, using this algorithm
in clinical practice may help pathologists properly diagnose spitzoid tumors regardless
of their experience with these lesions. This epigenetic algorithm could avoid the use of
invasive, expensive, and/or time-consuming techniques for both diagnosis and therapy
(such as sentinel lymph node studies, PET, or adjuvant therapies) for lesions with a low
risk of clinical aggressiveness while minimizing psychosocial and emotional distress to
patients [42–44].

Nevertheless, it is recommended that a molecular approach that is more accessible
to the current healthcare system than RRBS is found to determine the methylation status
of the seven cg sites. Due to the complexity of the regions where these cg are located,
cytosine and guanine are enriched; thus, at this moment, it is not possible to design primers
for direct bisulfite pyrosequencing, methylation-specific PCR (MS-PCR) or MassARRAY
(combination of competitive PCR with MALDI-TOF). It is possible that the technical and
economic requirements for RRBS or WGBS will soon become lower and more affordable in
routine clinical practice. Other approaches could be used, such as anchor-based bisulfite
sequencing (ABBS) [45] and nanopore sequencing [46].

In conclusion, our newly identified epigenetic biomarkers and associated algorithms,
whether or not combined with immunohistochemistry [18], FISH [7], NGS [47], or even
other epigenetic markers [48,49], will improve the diagnosis and prediction of clinical
outcomes in challenging ambiguous spitzoid tumors [50].

4. Materials and Methods
4.1. Human Samples

For this study, 40 formalin–fixed paraffin–embedded (FFPE) tumor samples from
patients with spitzoid lesions were selected and classified according to the 5th Edition
of the World Health Organization (WHO) Classification of Skin Tumor [2] as 12 SN, 19
AST, and 9 SM. Tumor specimens were collected at the time of surgery and reported to
the Department of Anatomic Pathology of the Hospital Clínico Universitario, Valencia
(Spain) from 1990 to 2018. The Ethical and Scientific Committees of the Hospital Clínico
Universitario approved this protocol. Written informed consent was obtained from all the
patients. The essential clinicopathological features are shown in Table 5.

4.2. Nucleic Acid Extraction

The pathologist selected the most representative tumor areas of each lesion from
hematoxylin–eosin stained slides. These areas were manually punched from paraffin
blocks to achieve at least 90% tumor cellularity.

Genomic DNA and total RNA (including small RNAs) from the same punch were
simultaneously extracted using AllPrep DNA/RNA FFPE (Qiagen Cat# 80234, Hilden,
Germany), following the manufacturer’s recommendations. The main advantage of this
kit is its ability to simultaneously obtain genomic DNA and RNA from the same tumor
region. This allows different techniques to be performed on small and rare lesions such as
spitzoid tumors.
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Table 5. Clinicopathologic characteristics of the three subgroups of spitzoid tumors.

Diagnosis n
Age (Years) at

Diagnosis
(Median ± SD #)

Gender Location
Diameter

(mm)
(Median ± SD #)

Mitosis/mm2

(Median ± SD #)

SN 12 24.08 ± 18.33 Male: 25%
Female: 75%

Lower limb: 4
Trunk: 2

Upper limb: 4
Head & neck: 1
Not specified: 1

6.14 ± 3.18 0.33 ± 0.65

AST 19 20.6 ± 14.84 Male: 37.5%
Female: 62.5%

Lower limb: 2
Trunk: 3

Upper limb: 3
Head & neck: 2
Not specified: 9

5.22 ± 2.48 1.53 ± 1.07

SM 9 47.22 ± 20.31 Male: 66.67%
Female: 33.33%

Lower limb: 1
Trunk: 1

Upper limb: 4
Head & neck: 0
Not specified: 3

5.16 ± 1.31 5 ± 2.83

SN, Spitz nevus; AST, Atypical Spitzoid Tumor; SM, Spitzoid melanoma. # SD, standard deviation.

Briefly, deparaffinization was performed efficiently using a commercial solution (Qia-
gen Cat# 19093, Hilden, Germany), avoiding further washing steps. After solubilization,
both nucleic acids were treated separately to remove formaldehyde crosslinks and then
purified automatically using the QIAcube nucleic acid purification system (Qiagen Cat#
9002864, Hilden, Germany). RNA and DNA were eluted using 30 µL nuclease–free water
and low-EDTA buffer and stored at −80 and −20 ◦C, respectively.

Both DNA and RNA were quantified using a Nanodrop One (Thermo Fisher Scientific,
Waltham, MA, USA). DNA was isolated for the RRBS study, and RNA was extracted
for future studies. As required for RRBS, the DNA concentration of the samples was
also measured using the Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific, Waltham,
MA, USA), and the quality was assessed using the Fragment Analyzer and the DNF-
487 Standard Sensitivity or the DNF-488 High Sensitivity Genomic DNA Analysis Kit
(Advanced Analytical, Ames, USA), according to the sample concentration.

4.3. Reduced Representation Bisulfite Sequencing (RRBS)

RRBS enables genome–wide DNA methylation mapping with good resolution and
theoretical coverage of 3.5 and 4 million CpG dinucleotides in the human genome. This
methodology covers CpG islands, promoter regions, and other functional elements, includ-
ing enhancers, CpG island boundaries, and non–coding RNAs.

DNA methylation profiling (RRBS Service) (Diagenode Cat# G02020000, Seraign,
Belgium) was performed. The service workflow includes DNA quality control (QC),
preparation of RRBS libraries, deep sequencing, and primary bioinformatics analysis [51].

RRBS libraries were prepared using the Premium Reduced Representation Bisulfite
Sequencing Kit, according to the manufacturer’s protocol (Diagenode Cat# C02030033,
Seraign, Belgium) [52]. First, DNA was digested with the restriction enzyme MspI, which
recognizes CCGG sites, resulting in genomic fragments that start and end with a CpG
dinucleotide, regardless of DNA methylation status. For library preparation, the ends were
prepared, adaptors were ligated, and samples were selected by size.

Following library preparation, samples were pooled together into groups of eight and
treated with bisulfite. Bisulfite converts non–methylated cytosines into uracils, which are
then read as timines. Bisulfite treatment was performed under minimum DNA degradation
conditions and maximum conversion efficacy of non-methylated cytosines. Next, the
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library was enriched by amplification via PCR, and a clean-up was performed using 1.45x
beads: sample ratio of Agencourt® AMPure® XP (Beckman Coulter, Pasadena, CA, USA).

The Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) was
used to measure the DNA pool concentration, and their profiles were checked using the
High Sensitivity DNA chip for 2100 Bioanalyzer (Agilent). In case of too high adapter
dimer peaks, the pools were size selected one more time using 1.45x beads: sample ratio
of Agencourt® AMPure® XP (Beckman Coulter, Pasadena, CA, USA), and quality control
steps were performed again. RRBS library pools were sequenced on a HiSeq3000 (Illumina,
San Diego, CA, USA) using 50 bp single-read sequencing (SR50).

4.4. Bioinformatics Analysis

Quality control of the sequencing was performed using FastQC version 0.11.8 (Babra-
ham Bioinformatics, Babraham Institute, Cambridge, UK). Trim Galore! Version 0.4.1
was used to remove the adapters (Babraham Bioinformatics, Babraham Institute, Cam-
bridge, UK). Reads were then aligned to the human reference genome hg19 using Bismak
v0.16.1, followed by methylation calling using the corresponding Bismark functionality [53].
These quality controls were performed using the Diagenode RRBS Service (Diagenode,
Seraign, Belgium).

In addition, other quality controls were performed using FastQC and BAM files using
three independent programs: Bismark v0.22.1 [53], MultiQC V1.7 [54], and Qualimap
v2.2.1 [55]. Normalization was performed using the normalizeCoverage function of the
methylKit R package version 1.20.0 [56].

Differential methylation analysis was performed using the methylKit R package,
applying Fisher’s exact test to obtain the p–value and q–value for each cg site. Predictive
models were executed by independent logistic regression with the glm function of the R
Stats package and the glmulti (version 1.0.7) function to find the best combination of the
seven methylation sites of Equation (1) to build Equation (2) [57].

4.5. Statistical Analysis

Statistical analyses were performed using GraphPad Prism V.6.01 (GraphPad Prism
Software, Inc., San Diego, CA, USA) and R 4.2.1. The following R packages were used:
Stats for heatmap graphs, ROC curves and Kruskal–Wallis rank. A p–value of <0.05 was
considered statistically significant.

5. Conclusions

In conclusion, we propose an algorithm with high predictive power for spitzoid
tumors according to the methylation status of the seven CpGs described, which may be a
key factor to classifying spitzoid tumors and predicting the risk of AST in the challenging
group in a reliable and reproducible manner, and consequently to anticipate their potential
clinical outcome.

6. Patents

Results from this work have been patented with an European Patent Application
(application number 21382569.8) and an International Patent Application (application
number PCT/EP2022/067556) entitled “Molecular tools for the diagnosis and prognosis of
melanocytic Spitzoid tumors”, whose inventors are the authors of this manuscript.

Author Contributions: Conceptualization, J.F.G.-M. and C.M.; methodology, J.F.G.-M., B.S.-S. and
C.M.; validation, J.F.G.-M., B.S.-S. and C.M.; formal analysis, J.F.G.-M., B.S.-S. and C.M.; investigation,
J.F.G.-M., B.S.-S. and C.M.; resources, J.F.G.-M., B.S.-S. and C.M.; data curation, J.F.G.-M., B.S.-S.
and C.M.; writing—original draft preparation, J.F.G.-M. and C.M.; writing—review and editing,
J.F.G.-M., B.S.-S. and C.M.; visualization, J.F.G.-M., B.S.-S. and C.M.; supervision, C.M.; project
administration, C.M.; funding acquisition, C.M. All authors have read and agreed to the published
version of the manuscript.



Int. J. Mol. Sci. 2024, 25, 318 14 of 16

Funding: This research was funded by the Instituto de Salud Carlos III, Spain; FEDER European
funds, grant numbers PI17/02019 and PI20/00094 (to C.M.); and “Reto Everest” from the Asociación
Española Contra el Cáncer (AECC).

Institutional Review Board Statement: This study was conducted in accordance with the guidelines
of the Declaration of Helsinki and was supervised and approved by the Ethical and Scientific
Committees of the Hospital Clínico Universitario of Valencia (CEIC02017.302, 22 June 2017).

Informed Consent Statement: Informed consent was obtained from all the subjects involved in
the study.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study design; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Abboud, J.; Stein, M.; Ramien, M.; Malic, C. The diagnosis and management of the Spitz nevus in the pediatric population: A

systematic review and meta-analysis protocol. Syst. Rev. 2017, 6, 81. [CrossRef] [PubMed]
2. WHO. Classification of Tumours Editorial Board, Skin Tumours, 5th ed.; WHO Classification of Tumours Series; WHO: Geneva,

Switzerland, 2023; Volume 12.
3. Tom, W.L.; Hsu, J.W.; Eichenfield, L.F. Pediatric “STUMP” lesions: Evaluation and management of difficult atypical Spitzoid

lesions in children. J. Am. Acad. Dermatol. 2011, 64, 572–599. [CrossRef] [PubMed]
4. Hillen, L.M.; Van den Oord, J.; Geybels, M.S.; Becker, J.C.; Hausen, A.Z.; Winnepenninckx, V. Genomic landscape of spitzoid

neoplasms impacting patient management. Front. Med. 2018, 5, 344. [CrossRef] [PubMed]
5. Mesbah Ardakani, N.; Thomas, C.; Robinson, C.; Mina, K.; Harvey, N.T.; Amanuel, B.; Wood, B.A. Detection of copy number

variations in melanocytic lesions utilising array based comparative genomic hybridisation. Pathology 2017, 49, 285–291. [CrossRef]
[PubMed]

6. Wiesner, T.; Kutzner, H.; Cerroni, L.; Mihm, M.C.; Busam, K.J.; Murali, R. Genomic aberrations in spitzoid melanocytic tumours
and their implications for diagnosis, prognosis and therapy. Pathology 2016, 48, 113–131. [CrossRef] [PubMed]

7. Gerami, P.; Scolyer, R.A.; Xu, X.; Elder, D.E.; Abraham, R.M.; Fullen, D.; Prieto, V.G.; Leboit, P.E.; Barnhill, R.L.; Cooper, C.; et al.
Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am.
J. Surg. Pathol. 2013, 37, 676–684. [CrossRef] [PubMed]

8. Dimonitsas, E.; Liakea, A.; Sakellariou, S.; Thymara, I.; Giannopoulos, A.; Stratigos, A.; Soura, E.; Saetta, A.; Korkolopoulou, P.
An update on molecular alterations in melanocytic tumors with emphasis on Spitzoid lesions. Ann. Transl. Med. 2018, 6, 249.
[CrossRef] [PubMed]

9. Raghavan, S.S.; Peternel, S.; Mully, T.W.; North, J.P.; Pincus, L.B.; LeBoit, P.E.; McCalmont, T.H.; Bastian, B.C.; Yeh, I. Spitz
melanoma is a distinct subset of spitzoid melanoma. Mod. Pathol. 2020, 33, 1122–1134. [CrossRef]

10. van Engen-van Grunsven, A.C.; van Dijk, M.C.; Ruiter, D.J.; Klaasen, A.; Mooi, W.J.; Blokx, W.A. HRAS-mutated spitz tumors: A
subtype of spitz tumors with distinct features. Am. J. Surg. Pathol. 2010, 34, 1436–1441. [CrossRef]

11. Tetzlaff, M.T.; Reuben, A.; Billings, S.D.; Prieto, V.G.; Curry, J.L. Toward a Molecular-Genetic Classification of Spitzoid Neoplasms.
Clin. Lab. Med. 2017, 37, 431–448. [CrossRef]

12. Lee, S.; Barnhill, R.L.; Dummer, R.; Dalton, J.; Wu, J.; Pappo, A.; Bahrami, A. TERT Promoter Mutations Are Predictive of
Aggressive Clinical Behavior in Patients with Spitzoid Melanocytic Neoplasms. Sci. Rep. 2015, 5, 11200. [CrossRef] [PubMed]

13. Requena, C.; Heidenreich, B.; Kumar, R.; Nagore, E. TERT promoter mutations are not always associated with poor prognosis in
atypical spitzoid tumors. Pigment Cell Melanoma Res. 2017, 30, 265–268. [CrossRef] [PubMed]

14. Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; et al. Kinase
fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun. 2014, 5, 3116. [CrossRef] [PubMed]

15. Quan, V.L.; Panah, E.; Zhang, B.; Shi, K.; Mohan, L.S.; Gerami, P. The role of gene fusions in melanocytic neoplasms. J. Cutan.
Pathol. 2019, 46, 878–887. [CrossRef] [PubMed]

16. Yeh, I.; de la Fouchardiere, A.; Pissaloux, D.; Mully, T.W.; Garrido, M.C.; Vemula, S.S.; Busam, K.J.; LeBoit, P.E.; McCalmont, T.H.;
Bastian, B.C. Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am. J. Surg. Pathol. 2015, 39,
581–591. [CrossRef]

17. Amin, S.M.; Haugh, A.M.; Lee, C.Y.; Zhang, B.; Bubley, J.A.; Merkel, E.A.; Verzì, A.E.; Gerami, P. A comparison of morphologic
and molecular features of BRAF, ALK, and NTRK1 fusion spitzoid neoplasms. Am. J. Surg. Pathol. 2017, 41, 491–498. [CrossRef]

18. Cho-Vega, J.H. A diagnostic algorithm for atypical spitzoid tumors: Guidelines for immunohistochemical and molecular
assessment. Mod. Pathol. 2016, 29, 656–670. [CrossRef]

19. Lee, C.Y.; Gerami, P. Molecular techniques for predicting behaviour in melanocytic neoplasms. Pathology 2016, 48, 142–146.
[CrossRef]

https://doi.org/10.1186/s13643-017-0477-8
https://www.ncbi.nlm.nih.gov/pubmed/28407793
https://doi.org/10.1016/j.jaad.2009.12.063
https://www.ncbi.nlm.nih.gov/pubmed/21255872
https://doi.org/10.3389/fmed.2018.00344
https://www.ncbi.nlm.nih.gov/pubmed/30619857
https://doi.org/10.1016/j.pathol.2016.11.008
https://www.ncbi.nlm.nih.gov/pubmed/28274670
https://doi.org/10.1016/j.pathol.2015.12.007
https://www.ncbi.nlm.nih.gov/pubmed/27020384
https://doi.org/10.1097/PAS.0b013e3182753de6
https://www.ncbi.nlm.nih.gov/pubmed/23388126
https://doi.org/10.21037/atm.2018.05.23
https://www.ncbi.nlm.nih.gov/pubmed/30069451
https://doi.org/10.1038/s41379-019-0445-z
https://doi.org/10.1097/PAS.0b013e3181f0a749
https://doi.org/10.1016/j.cll.2017.05.003
https://doi.org/10.1038/srep11200
https://www.ncbi.nlm.nih.gov/pubmed/26061100
https://doi.org/10.1111/pcmr.12565
https://www.ncbi.nlm.nih.gov/pubmed/27930864
https://doi.org/10.1038/ncomms4116
https://www.ncbi.nlm.nih.gov/pubmed/24445538
https://doi.org/10.1111/cup.13521
https://www.ncbi.nlm.nih.gov/pubmed/31152596
https://doi.org/10.1097/PAS.0000000000000387
https://doi.org/10.1097/PAS.0000000000000761
https://doi.org/10.1038/modpathol.2016.70
https://doi.org/10.1016/j.pathol.2015.12.004


Int. J. Mol. Sci. 2024, 25, 318 15 of 16

20. Schinke, C.; Mo, Y.; Yu, Y.; Amiri, K.; Sosman, J.; Greally, J.; Verma, A. Aberrant DNA methylation in malignant melanoma.
Melanoma Res. 2010, 20, 253–265. [CrossRef]

21. Rivera, R.M.; Bennett, L.B. Epigenetics in humans: An overview. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 493–499.
[CrossRef]

22. Micevic, G.; Theodosakis, N.; Bosenberg, M. Aberrant DNA methylation in melanoma: Biomarker and therapeutic opportunities.
Clin. Epigenetics 2017, 9, 34. [CrossRef] [PubMed]

23. Chatterjee, A.; Stockwell, P.A.; Ahn, A.; Rodger, E.J.; Leichter, A.L.; Eccles, M.R. Genome-wide methylation sequencing of paired
primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic
driver of melanoma metastasis. Oncotarget 2017, 8, 6085–6101. [CrossRef] [PubMed]

24. Wouters, J.; Vizoso, M.; Martinez-Cardus ACarmona, F.J.; Govaere, O.; Laguna, T.; Joseph, J.; Dynoodt, P.; Aura, C.; Foth, M.;
Cloots, R.; et al. Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for
cutaneous melanoma. BMC Med. 2017, 15, 1–16. [CrossRef] [PubMed]

25. Martinez-Ciarpaglini, C.; Gonzalez, J.; Sanchez, B.; Agusti, J.; Navarro, L.; Nieto, G.; Monteagudo, C. The amount of melanin
influences p16 Loss in spitzoid melanocytic lesions: Correlation with CDKN2A Status by FISH and MLPA. Appl. Immunohistochem.
Mol. Morphol. 2019, 27, 423–429. [CrossRef] [PubMed]

26. Takata, M.; Lin, J.; Takayanagi, S.; Suzuki, T.; Ansai, S.; Kimura, T.; Cerroni, L.; Saida, T. Genetic and epigenetic alterations in the
differential diagnosis of malignant melanoma and spitzoid lesion. Br. J. Dermatol. 2007, 156, 1287–1294. [CrossRef] [PubMed]

27. Zaremba, A.; Jansen, P.; Murali, R.; Mayakonda, A.; Riedel, A.; Philip, M.; Rose, C.; Schaller, J.; Müller, H.; Kutzner, H.; et al.
Genetic and methylation profiles distinguish benign, malignant and spitzoid melanocytic tumors. Int. J. Cancer 2022, 151,
1542–1554. [CrossRef] [PubMed]

28. Aran, D.; Sirota, M.; Butte, A.J. Systematic pan-cancer analysis of tumour purity. Nat. Commun. 2015, 6, 8971. [CrossRef]
29. Chatterjee, A.; Rodger, E.J.; Ahn, A.; Stockwell, P.A.; Parry, M.; Motwani, J.; Gallagher, S.J.; Shklovskaya, E.; Tiffen, J.; Eccles, M.R.;

et al. Marked global DNA hypomethylation is associated with constitutive PD-L1 expression in melanoma. iScience 2018, 4,
312–325. [CrossRef]

30. Xu, S.; Sui, J.; Yang, S.; Liu, Y.; Wang, Y.; Liang, G. Integrative analysis of competing endogenous RNA network focusing on long
noncoding RNA associated with progression of cutaneous melanoma. Cancer Med. 2018, 7, 1019–1029. [CrossRef]

31. Pontén, F.; Jirström, K.; Uhlen, M. The Human Protein Atlas—A tool for pathology. J. Pathol. 2008, 216, 387–393. [CrossRef]
32. Ngollo, M.; Lebert, A.; Daures, M.; Judes, G.; Rifai, K.; Dubois, L.; Kemeny, J.L.; Penault-Llorca, F.; Bignon, Y.J.; Guy, L.; et al.

Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 2017, 17, 261. [CrossRef]
[PubMed]

33. Ko, Y.S.; Bae, J.A.; Kim, K.Y.; Kim, S.J.; Sun, E.G.; Lee, K.H.; Kim, N.; Kang, H.; Seo, Y.W.; Kim, H.; et al. MYO1D binds with
kinase domain of the EGFR family to anchor them to plasma membrane before their activation and contributes carcinogenesis.
Oncogene 2019, 38, 7416–7432. [CrossRef] [PubMed]

34. Mu, J.; Yuan, P.; Luo, J.; Chen, Y.; Tian, Y.; Ding, L.; Zhao, B.; Wang, X.; Wang, B.; Liu, L. Upregulated SPAG6 promotes acute
myeloid leukemia progression through MYO1D that regulates the EGFR family expression. Blood Adv. 2022, 6, 5379–5394.
[CrossRef] [PubMed]

35. Jin, S.G.; Xiong, W.; Wu, X.; Yang, L.; Pfeifer, G.P. The DNA methylation landscape of human melanoma. Genomics 2015, 106,
322–330. [CrossRef] [PubMed]

36. Rutten-Jacobs LC, A.; Rost, N.S. Emerging Insights from the Genetics of Cerebral Small Vessel Disease. Ann. N. Y. Acad. Sci. 2020,
1471, 5–17. [CrossRef] [PubMed]

37. Ye, F.; Liang, Y.; Hu, J.; Hu, Y.; Liu, Y.; Cheng, Z.; Ou, Y.; Xu, C.; Jiang, H. DNA Methylation Modification Map to Predict Tumor
Molecular Subtypes and Efficacy of Immunotherapy in Bladder Cancer. Front. Cell Dev. Biol. 2021, 9, 760369. [CrossRef] [PubMed]

38. Vizoso, M.; Ferreira, H.J.; Lopez-Serra, P.; Carmona, F.J.; Martínez-Cardús, A.; Girotti, M.R.; Villanueva, A.; Guil, S.; Moutinho, C.;
Liz, J.; et al. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR. Nat. Med.
2015, 21, 741–750. [CrossRef] [PubMed]

39. Rodger, E.J.; Chatterjee, A.; Stockwell, P.A.; Eccles, M.R. Characterisation of DNA methylation changes in EBF3 and TBC1D16
associated with tumour progression and metastasis in multiple cancer types. Clin Epigenet. 2019, 11, 114. [CrossRef]

40. Werner, R.J.; Kelly, A.D.; Issa, J.J. Epigenetics and Precision Oncology. Cancer J. 2017, 23, 262–269. [CrossRef]
41. Broganelli, P.; Ribero, S.; Castagno, I.; Ricceri, F.; Deboli, T.; Marra, E.; Tomasini, C.; Sacerdote, C.; Osella-Abate, S.; Sanlorenzo, M.;

et al. The large spectrum of Spitzoid tumors: A retrospective survival study. G. Ital. Dermatol. Venereol. 2019, 154, 315–320.
[CrossRef]

42. Kelley, S.W.; Cockerell, C.J. Sentinel lymph node biopsy as an adjunct to management of histologically difficult to diagnose
melanocytic lesions: A proposal. J. Am. Acad. Dermatol. 2000, 42, 527–530. [CrossRef] [PubMed]

43. Dieng, M.; Cust, A.E.; Kasparian, N.A.; Mann, G.J.; Morton, R.L. Economic evaluations of psychosocial intervention in cancer: A
systematic review. Psychooncology 2016, 25, 1380–1392. [CrossRef] [PubMed]

44. Bares, C.B.; Trask, P.C.; Schwartz, S.M. An exercise in cost-effectiveness analysis: Treating emotional distress in melanoma patients.
J. Clin. Psychol. Med. Settings 2002, 91, 193–200. [CrossRef]

45. Chapin, N.; Fernandez, J.; Poole, J.; Delatte, B. Anchor-based bisulfite sequencing determines genome-wide DNA methylation.
Commun. Biol. 2022, 5, 596. [CrossRef] [PubMed]

https://doi.org/10.1097/CMR.0b013e328338a35a
https://doi.org/10.1097/MED.0b013e3283404f4b
https://doi.org/10.1186/s13148-017-0332-8
https://www.ncbi.nlm.nih.gov/pubmed/28396701
https://doi.org/10.18632/oncotarget.14042
https://www.ncbi.nlm.nih.gov/pubmed/28030832
https://doi.org/10.1186/s12916-017-0851-3
https://www.ncbi.nlm.nih.gov/pubmed/28578692
https://doi.org/10.1097/PAI.0000000000000633
https://www.ncbi.nlm.nih.gov/pubmed/29489509
https://doi.org/10.1111/j.1365-2133.2007.07924.x
https://www.ncbi.nlm.nih.gov/pubmed/17535228
https://doi.org/10.1002/ijc.34187
https://www.ncbi.nlm.nih.gov/pubmed/35737508
https://doi.org/10.1038/ncomms9971
https://doi.org/10.1016/j.isci.2018.05.021
https://doi.org/10.1002/cam4.1315
https://doi.org/10.1002/path.2440
https://doi.org/10.1186/s12885-017-3256-y
https://www.ncbi.nlm.nih.gov/pubmed/28403887
https://doi.org/10.1038/s41388-019-0954-8
https://www.ncbi.nlm.nih.gov/pubmed/31420606
https://doi.org/10.1182/bloodadvances.2021006920
https://www.ncbi.nlm.nih.gov/pubmed/35667090
https://doi.org/10.1016/j.ygeno.2015.09.004
https://www.ncbi.nlm.nih.gov/pubmed/26384656
https://doi.org/10.1111/nyas.13998
https://www.ncbi.nlm.nih.gov/pubmed/30618052
https://doi.org/10.3389/fcell.2021.760369
https://www.ncbi.nlm.nih.gov/pubmed/34926451
https://doi.org/10.1038/nm.3863
https://www.ncbi.nlm.nih.gov/pubmed/26030178
https://doi.org/10.1186/s13148-019-0710-5
https://doi.org/10.1097/PPO.0000000000000281
https://doi.org/10.23736/S0392-0488.17.05575-4
https://doi.org/10.1016/S0190-9622(00)90236-6
https://www.ncbi.nlm.nih.gov/pubmed/10688734
https://doi.org/10.1002/pon.4075
https://www.ncbi.nlm.nih.gov/pubmed/26810383
https://doi.org/10.1023/A:1016095126552
https://doi.org/10.1038/s42003-022-03543-1
https://www.ncbi.nlm.nih.gov/pubmed/35710818


Int. J. Mol. Sci. 2024, 25, 318 16 of 16

46. Gershman, A.; Sauria ME, G.; Guitart, X.; Vollger, M.R.; Hook, P.W.; Hoyt, S.J.; Jain, M.; Shumate, A.; Razaghi, R.; Koren, S.; et al.
Epigenetic patterns in a complete human genome. Science 2022, 376, abj5089. [CrossRef] [PubMed]

47. Chen, X.; Cao, W.; Zhuang, Y.; Chen, S.; Li, X. Integrative analysis of potential biomarkers and immune cell infiltration in
Parkinson’s disease. Brain Res. Bull. 2021, 177, 53–63. [CrossRef] [PubMed]

48. Latchana, N.; del Campo, S.E.; Grignol, V.P.; Clark, J.R.; Albert, S.P.; Zhang, J.; Wei, L.; Aldrink, J.H.; Nicol, K.K.; Ranalli, M.A.;
et al. Classification of Indeterminate Melanocytic Lesions by MicroRNA Profiling. Ann. Surg. Oncol. 2017, 24, 347–354. [CrossRef]
[PubMed]

49. Latchana, N.; Regan, K.; Howard, J.H.; Aldrink, J.H.; Ranalli, M.A.; Peters, S.B.; Zhang, X.; Gru, A.; Payne PR, O.; Sua-rez-
Kelly, L.P.; et al. Global microRNA profiling for diagnostic appraisal of melanocytic Spitz tumors. J. Surg. Res. 2016, 205, 350–358.
[CrossRef]

50. Pappo, A.S.; McPherson, V.; Pan, H.; Wang, F.; Wang, L.; Wright, T.; Hussong, M.; Hawkins, D.; Kaste, S.C.; Davidoff, A.M.; et al.
A prospective, comprehensive registry that integrates the molecular analysis of pediatric and adolescent mela-nocytic lesions.
Cancer 2021, 127, 3825–3831. [CrossRef]

51. Veillard, A.-C.; Datlinger, P.; Laczik, M.; Squazzo, S.; Bock, C. Diagenode® Premium RRBS technology: Cost-effective DNA
methylation mapping with superior coverage. Nat. Methods 2016, 13, i–ii. [CrossRef]

52. Zhao, S.; Li, J.; Zhang, H.; Qi, L.; Du, Y.; Kogiso, M.; Braun, F.K.; Xiao, S.; Huang, Y.; Li, J.; et al. Epigenetic Alterations of Repeated
Relapses in Patient-matched Childhood Ependymomas. Nat. Commun. 2022, 13, 6689. [CrossRef] [PubMed]

53. Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27,
1571–1572. [CrossRef] [PubMed]

54. Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single
report. Bioinformatics 2016, 32, 3047–3048. [CrossRef] [PubMed]

55. Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput
sequencing data. Bioinformatics 2016, 32, 292–294. [CrossRef]

56. Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. MethylKit: A comprehensive
R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012, 13, R87. [CrossRef]

57. Calcagno, V.; de Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J.
Stat. Softw. 2010, 34, 29. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/science.abj5089
https://www.ncbi.nlm.nih.gov/pubmed/35357915
https://doi.org/10.1016/j.brainresbull.2021.09.010
https://www.ncbi.nlm.nih.gov/pubmed/34536521
https://doi.org/10.1245/s10434-016-5476-9
https://www.ncbi.nlm.nih.gov/pubmed/27469124
https://doi.org/10.1016/j.jss.2016.06.085
https://doi.org/10.1002/cncr.33750
https://doi.org/10.1038/nmeth.f.391
https://doi.org/10.1038/s41467-022-34514-z
https://www.ncbi.nlm.nih.gov/pubmed/36335125
https://doi.org/10.1093/bioinformatics/btr167
https://www.ncbi.nlm.nih.gov/pubmed/21493656
https://doi.org/10.1093/bioinformatics/btw354
https://www.ncbi.nlm.nih.gov/pubmed/27312411
https://doi.org/10.1093/bioinformatics/btv566
https://doi.org/10.1186/gb-2012-13-10-r87
https://doi.org/10.18637/jss.v034.i12

	Introduction 
	Results 
	Differential Methylation Analysis 
	Predictive Equations 
	Risk Prediction of the Samples 

	Discussion 
	Materials and Methods 
	Human Samples 
	Nucleic Acid Extraction 
	Reduced Representation Bisulfite Sequencing (RRBS) 
	Bioinformatics Analysis 
	Statistical Analysis 

	Conclusions 
	Patents 
	References

